Scanning Tunneling Microscopy Local probes at high magnetic fields?

Size: px
Start display at page:

Download "Scanning Tunneling Microscopy Local probes at high magnetic fields?"

Transcription

1 Scanning Tunneling Microscopy Local probes at high magnetic fields? Hermann Suderow Laboratorio de Bajas Temperaturas Departamento de Física de la Materia Condensada Instituto de Ciencia de Materiales Nicolás Cabrera Universidad Autónoma de Madrid (UAM)

2 Microscopy optical C. Zeiss, Jena Antoni van Leeuwenhoek ( ) Delft Franz Griendel von Ach Always fascinating to obtain real space images

3 Microscopy Optical, SEM, SPM SPM at cryogenic temperatures Cryogenic operation of a scanning probe microscope eliminates Brownian motion altogether, provides for resolution in energy and enables macroscopic quantum behavior

4 Atomic scale manipulation with cryogenic scanning probe microscopy T=4.2 K D. Eigler, IBM Cryogenic scanning probe microscopy eliminates Brownian motion altogether and enables macroscopic quantum behavior 4

5 Status of cryogenic scanning probe microscopy

6 Spectroscopy at high magnetic fields pa What? Tunneling spectroscopy Tunneling microscopy

7 STM: Binnig and Rohrer (1982) I ( V, z ) VN ( E ) F e Φz I= 1 na ~ z= 1Å Piezoelectrics x, y 20 A V 1Å ~ 250 mv

8 Tunneling current between a metallic tip and a sample: Overlap between tip and sample s wavefunctions. Bardeen s formalism ( ) ( ) ( ) ( ) ( ) ( ) = + = + = * * ; ; 1 1 ) ( 1 2 µ ψ µ ψ ψ ψ ψ ψ δ π ν ν µν ν ν µ µ ν µ µν ν µν µ ds m M E E e E f E E M ev E f E f e I T k E E B F h h STM: The tunneling current

9 STM: The tunneling current Ideal tip, low bias voltage : d 0 2 ( d ) δ ( E ) ρ( ) I ψν 0 ν E F = d 0, E F ν STM: Contour map of the local density of states

10 Low temperature spectroscopy di dv N( E) 87 µev = 1 K f ( E ev ) de V E N( E) = E 2 2 Normalized tunnelling conductance =1mV T=0.3 K T=1 K Bias voltage (ev/ 0 ) αβ ψ r k, α ψ r k, β ψ = ψ e iϕ E v k = ε 2 v k + α, β r (k ) 2 N( E; x, y)

11 Tunneling spectroscopy with STM: vacuum Giaever tunneling

12 The superconducting gap through local tunneling spectroscopy at very low temperatures High T c superconductors Geneva, Cornell, Paris, Tokyo, 1.5 Two band superconductors Magnetic superconductors normalized conductance Normalized conductance TmNi 2 B 2 C T c = 10.5 K T = 0.8 K Bias voltage (mv) Normalized conductance ErNi 2 B 2 C T c =11K T = 0.15 K Bias voltage (mv) MgB Normalized bias voltage Sr 2 RuO T = 150 mk 200 G = 0.28 mev BULK superconducting density of states Averagedoverpartof the Fermi surface Normalized conductance P ro s 4 S b 1 2 T c = K B ia s vo lta ge / 0 ( = k B T c ) Normalized conductance Bias voltage (mv)

13 NbSe 2 and NbS 2 : two two-gap superconductors 2H-NbSe 2 2H-NbS Normalized conductance Normalized conductance nm B ia s v o lt a g e ( m V ) Bias voltage (mv)

14 1.25 nm 0.35 nm 0.29 nm Charge order in 2H-NbSe 2 at 100 mk c a Se Nb b 1/λ CDW 1/a 2H-NbSe 2 1.7nm λ CDW = 3 a( ±1% ) 2H-NbS 2

15 Two gap superconductor NbS 2 2H-NbS 2 Electronic density of states vs. temperature 5 5 Normalized conductance Normalized density of States di dv Bias voltage (mv) f ( E ev ) N S E) de V Energy (mev) ( ( E) N S

16 Two gap superconductor NbS 2 2H-NbS 2 Maxima of the gap distribution (two gap) vs. temperature =1.73 k B T c Normalized density of states (mev) Energy (mev) Temperature (K)

17 Tunneling spectroscopy URu 2 Si Phase diagrams Q = 0.59 Q = 0.58 H (Tesla) Q=0.57 Kondo systems 0.25 Q = Temperatura (K) Strong coupling features Andreev features

