Instrumentation and Operation

Size: px
Start display at page:

Download "Instrumentation and Operation"

Transcription

1 Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data points image (off-line data analysis) 2 1

2 etched W STM Tips α profile for wide scans good for imaging of steep edges 50 µm not perfect for atomic resolution cut Pt/Ir 80:20 α profile good for atomic resolution (possible) cutting with e.g. scissors no universal recipe! 3 Tip Preparation cutting cleaning heating, oscillation (may produce blutness or lead to melting) voltage pulses continuous scanning e.g. increasing voltage while scanning with Au tip 25 Å elongation higher resolution sputtering however: good results also without 4 cleaning! 2

3 Chemical Composition of STM Tip Surface (1) _ + Na resolution depends on polarity due to adsorbed impurity atom 5 STM Tip Composition theoretically better resolution for d elements more localized electrons (e.g. Na W) however Au (s band) also high resolution identity of tip atom not known noble metals less susceptible to contaminations e.g. W always layer of oxide + other contaminations but high activation energy for surface diffusion (1,8 ev) 6 3

4 Quality Control of STM Tips course optical microscope: bad performance can be expected! STM experiment image quality (check different tips) [field ion microscope] more information AFM 7 Single Tube Scanner material: lead zirconium titanate ceramics (PZT) metal electrodes by vapor deposition -X Y X ν res khz (bar: 1 8 khz) non linear Z cross talk translation of tip or sample 8 4

5 Scan Parameters X frequency: 0,1 122 Hz (NanoScope, DI) Y frequency according to number of lines per image 128 x 128 data points per image 256 x 256 data points per image 512 x 512 data points per image 1 second to 1,5 hours for 1 image typically 30 seconds to 1 minute scan angle, size, frequency,... can be varied 9 Feedback System bias voltages: some 10 mv (up to several volts) tunneling current: some na modes of operation constant height mode small areas high scan rates possible elimination of thermal drifts, high resolution imaging constant current mode low scan rates wide area scans lower risk for tip crashes 10 5

6 Image Processing System interface: analogue digital (data to PC) lateral resolution 128 x 128 pixels 256 x 256 pixels 512 x 512 pixels z scale: 64 k resolution off line analysis image analysis filtering zooming etc. 11 AFM Instrumentation COMPONENTS sharp tip + soft spring scanning system and control electronics detection for spring defl. feedback electronics (keeps force constant) image processing system data points image (off-line data analysis) 12 6

7 Tips and Springs (Cantilevers) historical: gold foil (Binnig) first developments: fine wires (e.g. W) with diamond tips (glued onto wire) W wire diamond tip today: microfabricated cantilevers (not to scale!) 4 mm 200 µm 1,5 mm Si 3 N 4 glass substrate 100 µm integrated pyramidal tip fabrication: photolithographic mulitstep process starting from a silicon wafer k = 0,1 1 N/m ν 0 = khz 13 Vibration Problem typical vibrations of buildings: ν < 20 Hz damping factor = (ν/ν 0 ) 2 for ν << ν 0 amplitude of tip < 0,01 Å forces from N can be detected high frequency vibrations and noise must be eliminated! 14 7

8 Vibration Isolation heavy stone support on bungy cords low resonance frequencies optional noise isolation 15 Si 3 N 4 Cantilever Wafer approximately 500 cantilever substrates 16 8

9 Cantilever Break-Off 17 Cantilever Mount (2) Digital Instruments Veeco, Santa Barbara, CA, USA 18 9

10 SEM Image of AFM Tip and Cantilever pyramidal silicon nitride tip radius of curvature 20 nm 19 Si Cantilevers different apex angles important parameters: spring constant (0, N/m) apex angle resonance frequency (6 600 khz) length ( µm) thickness (1 7 µm) k = 0,1 N/m + d = 0,1 Å F min = N 20 10

11 Tip Quality Control at the atomic level AFM experiment HOPG (graphite) with atomic resolution (two types of atoms visible) optical microscope simulations 21 AFM Image Simulation (2) 142 pm 20 pm images for different two atomic tips 22 11

12 Detection of Spring Deflection (5) optical lever scheme I I PD1 PD1 + I I PD2 PD2 in commercial instruments detector far away from measuring cell measurements under liquids stable against influences from outside atomic resolution z resolution 0,1 Å signal for deflection (= force) further systems: e.g. piezolever 23 Force Detection by Optical Lever X,Y adjusting knobs for laser position photodiode adjusting knob filter laser prism mirror split photo diode detector cantilever Institute of Analytical Chemistry Vienna University of Technology 24 12

