# Exercise 1: RC Time Constants

Size: px
Start display at page:

Transcription

1 Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results with an oscilloscope. DISCUSSION A capacitor opposes change in voltage, an inductor opposes change in current, and a resistor opposes current whether it is changing or not. The time constant of a circuit is the amount of time required for current in an inductive circuit or for voltage in a capacitive circuit to reach approximately 63 percent of its maximum value. The time constant ( ) of an RC circuit depends on the values of R (resistance) and C (capacitance): = R x C In the formula above, equals time in seconds, R equals resistance in ohms, and C equals capacitance in farads. What is the time constant of the RC circuit shown? = R x C = ms (Recall Value 1) When the switch is closed (assuming there is no initial charge on the capacitor), the voltage across C1 (V C1 ) is 63% of the applied voltage (V A ) after one time constant (50 ms in this circuit). V C1 = V A x 63% = 10 x 0.63 = 6.3 Vdc In this example, the time required for the capacitor to fully charge (or discharge) is a. 250 ms. b. 50 ms. c. 99 ms. FACET by Lab-Volt 211

2 AC 1 Fundamentals The time constant of an RL circuit depends on the values of R and L (inductance). In the formula, equals time in seconds, R equals resistance in ohms, and L equals inductance in henries. Because pure resistance instantaneously reacts to voltage and current changes, no time constant affects a purely resistive circuit. With the aid of a universal time constant chart, you can determine the amount of voltage across or current through an inductor or capacitor if you know the time constant. The charging and discharging curves are equal and opposite. These curves indicate that a capacitor or an inductor charges and discharges at the same rate. 212 FACET by Lab-Volt

3 Assume that C1 is fully charged to 10 Vdc. When the switch is closed, C1 discharges through R1. The capacitor discharges at a rate dictated by the RC time constant. = R x C = 50 k x 3 F = 150 ms (one time constant) Suppose we wish to know the voltage across C1 (V C1 ) after 300 ms (two time constants). Looking at the universal time constant chart, you can see that the voltage across the capacitor will be approximately 14% of the original value after two time constants. The voltage across C1 (V C1 ) after two time constants equals: V C1 = V A x 14% = 10 x 0.14 = 1.4 Vdc FACET by Lab-Volt 213

4 AC 1 Fundamentals The voltage across the capacitor (C1) should be what percent of the original value (10 Vdc) after three time constants? percent (Recall Value 2) PROCEDURE If necessary clear the AC 1 FUNDAMENTALS circuit board of all two-post connectors and any other connections. Locate the RC TIME CONSTANTS circuit block, and connect the circuit shown. While monitoring the voltage across R1 (V R1 ) with an oscilloscope, press and hold (close) S1. Based on your observation, did the voltage across R1 develop instantaneously or was there a time constant delay? a. delayed b. instantaneous 214 FACET by Lab-Volt

5 On the RC TIME CONSTANTS circuit block, connect the circuit shown. S2 provides a discharge path for C1 through R3. Press and hold S2 for several seconds to make sure C1 is totally discharged. Connect the oscilloscope input across C1. Make sure the probe is set to 10X. Measure the time required for the capacitor to charge to V A (15 Vdc) by pressing (holding) S1 and using the second hand of a watch or clock. Begin timing at the instant you close S1. Charge time = seconds (Recall Value 1) One time constant equals the resistance times the capacitance. In your circuit: = R x C = 100 k x 10 F = 1 second Compare your measured value of total charging time ( seconds [Step 4, Recall Value 1]) to the calculated value of one time constant. Was the total time required to charge a. yes b. no FACET by Lab-Volt 215

6 AC 1 Fundamentals Use a two-post connector to add the 10 F capacitor C2 in parallel with the circuit. Calculate the new RC time constant of the circuit. ( = R2 x C T, C T = C1 + C2) = seconds (Recall Value 2) Use the universal time constant chart to determine the percentage of voltage across C1 and C2 (V C ) after V A is applied for two time constants. Voltage = percent (Recall Value 3) 216 FACET by Lab-Volt