18 Spectroscopy at high magnetic fields pa What? Tunneling spectroscopy Tunneling microscopy

19 STM: Binnig and Rohrer (1982) I ( V, z ) VN ( E ) F e Φz I= 1 na ~ z= 1Å Piezoelectrics x, y 20 A V 1Å ~ 250 mv

20 Microscopy of the superconducting gap in type II materials H H c2 Mixed state Normal phase Mixed state H Meissner state H c H c1 2 Ψ = n s Meissner state T c T H d(nm) 50 / H(T) H c 2 = φ0 2 2πξ d H J ξ λ r ψ iϕ = ψ e αβ ψ r k, αψ k r, β J E N( E) = E 2 2

21 The vortex lattice through STM Measure far below T c (here 7 K)

22 Atomic size tunneling spectroscopy inside vortices in 2H-NbSe 2 T=100 mk di/dv 2.23 µs 0 mv 0 mv di/dv 0.85 µs 0 µs 0.4 µs 0.6 nm 21nm Conductance (µs) Se atom Hole Bias voltage (mv)

23 Local tunneling spectroscopy in the mixed state of superconductors High T c materials: Geneva, Paris, Tokyo, Cornell, Princeton, FeAs Beijing, Harvard, Tokyo V 3 Si and Chevrel phases Maryland, Geneva MgB 2 Geneva, Paris, Argonne, Madrid Nickel borocarbides Tokyo, Argonne, Madrid NbSe 2 and related compounds Bell labs, Paris, Madrid, Leiden

24 Temperature between (0.1K-2.1K) 144 images 8mineachone SeveralimagesateachT Direct observation of thermally induced vortex depinning Physics Today, see youtube channel physics update

25 Spectroscopy at high magnetic fields pa How?

26 Principles of design of STMs : From first large devices First cryogenic STM in Madrid 1988

27 Facilities in Madrid STM/S in a dilution refrigerator Compact design to guarantee mechanical stability (piezoelectric drive) Home made electronics, cryogenics and mechanics 100 mk 100 mk + 10 T Superinsulator Vortex physics Nanostructures 10 mk + 9 T Current Drive STS Heavy Fermions (Kondo lattice) 100 mk, 3D VECTOR MAGNET Layered materials 1. Spectroscopy 2. Macroscopic movement over the sample 3. Tip and sample preparation methods 2 µm 300 mk, 13 T -> 17 T Superconducting tips

28 Principle of operation of a scanning tunneling microscope Fine positioning piezoelectrics + Coarse motor x, y 20 nm V Scanning window in the µm range with sub atomic resolution Position without heating with nm resolution z Z y x Y X

29 Designing a cryogenic scanning tunneling microscope Stiffness f vibration isolation Soft and heavy Stiff and light f microscope f 0 = 1 2π k m eff Tip-sample motion shall be in phase

30 STM holder Mezclas for dilution de 3 He refrigeration y 4 He STM head is posed on fiber glass loom Specific precision motion system using a series of ropes with a room temperature actuator without measurable heating at 100 mk

31 STM Mezclas electronics de at 3 He LBTUAM y 4 He Switchable filter PA243 Motor Z RF filters I-V converter Tunnel current Bias voltage RF filters DAC ADC Industrial PC RF filters 6x PA243 OP27 RF filters Power supply +/- 15 V RF filters 6 PIEZO SCANNING DRIVES Power supply +/- 15 V +/- 140 V Power supply Resolution in spectroscopy of <15 µev (<150 mk)

32 Spectroscopy at high magnetic fields Compact system Compact system just for tunneling Z maximally simplified X pa Madrid: 17 T superconducting magnet Microscope for high field superconducting solenoid z Z y x Y X

33 Web page of LBTUAM

34 Workshop on high magnetic field science and technology Miraflores de la Sierra, 6-9 November Organizers : H. Suderow and I. Guillamón

35 Scanning probe microscopy A. Maldonado, J.A. Galvis Echeverry, P. Kulkarni, A. Buendía, I. Guillamón, J.G. Rodrigo, S. Vieira Laboratorio de Bajas Temperaturas Dpto. Física de la Materia Condensada Instituto de Ciencia de Materiales Nicolás Cabrera Universidad Autónoma de Madrid (UAM) J. Sesé, R. Córdoba, A. Fernández Pacheco, J.M. de Teresa, R. Ibarra ICMA, Unizar, Instituto de Nanociencia de Aragón F. Guinea Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid S. Bud ko, P.C. Canfield Ames Laboratory, Ames USA S. Bannerjee IIT Kanpur India V. Tissen, Chernogolovka, Russia T. Baturina, Novosibirsk, Russia, V. Vinokur, Argonne, USA L. Cario, Nantes; P. Rodiere, P. Lejay, J.P. Brison, Dai Aoki, J. Flouquet Institut Néel and SPSMS/DRFMC E. Navarro Moratalla, C. Martí Gastaldo, E. Coronado, ICMol Valencia