13 Commercial Liquid Cell laser in/out cantilever glass cover piezo scanner sample Institute of Analytical Chemistry Vienna University of Technology silicone o-ring 25 AFM Modes of Operation constant height mode height position of sample unchanged variation of cantilever deflection is detected small areas high scan rates possible elimination of thermal drifts, high resolution imaging (atomic resolution!) constant force mode cantilever deflection kept constant by feedback loop low scan rates wide area scans lower risk for tip crashes 26 13

14 Other AFM Components scan system: piezo elements see STM feedback loop deflection from sub Ångstrøm range to several micrometers modes of operaton analogeous to STM constant height mode constant force mode image processing system see STM 27 Commercial Instrument (3) NanoScope Multimode SPM Digital Instruments Veeco Santa Barbara, CA USA 28 14

15 AFM Head (2) Digital Instruments Veeco, Santa Barbara, CA, USA 29 Optical Head mirror laser diode photo detector cantilever sample Digital Instruments Veeco, Santa Barbara, CA, USA 30 15

16 Cantilever Mount (2) Digital Instruments Veeco, Santa Barbara, CA, USA 31 Laser Alignment with Paper Method (2) 32 16

17 Laser Alignment with Paper Method (1) 33 Laser Alignment with Paper Method (3) 34 17

18 Force Optimization also additional information from force distance curves 35 NanoScope III System Digital Instruments Veeco, Santa Barbara, CA, USA 36 18

19 NanoScope III TM-AFM (1) Digital Instruments Veeco, Santa Barbara, CA, USA 37 NanoScope III TM-AFM (2) Digital Instruments Veeco, Santa Barbara, CA, USA 38 19

20 NanoScope III Optical Head Digital Instruments Veeco, Santa Barbara, CA, USA 39 NanoScope III AFM Scanner Digital Instruments Veeco, Santa Barbara, CA, USA 40 20

21 NanoScope III Cantilever Holder (2) Digital Instruments Veeco, Santa Barbara, CA, USA 41 NanoScope III Cantilever Holder (4) Digital Instruments Veeco, Santa Barbara, CA, USA 42 21

22 Liquid Cell Digital Instruments Veeco, Santa Barbara, CA, USA 43 Analytical Properties Analytical Aspects 44 22

23 STM Properties for Analytical Chemistry (1) atomic resolution, but also microscopic range real space imaging local probe topography with direct depth information (above atomic level) on atomic scale electronic structure LDOS EF in-situ measurements in gases or liquids possible chemical reactions in-situ electrochemistry (potential control!) at electrode surfaces (in-situ) 45 STM Properties for Analytical Chemistry (2) in many cases simple sample preparation ( as it is or cleavage) also local spectroscopy possible Scanning Tunneling Spectroscopy (STS) local barrier height imaging l-v curves DRAWBACKS: no direct element specific information possible artefacts by asymmetric tips 46 23

24 AFM Properties for Analytical Chemistry (1) atomic resolution, but also microscopic range real space imaging local probe topography with direct depth information both conductors and insulators (also organic and biological samples!) in-situ measurements in gases or liquids possible chemical reactions in-situ electrochemistry (potential control!) at electrode surfaces (in-situ) 47 AFM Properties for Analytical Chemistry (2) in many cases simple sample preparation ( as it is or cleavage, no coating necessary!) additional information from force distance curves further material properties by special techniques (e.g. elasticity by force modulation, friction by LFM) DRAWBACKS: no direct element specific information possible artefacts by asymmetric tips 48 24

25 Artefacts and Solutions (1) from tip: objects sharper than tip image of tip e.g. pyramids representing the image of the tip edges parallel to scan direction 49 Artefacts and Solutions (1a) 50 25

26 Artefacts and Solutions (2) from tip: asymmetric tips bad resolution along one direction e.g. check e.g. rotation of scan direction 51 Artefacts and Solutions (3) from tip: multiple tips multiple images e.g

27 Artefacts and Solutions (4) from tip: convolution of tip and sample geometry 53 Artefacts and Solutions (5) vibrations: e.g. line structures, not from sample e.g. check image changes with: scan rate constant image scan angle image rotation scan size correct distances 54 27

28 Artefacts and Solutions (6) thermal drifts: e.g. Y scan disabled α α wait for stabilization 55 Artefacts and Solutions (7) impurities: e.g. particle particles can disturb motion of tip distortion of single scan lines perturbation clean samples imaging under liquids 56 28

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

The interpretation of STM images in light of Tersoff and Hamann tunneling model

The interpretation of STM images in light of Tersoff and Hamann tunneling model The interpretation of STM images in light of Tersoff and Hamann tunneling model The STM image represents contour maps of constant surface LDOS at E F, evaluated at the center of the curvature of the tip.