7 Make sure the capacitors are discharged by pressing S2 (zero volts across C1 and C2). Make sure your probe is set to 10X. Determine V C after two time constants (4 seconds) have expired by pressing S1, releasing it after 4 seconds, and immediately taking the measurement. V C after 4 seconds = volts (Recall Value 4) Compare your measured voltage of V C ( volts [Step 9, Recall Value 4]) with the percentage of applied voltage across C1 and C2 by using the universal time constant chart. Can you accurately predict the voltage across a capacitor by using the universal time constant chart? a. yes b. no Do not turn off the equipment. The FACET setup is needed to answer a review question. CONCLUSION The time constant of an RC circuit equals total resistance (R) multiplied by total capacitance (C). When you know the time constant, you can use the universal time constant chart to predict the amount of charge on a capacitor at any point in its charge or discharge time. FACET by Lab-Volt 217

8 AC 1 Fundamentals REVIEW QUESTIONS 1. Locate the RC TIME CONSTANTS circuit block on the AC 1 Fundamentals circuit board and connect the circuit shown. Make sure the capacitor is completely discharged by pressing S2 until you measure zero volts across C1. While observing an oscilloscope connected across C1, press S1 and measure the time required for the capacitor to charge to 15 Vdc (T C ). Start timing at the instant S1 is closed. T C (without CM) = seconds (Recall Value 1) Make sure C1 is completely discharged by pressing S2 until you measure zero volts across C1. Place CM switch 3 in the ON postion to reduce the value of C1. Remeasure the time required to charge C1. T C (with CM) = seconds (Recall Value 2) You conclude that a. decreasing the capacitance increased the RC time constant. b. changing the capacitance had no effect on the RC time constant. c. decreasing the capacitance decreased the RC time constant. d. the more capacitive the circuit, the shorter the RC time constant. 2. A circuit with resistance of 75 k and capacitance of 4.7 F has an RC time constant of a s. b. 353 ms. c s. d. 159 ms. 3. Increasing the value of resistance in an RC circuit a. causes the time constant to increase. b. has no effect on the time constant. c. causes the time constant to decrease. d. 4. A capacitor is considered to be fully discharged after a. one time constant. b. six time constants. c. two time constants. d. 218 FACET by Lab-Volt

9 5. Use the universal time constant chart to determine a. charge and discharge times of RC and RL circuits. b. charge and discharge times of RC circuits only. c. only charge times of RC and RL circuits. d. only discharge times of RC and RL circuits. FACET by Lab-Volt 219

### Exercise 1: Capacitors

Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured

### resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )

DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify

### Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

### Exercise 1: Thermistor Characteristics

Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor

### Exercise 2: Power Factor

Power in AC Circuits AC 2 Fundamentals Exercise 2: Power Factor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power factor of ac circuits by using standard

### RC, RL, and LCR Circuits

RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They

### EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

### Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

### Exercise 2: Kirchhoff s Current Law/2 Sources

Exercise 2: Kirchhoff s Current Law/2 Sources EXERCISE OBJECTIVE When you have completed this exercise, you will be able to apply Kirchhoff s current law to a circuit having two voltage sources. You will

### Exercise 1: Thermocouple Characteristics

The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics

### What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

### Name: Lab Partner: Section:

Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

### Determining Characteristic Impedance and Velocity of Propagation by Measuring the Distributed Capacitance and Inductance of a Line

Exercise 2-1 Determining Characteristic Impedance and Velocity EXERCISE OBJECTIVES Upon completion of this exercise, you will know how to measure the distributed capacitance and distributed inductance

### PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit

PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,

### Exercise 2: The DC Ohmmeter

Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring

### ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

### Experiment Guide for RC Circuits

Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

### REVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27.

REVIEW EXERCISES Circle the letter of the correct answer to each question. 1. What is the current and voltage relationship immediately after the switch is closed in the circuit in figure 4-27, which shows

### PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS

PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS The first purpose of this laboratory is to observe voltages as a function of time in an RC circuit and compare it to its expected time behavior. In the second