36 The SEGAINVEX team (headed by M. Pazos)

37 Increasing the field in steps No time variation of flux distribution Pinning produces spatial variation of B Critical state F L =-F P Vortex bundleswithweakpinningat 100 mk Campo Crítico H c2 (T) Temperatura (K) 33 STS images 0.04 T steps

Cryoconference Young researchers

Cryoconference Young researchers Scanning Tunneling Microscope in a Dilution Refrigerator with a Vector Magnetic Field Solenoid J. Galvis, I Guillamón, H Suderow, J. G. Rodrigo, S. Viera Laboratorio de Bajas Temperaturas, Departamento

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS J. A. Galvis, L. C., I. Guillamon, S. Vieira, E. Navarro-Moratalla, E. Coronado, H. Suderow, F. Guinea Laboratorio

More information

SUPPLEMENTARY INFORMATION. Magnetic field induced dissipation free state in superconducting nanostructures

SUPPLEMENTARY INFORMATION. Magnetic field induced dissipation free state in superconducting nanostructures SUPPLEMENTARY INFORMATION Magnetic field induced dissipation free state in superconducting nanostructures R. Córdoba, 1, 2 T. I. Baturina, 3, 4 A. Yu. Mironov, 3 J. Sesé, 1, 2 J. M. De Teresa, 5, 2 M.

More information

arxiv: v1 [cond-mat.supr-con] 21 Mar 2014

arxiv: v1 [cond-mat.supr-con] 21 Mar 2014 arxiv:1403.5514v1 [cond-mat.supr-con] 21 Mar 2014 Imaging superconducting vortex core and lattice with the scanning tunneling microscope H. Suderow 1,2, I. Guillamón 1,2,3, J.G. Rodrigo 1,2, S. Vieira

More information

Scanning tunneling measurements of single layers of superconducting 2H-TaSe 2 crystals

Scanning tunneling measurements of single layers of superconducting 2H-TaSe 2 crystals Scanning tunneling measurements of single layers of superconducting 2H-TaSe 2 crystals Jose Augusto Galvis XV JORNADA DE JÓVENES CIENTÍFICOS DEL INSTITUTO DE CIENCIA DE MATERIALES NICOLÁS CABRERA Low Temperature

More information

3.1 Electron tunneling theory

3.1 Electron tunneling theory Scanning Tunneling Microscope (STM) was invented in the 80s by two physicists: G. Binnig and H. Rorher. They got the Nobel Prize a few years later. This invention paved the way for new possibilities in

More information

Scanning Probe Microscopy

Scanning Probe Microscopy 1 Scanning Probe Microscopy Dr. Benjamin Dwir Laboratory of Physics of Nanostructures (LPN) Benjamin.dwir@epfl.ch PH.D3.344 Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

672 Advanced Solid State Physics. Scanning Tunneling Microscopy 672 Advanced Solid State Physics Scanning Tunneling Microscopy Biao Hu Outline: 1. Introduction to STM 2. STM principle & working modes 3. STM application & extension 4. STM in our group 1. Introduction

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007 Microscopy and Spectroscopy with Tunneling Electrons STM Sfb Kolloquium 23rd October 2007 The Tunnel effect T ( E) exp( S Φ E ) Barrier width s Barrier heigth Development: The Inventors 1981 Development:

More information

Direct observation of melting in a 2-D superconducting vortex lattice

Direct observation of melting in a 2-D superconducting vortex lattice Direct observation of melting in a 2-D superconducting vortex lattice I. Guillamón, 1 H. Suderow, 1 A. Fernández-Pacheco, 2,3,4 J. Sesé, 2,4 R. Córdoba, 2,4 J.M. De Teresa, 3,4 M. R. Ibarra, 2,3,4 S. Vieira

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Electron confinement in metallic nanostructures

Electron confinement in metallic nanostructures Electron confinement in metallic nanostructures Pierre Mallet LEPES-CNRS associated with Joseph Fourier University Grenoble (France) Co-workers : Jean-Yves Veuillen, Stéphane Pons http://lepes.polycnrs-gre.fr/

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

(Scanning Probe Microscopy)

(Scanning Probe Microscopy) (Scanning Probe Microscopy) Ing-Shouh Hwang (ishwang@phys.sinica.edu.tw) Institute of Physics, Academia Sinica, Taipei, Taiwan References 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett.