More information

And Manipulation by Scanning Probe Microscope

And Manipulation by Scanning Probe Microscope Basic 15 Nanometer Scale Measurement And Manipulation by Scanning Probe Microscope Prof. K. Fukuzawa Dept. of Micro/Nano Systems Engineering Nagoya University I. Basics of scanning probe microscope Basic

More information

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Reference: #1 C. R. Brundle, C. A. Evans, S. Wilson, "Encyclopedia of Materials Characterization", Butterworth-Heinemann, Toronto (1992),

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Characterization of MEMS

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) CHEM53200: Lecture 9 Scanning Probe Microscopy (SPM) Major reference: 1. Scanning Probe Microscopy and Spectroscopy Edited by D. Bonnell (2001). 2. A practical guide to scanning probe microscopy by Park

More information

Introduction to Scanning Probe Microscopy

Introduction to Scanning Probe Microscopy WORKSHOP Nanoscience on the Tip Introduction to Scanning Probe Microscopy Table of Contents: 1 Historic Perspectives... 1 2 Scanning Force Microscopy (SFM)... 2 2.1. Contact Mode... 2 2.2. AC Mode Imaging...

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Outline Scanning Probe Microscope (SPM)

Outline Scanning Probe Microscope (SPM) AFM Outline Scanning Probe Microscope (SPM) A family of microscopy forms where a sharp probe is scanned across a surface and some tip/sample interactions are monitored Scanning Tunneling Microscopy (STM)

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and SCANNING TUNNELING MICROSCOPE Brief history: Heinrich Rohrer and Gerd K. Binnig, scientists at IBM's Zurich Research Laboratory in Switzerland, are awarded the 1986 Nobel Prize in physicss for their work

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Scanning Probe Microscopy

Scanning Probe Microscopy 1 Scanning Probe Microscopy Dr. Benjamin Dwir Laboratory of Physics of Nanostructures (LPN) Benjamin.dwir@epfl.ch PH.D3.344 Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced

More information

Chapter 2 Correlation Force Spectroscopy

Chapter 2 Correlation Force Spectroscopy Chapter 2 Correlation Force Spectroscopy Correlation Force Spectroscopy: Rationale In principle, the main advantage of correlation force spectroscopy (CFS) over onecantilever atomic force microscopy (AFM)

More information

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Contents What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Figure1: 2004 Seth Copen Goldstein What is AFM? A type of Scanning Probe Microscopy

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

NTEGRA for EC PRESENTATION

NTEGRA for EC PRESENTATION NTEGRA for EC PRESENTATION Application Purpose: In-situ control/modification of the surface morphology of single crystal and polycrystal electrodes (samples) during electrochemical process (in situ) in

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy A scanning tunneling microscope (STM) is an instrument for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer

More information

Introduction to Scanning Tunneling Microscopy

Introduction to Scanning Tunneling Microscopy Introduction to Scanning Tunneling Microscopy C. JULIAN CHEN IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York New York Oxford OXFORD UNIVERSITY PRESS 1993 CONTENTS List

More information

Atomic Force Microscopy (AFM) Part I

Atomic Force Microscopy (AFM) Part I Atomic Force Microscopy (AFM) Part I CHEM-L2000 Eero Kontturi 6 th March 2018 Lectures on AFM Part I Principles and practice Imaging of native materials, including nanocellulose Part II Surface force measurements

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization

More information

Nanoscale work function measurements by Scanning Tunneling Spectroscopy

Nanoscale work function measurements by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Defects, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Work function, Surface activation, Catalysis Principle Scanning tunneling microscopy

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Scanning tunneling microscopy

Scanning tunneling microscopy IFM The Department of Physics, Chemistry and Biology Lab 72 in TFFM08 Scanning tunneling microscopy NAME PERS. - NUMBER DATE APPROVED Rev. Dec 2006 Ivy Razado Aug 2014 Tuomas Hänninen Contents 1 Introduction

More information

Nanoscale characteristics by Scanning Tunneling Spectroscopy

Nanoscale characteristics by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Band structure, Band Gap, k-space, Brioullin Zone, Metal, Semi-Metal, Semiconductor Principle

More information

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S.