### Pre-Lab. Introduction

Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

### Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

### 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

### Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

### Alternating Current Circuits. Home Work Solutions

Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

### RC Circuit (Power amplifier, Voltage Sensor)

Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

### Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

### Exercise 2: Bending Beam Load Cell

Transducer Fundamentals The Strain Gauge Exercise 2: Bending Beam Load Cell EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the operation of a board,

### CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a

### First-order transient

EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

### EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6

EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6 Homework Passive Components Capacitors RC Filters fc Calculations Bode Plots Module III Homework- due 2/20 (Najera), due 2/23 (Quinones)

### Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

### Lecture 27: FRI 20 MAR

Physics 2102 Jonathan Dowling Lecture 27: FRI 20 MAR Ch.30.7 9 Inductors & Inductance Nikolai Tesla Inductors: Solenoids Inductors are with respect to the magnetic field what capacitors are with respect

### Name Class Date. RC Circuit Lab

RC Circuit Lab Objectives: Students will be able to Use the ScienceWorkshop interface to investigate the relationship between the voltage remaining across a capacitor and the time taken for the discharge

### EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

### The RC Time Constant

The RC Time Constant Objectives When a direct-current source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge

### Chapter 13. Capacitors

Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

### Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

### Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors

Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors

### RC & RL TRANSIENT RESPONSE

INTRODUTION R & RL TRANSIENT RESPONSE The student will analyze series R and RL circuits. A step input will excite these respective circuits, producing a transient voltage response across various circuit

### Electrical Circuits (2)

Electrical Circuits (2) Lecture 7 Transient Analysis Dr.Eng. Basem ElHalawany Extra Reference for this Lecture Chapter 16 Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/theoryandproblemsofelectriccircuits

### Slide 1 / 26. Inductance by Bryan Pflueger

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

### Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

### The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope

The RC Circuit INTRODUCTION The goal in this lab is to observe the time-varying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools

### As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

### Capacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1)

apacitors THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = V (1) where is a proportionality constant known as the

### Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

### Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

### Capacitance Measurement

Overview The goal of this two-week laboratory is to develop a procedure to accurately measure a capacitance. In the first lab session, you will explore methods to measure capacitance, and their uncertainties.

### Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

### Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

### Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

### Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor)

PASCO scientific Vol. 2 Physics Lab Manual: P43-1 Experiment P43: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P43 P43_RCCI.SWS EQUIPMENT NEEDED

### Coulomb s constant k = 9x10 9 N m 2 /C 2

1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

### University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

### Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem.

page 57 1.7 Modeling Problems Using First-Order Linear Differential Equations 57 For Problems 33 38, use a differential equation solver to determine the solution to each of the initial-value problems and

### 1 Phasors and Alternating Currents

Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

### ECE2262 Electric Circuit

ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

### Physics 212 Midterm 2 Form A

1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

### Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

### Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance 1. What is Faraday s Law? Magnitude of voltage induced in a turn of wire is proportional to the rate of change of flux passing through that

### Physics 4 Spring 1989 Lab 5 - AC Circuits

Physics 4 Spring 1989 Lab 5 - AC Circuits Theory Consider the series inductor-resistor-capacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage

### U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

### Physics Investigation 10 Teacher Manual

Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging

### MATH 312 Section 3.1: Linear Models

MATH 312 Section 3.1: Linear Models Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Population Growth 2 Newton s Law of Cooling 3 Kepler s Law Second Law of Planetary Motion 4

### Chapter 32. Inductance

Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

### Laboratory Worksheet Experiment NE04 - RC Circuit Department of Physics The University of Hong Kong. Name: Student ID: Date:

PHYS1050 / PHYS1250 Laboratory Worksheet Experiment Department of Physics The University of Hong Kong Ref. (Staff Use) Name: Student ID: Date: Draw a schematic diagram of the charging RC circuit with ammeter

### EE292: Fundamentals of ECE

EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Steady-State Analysis RC Circuits RL Circuits 3 DC Steady-State

### Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

### Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

### farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

p1 EE1050/60 Capacitors Lab University of Utah Electrical Engineering Department EE1050/1060 Capacitors A. Stolp, 10/4/99 rev 3/17/01 Objectives 1.) Observe charging and discharging of a capacitor. 2.)