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy A scanning tunneling microscope (STM) is an instrument for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer

More information

Design of a low-temperature scanning tunneling microscope head with a lowfriction, piezoelectric coarse approach mechanism

Design of a low-temperature scanning tunneling microscope head with a lowfriction, piezoelectric coarse approach mechanism Design of a low-temperature scanning tunneling microscope head with a lowfriction, piezoelectric coarse approach mechanism T. A. Smith 1 and A. Biswas 2 1 Department of Physics, Southern Illinois University

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information

The interpretation of STM images in light of Tersoff and Hamann tunneling model

The interpretation of STM images in light of Tersoff and Hamann tunneling model The interpretation of STM images in light of Tersoff and Hamann tunneling model The STM image represents contour maps of constant surface LDOS at E F, evaluated at the center of the curvature of the tip.

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Characterization of MEMS

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Low Vibration Cryogenic Equipment

Low Vibration Cryogenic Equipment PAGE 12 PAGE 13 ATTOCUBE S CRYOSTATS ATTODRY attodry1000....................... 14 cryogen-free cryostats with/without s attodry700.........................18 cryogen-free table-top cryostats with optical

More information

Probing Molecular Electronics with Scanning Probe Microscopy

Probing Molecular Electronics with Scanning Probe Microscopy Probing Molecular Electronics with Scanning Probe Microscopy Mark C. Hersam Assistant Professor Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 Ph: 847-491-2696,

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Scanning Tunnelling Microscopy Observations of Superconductivity

Scanning Tunnelling Microscopy Observations of Superconductivity Department of physics Seminar I a Scanning Tunnelling Microscopy Observations of Superconductivity Author: Tim Verbovšek Mentor: dr. Rok Žitko Co-Mentor: dr. Erik Zupanič Ljubljana, February 013 Abstract

More information

WHAT IS SUPERCONDUCTIVITY??

WHAT IS SUPERCONDUCTIVITY?? WHAT IS SUPERCONDUCTIVITY?? For some materials, the resistivity vanishes at some low temperature: they become superconducting. Superconductivity is the ability of certain materials to conduct electrical

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Vortices in Classical Systems

Vortices in Classical Systems Vortices in Classical Systems 4 He-II vortices: Vortices in Quantum Systems STM of NbSe 2 vortices: G. A. Williams, R. E. Packard, Hess PRL (1989). Phys. Rev. Lett. 33, 280 (1974) Pan, Hudson, Davis, RSI

More information

Low Temperature Physics Measurement Systems

Low Temperature Physics Measurement Systems PAGE 6 & 2008 2007 PRODUCT CATALOG Accelerate your Semiconductor Research & Developments towards Nanoscale Products. Experience your new working horse in the emerging field of semiconductor research for

More information

Theoretical Modelling and the Scanning Tunnelling Microscope

Theoretical Modelling and the Scanning Tunnelling Microscope Theoretical Modelling and the Scanning Tunnelling Microscope Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso Introducción a la Nanotecnología Máster

More information

arxiv: v1 [cond-mat.supr-con] 18 Jul 2011

arxiv: v1 [cond-mat.supr-con] 18 Jul 2011 Chiral charge order in the superconductor 2H-TaS 2 I. Guillamón, 1, 2 H. Suderow, 1 J. G. Rodrigo, 1 S. Vieira, 1 P. Rodière, 3 L. Cario, 4 E. Navarro-Moratalla, 5 C. Martí-Gastaldo, 5 and E. Coronado

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Anjan K. Gupta Physics Department, I. I. T Kanpur ICTS-GJ, IITK, Feb 2010 Acknowledgements

More information

Scanning Tunneling Microscopy. Wei-Bin Su, Institute of Physics, Academia Sinica

Scanning Tunneling Microscopy. Wei-Bin Su, Institute of Physics, Academia Sinica Scanning Tunneling Microscopy Wei-Bin Su, Institute of Physics, Academia Sinica Tunneling effect Classical physics Field emission 1000 ~ 10000 V E V metal-vacuum-metal tunneling metal metal Quantum physics

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S.

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. REPORT ON SCANNING TUNNELING MICROSCOPE Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. Bobji Submitted by Ankush Kumar Jaiswal (09371) Abhay Nandan (09301) Sunil

More information

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] G01Q SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] Scanning probes, i.e. devices having at least a tip of nanometre sized dimensions

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

A New Method of Scanning Tunneling Spectroscopy for Study of the Energy Structure of Semiconductors and Free Electron Gas in Metals

A New Method of Scanning Tunneling Spectroscopy for Study of the Energy Structure of Semiconductors and Free Electron Gas in Metals SCANNING Vol. 19, 59 5 (1997) Received April 1, 1997 FAMS, Inc. Accepted May, 1997 A New Method of Scanning Tunneling Spectroscopy for Study of the Energy Structure of Semiconductors and Free Electron

More information

microscope S. H. Pan, E. W. Hudson, and J. C. Davis Department of Physics, University of California, Berkeley, California 94720

microscope S. H. Pan, E. W. Hudson, and J. C. Davis Department of Physics, University of California, Berkeley, California 94720 REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 2 FEBRUARY 1999 3 He refrigerator based very low temperature scanning tunneling microscope S. H. Pan, E. W. Hudson, and J. C. Davis Department of Physics,

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and SCANNING TUNNELING MICROSCOPE Brief history: Heinrich Rohrer and Gerd K. Binnig, scientists at IBM's Zurich Research Laboratory in Switzerland, are awarded the 1986 Nobel Prize in physicss for their work

More information

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Martin Dressel 1. Physikalisches Institut, Universität Stuttgart, Germany Outline 1. Introduction ESR resonators 2. Strip

More information

Principles of Electron Tunneling Spectroscopy

Principles of Electron Tunneling Spectroscopy Principles of Electron Tunneling Spectroscopy Second Edition E. L. Wolf Polytechnic Institute of New York University, USA OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 Concepts of quantum mechanical

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Electronic states on the surface of graphite

Electronic states on the surface of graphite Electronic states on the surface of graphite Guohong Li, Adina Luican, Eva Y. Andrei * Department of Physics and Astronomy, Rutgers Univsersity, Piscataway, NJ 08854, USA Elsevier use only: Received date

More information

Final exam. Introduction to Nanotechnology. Name: Student number:

Final exam. Introduction to Nanotechnology. Name: Student number: 1 Final exam. Introduction to Nanotechnology Name: Student number: 1. (a) What is the definition for a cluster size-wise? (3%) (b) Calculate the energy separation near the Fermi surface of a metallic cluster

More information

Testing axion physics in a Josephson junction environment

Testing axion physics in a Josephson junction environment Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University of London 1 Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University

More information

[b] AFM image of the region highlighted in a by the dashed box. [c] Probability density

[b] AFM image of the region highlighted in a by the dashed box. [c] Probability density Supplementary Figure 1. Atomically thin TaS 2 flakes deposited on a Si/285 nm SiO2 substrate by the optimised press and shear micromechanical exfoliation method. [a] Optical microscopy image of a region

More information

Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling

Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling Supplementary information Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling David Coffey, *,+,,# José Luis Diez-Ferrer, + David Serrate, +,#

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

Superconductivity. Dept of Phys. M.C. Chang

Superconductivity. Dept of Phys. M.C. Chang Superconductivity Introduction Thermal properties Magnetic properties London theory of the Meissner effect Microscopic (BCS) theory Flux quantization Quantum tunneling Dept of Phys M.C. Chang A brief history

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1463 Observation of Van Hove singularities in twisted graphene layers Guohong Li 1, A. Luican 1, J.M. B. Lopes dos Santos 2, A. H. Castro Neto 3, Alfonso Reina

More information

Nonlocal transport properties due to Andreev scattering

Nonlocal transport properties due to Andreev scattering Charles Univ. in Prague, 5 X 2015 Nonlocal transport properties due to Andreev scattering Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Outline

More information

Superconductivity at Future Hadron Colliders

Superconductivity at Future Hadron Colliders XXVI Giornate di Studio sui Rivelatori 13-17.2.2017, Cogne, Italia Superconductivity at Future Hadron Colliders René Flükiger CERN, TE-MSC, 1211 Geneva 23, Switzerland and Dept. Quantum Matter Physics,

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Nanotechnology. Gavin Lawes Department of Physics and Astronomy