### ECE 241L Fundamentals of Electrical Engineering. Experiment 5 Transient Response

ECE 241L Fundamentals of Electrical Engineering Experiment 5 Transient Response NAME PARTNER A. Objectives: I. Learn how to use the function generator and oscilloscope II. Measure step response of RC and

### Learnabout Electronics - AC Theory

Learnabout Electronics - AC Theory Facts & Formulae for AC Theory www.learnabout-electronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...

### Laboratory #1: Inductive and Capacitive Transients Electrical and Computer Engineering EE University of Saskatchewan

Authors: Denard Lynch Date: July, 16, 2012 Corrections: Sep 16, 2012 D. Lynch, M. R. Avendi Revised: Sep 22, 2012 D. Lynch Revised: Sep 9, 2013 Description: This laboratory exercise explores resistance

### DC Circuits Analysis

Western Technical College 10660117 DC Circuits Analysis Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 2.00 Total Hours 54.00 This course provides

### LAB 3: Capacitors & RC Circuits

LAB 3: Capacitors & C Circuits Name: Circuits Experiment Board Wire leads Capacitors, esistors EQUIPMENT NEEDED: Two D-cell Batteries Multimeter Logger Pro Software, ULI Purpose The purpose of this lab

### FACULTY OF ENGINEERING LAB SHEET. IM1: Wheatstone and Maxwell Wien Bridges

FCULTY OF ENGINEEING LB SHEET EEL96 Instrumentation & Measurement Techniques TIMESTE 08-09 IM: Wheatstone and Maxwell Wien Bridges *Note: Please calculate the computed values for Tables. and. before the

### RC Circuits. Equipment: Capstone with 850 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 3 leads V C = 1

R ircuits Equipment: apstone with 850 interface, RL circuit board, 2 voltage sensors (no alligator clips), 3 leads 1 Introduction The 3 basic linear circuits elements are the resistor, the capacitor, and

### Experiment 8: Capacitance and the Oscilloscope

Experiment 8: Capacitance and the Oscilloscope Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Outline Capacitance: Capacitor

### EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2 - CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

### Unit 21 Capacitance in AC Circuits

Unit 21 Capacitance in AC Circuits Objectives: Explain why current appears to flow through a capacitor in an AC circuit. Discuss capacitive reactance. Discuss the relationship of voltage and current in

### Measurement of Electrical Resistance and Ohm s Law

Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following

### Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

### Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or

### Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition

RC Circuits Experiment PH06_Todd OBJECTIVE To investigate how the voltage across a capacitor varies as it charges. To find the capacitive time constant. EQUIPMENT NEEDED Computer: Personal Computer with

### Experiment 3: Resonance in LRC Circuits Driven by Alternating Current

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Introduction In last week s laboratory you examined the LRC circuit when constant voltage was applied to it. During this laboratory

### Some Important Electrical Units

Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

### RC Studies Relaxation Oscillator

RC Studies Relaxation Oscillator Introduction A glass tube containing neon gas will give off its characteristic light when the voltage across the tube exceeds a certain value. The value corresponds to

### Direct Current (DC) Circuits

Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

### Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

### Introduction to Basic Electronics Lecture -2

Introduction to Basic Electronics Lecture -2 Basic Electronics What is electricity? Voltage, Current, Resistance DC/AC Ohm s Law Capacitors & Inductors Conductor & Insulator What is Electricity? Everything

### Figure 1: Capacitor circuit

Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

### Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

### Energy Storage Elements: Capacitors and Inductors

CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static,

### INSPIRE GK12 Lesson Plan

Lesson Title Length of Lesson Created By Subject Grade Level 11-12 State Standards Physics: 5 DOK Level DOK 4 DOK Application National Standards Graduate Research Element Student Learning Goal: Capacitance

### RC Circuit Lab - Discovery PSI Physics Capacitors and Resistors

1 RC Circuit Lab - Discovery PSI Physics Capacitors and Resistors Name Date Period Purpose The purpose of this lab will be to determine how capacitors behave in R-C circuits. The manner in which capacitors

### RC & RL Transient Response

EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy

### PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

PHY222 Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Print Your Partners' Names You will return this handout to the instructor