Nanotechnology. Gavin Lawes Department of Physics and Astronomy Nanotechnology Gavin Lawes Department of Physics and Astronomy Earth-Moon distance 4x10 8 m (courtesy NASA) Length scales (Part I) Person 2m Magnetic nanoparticle 5x10-9 m 10 10 m 10 5 m 1 m 10-5 m 10-10

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Pb thin films on Si(111): Local density of states and defects

Pb thin films on Si(111): Local density of states and defects University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2014 Pb thin films on Si(111): Local density of states and

More information

Scanning tunneling microscopy

Scanning tunneling microscopy IFM The Department of Physics, Chemistry and Biology Lab 72 in TFFM08 Scanning tunneling microscopy NAME PERS. - NUMBER DATE APPROVED Rev. Dec 2006 Ivy Razado Aug 2014 Tuomas Hänninen Contents 1 Introduction

More information

Superconductivity - Overview

Superconductivity - Overview Superconductivity - Overview Last week (20-21.11.2017) This week (27-28.11.2017) Classification of Superconductors - Theory Summary - Josephson Effect - Paraconductivity Reading tasks Kittel: Chapter:

More information

UNIVERSITÀ DEGLI STUDI DI GENOVA

UNIVERSITÀ DEGLI STUDI DI GENOVA UNIVERSITÀ DEGLI STUDI DI GENOVA Outline Story of superconductivity phenomenon going through the discovery of its main properties. Microscopic theory of superconductivity and main parameters which characterize

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Physics at the Nanoscale and applica1ons. Phelma / Grenoble INP and Ins1tut Néel / CNRS

Physics at the Nanoscale and applica1ons. Phelma / Grenoble INP and Ins1tut Néel / CNRS Physics at the Nanoscale and applica1ons Clemens.Winkelmann@grenoble.cnrs.fr Phelma / Grenoble INP and Ins1tut Néel / CNRS Physics at the Nanoscale I Basics of quantum mechanics II Sta1s1cal Physics III

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Bonds and Wavefunctions. Module α-1: Visualizing Electron Wavefunctions Using Scanning Tunneling Microscopy Instructor: Silvija Gradečak

Bonds and Wavefunctions. Module α-1: Visualizing Electron Wavefunctions Using Scanning Tunneling Microscopy Instructor: Silvija Gradečak 3.014 Materials Laboratory December 8 th 13 th, 2006 Lab week 4 Bonds and Wavefunctions Module α-1: Visualizing Electron Wavefunctions Using Scanning Tunneling Microscopy Instructor: Silvija Gradečak OBJECTIVES

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description: File name: Supplementary Information Description: Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Figure Electron micrographs and ballistic transport

More information

Nanoscale characteristics by Scanning Tunneling Spectroscopy

Nanoscale characteristics by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Band structure, Band Gap, k-space, Brioullin Zone, Metal, Semi-Metal, Semiconductor Principle

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Scanning Tunneling Microscopy Transmission Electron Microscopy

Scanning Tunneling Microscopy Transmission Electron Microscopy Scanning Tunneling Microscopy Transmission Electron Microscopy Speakers Burcu Başar Semih Gezgin Yavuz Selim Telis Place Hacettepe University Department of Chemical Engineering It s a small world after

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Surface Studies by Scanning Tunneling Microscopy

Surface Studies by Scanning Tunneling Microscopy Surface Studies by Scanning Tunneling Microscopy G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel IBM Zurich Research Laboratory, 8803 Ruschlikon-ZH, Switzerland (Received by Phys. Rev. Lett. on 30th April,

More information

Nanoscale work function measurements by Scanning Tunneling Spectroscopy

Nanoscale work function measurements by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Defects, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Work function, Surface activation, Catalysis Principle Scanning tunneling microscopy

More information

Chapter 2 Spectroscopic-Imaging STM (SI-STM)

Chapter 2 Spectroscopic-Imaging STM (SI-STM) Chapter 2 Spectroscopic-Imaging STM (SI-STM) In this chapter I detail the main experimental technique used in this thesis: Spectroscopic-Imaging Scanning Tunnelling Microscopy (SI-STM). I outline the theoretical

More information

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Joseph Hlevyack 2012 NSF/REU Program Physics Department, University of Notre Dame Advisor: Morten R. Eskildsen,

More information

PY5020 Nanoscience Scanning probe microscopy

PY5020 Nanoscience Scanning probe microscopy PY500 Nanoscience Scanning probe microscopy Outline Scanning tunnelling microscopy (STM) - Quantum tunnelling - STM tool - Main modes of STM Contact probes V bias Use the point probes to measure the local

More information