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. REPORT ON SCANNING TUNNELING MICROSCOPE Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. Bobji Submitted by Ankush Kumar Jaiswal (09371) Abhay Nandan (09301) Sunil

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

2.76/2.760 Multiscale Systems Design & Manufacturing

2.76/2.760 Multiscale Systems Design & Manufacturing 2.76/2.760 Multiscale Systems Design & Manufacturing Fall 2004 MOEMS Devices for Optical communications system Switches and micromirror for Add/drops Diagrams removed for copyright reasons. MOEMS MEMS

More information

CNPEM Laboratório de Ciência de Superfícies

CNPEM Laboratório de Ciência de Superfícies Investigating electrical charged samples by scanning probe microscopy: the influence to magnetic force microscopy and atomic force microscopy phase images. Carlos A. R. Costa, 1 Evandro M. Lanzoni, 1 Maria

More information

Chapter 2 Scanning probes microscopes instrumentation. Chapter 2 Scanning probes microscopes instrumentation. 2.1: Tips. STM tips: requirements

Chapter 2 Scanning probes microscopes instrumentation. Chapter 2 Scanning probes microscopes instrumentation. 2.1: Tips. STM tips: requirements Chapter Objective: learn the general techniques that are essential for SPM. Chapter.1: Tips STM tips: requirements Geometry: Need for atomically-sharp apex for atomic resolution on a flat surface, rest

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

(Scanning Probe Microscopy)

(Scanning Probe Microscopy) (Scanning Probe Microscopy) Ing-Shouh Hwang (ishwang@phys.sinica.edu.tw) Institute of Physics, Academia Sinica, Taipei, Taiwan References 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett.

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

AFM for Measuring Surface Topography and Forces

AFM for Measuring Surface Topography and Forces ENB 2007 07.03.2007 AFM for Measuring Surface Topography and Forces Andreas Fery Scanning Probe : What is it and why do we need it? AFM as a versatile tool for local analysis and manipulation Dates Course

More information

Università degli Studi di Bari "Aldo Moro"

Università degli Studi di Bari Aldo Moro Università degli Studi di Bari "Aldo Moro" Table of contents 1. Introduction to Atomic Force Microscopy; 2. Introduction to Raman Spectroscopy; 3. The need for a hybrid technique Raman AFM microscopy;

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 399 407 (2009) 399 Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System

More information

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions Supplemental Information Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions M. Frei 1, S Aradhya 1, M. S. Hybertsen 2, L. Venkataraman 1 1 Department of Applied Physics and Applied

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information Self-assembled nanopatch with peptide-organic multilayers and mechanical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Supplementary Methods Characterization of AFM resolution We employed amplitude-modulation AFM in non-contact mode to characterize the topography of the graphene samples. The measurements were performed

More information

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani SOLID STATE PHYSICS PHY F341 Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani 333031 manjula@bits-pilani.ac.in Characterization techniques SEM AFM STM BAM Outline What can we use

More information

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs Physical methods in bio-molecular studies Osváth Szabolcs Semmelweis University szabolcs.osvath@eok.sote.hu Light emission and absorption spectra Stokes shift is the difference (in wavelength or frequency

More information

Santosh Devasia Mechanical Eng. Dept., UW

Santosh Devasia Mechanical Eng. Dept., UW Nano-positioning Santosh Devasia Mechanical Eng. Dept., UW http://faculty.washington.edu/devasia/ Outline of Talk 1. Why Nano-positioning 2. Sensors for Nano-positioning 3. Actuators for Nano-positioning

More information

Electrical Characterization with SPM Application Modules

Electrical Characterization with SPM Application Modules Electrical Characterization with SPM Application Modules Metrology, Characterization, Failure Analysis: Data Storage Magnetoresistive (MR) read-write heads Semiconductor Transistors Interconnect Ferroelectric

More information

Beetle UHV VT AFM / STM

Beetle UHV VT AFM / STM UHV VT AFM / STM RHK Technology Imaging the Future of Nanoscience UHV VT AFM / STM Engineered Excellence Everyday, in university and government labs around the globe, RHK research platforms lead to new

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Scanning Probe Microscopies (SPM)

Scanning Probe Microscopies (SPM) Scanning Probe Microscopies (SPM) Nanoscale resolution af objects at solid surfaces can be reached with scanning probe microscopes. They allow to record an image of the surface atomic arrangement in direct

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) Scanning Probe Microscopy (SPM) Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) Atomic Force Microscopy (AFM)

More information

Supporting Information

Supporting Information Supporting Information Analysis Method for Quantifying the Morphology of Nanotube Networks Dusan Vobornik*, Shan Zou and Gregory P. Lopinski Measurement Science and Standards, National Research Council

More information

Magnetic Force Microscopy (MFM) F = µ o (m )H

Magnetic Force Microscopy (MFM) F = µ o (m )H Magnetic Force Microscopy (MFM) F = µ o (m )H 1. MFM is based on the use of a ferromagnetic tip as a local field sensor. Magnetic interaction between the tip and the surface results in a force acting on

More information

Introduction to the Scanning Tunneling Microscope

Introduction to the Scanning Tunneling Microscope Introduction to the Scanning Tunneling Microscope A.C. Perrella M.J. Plisch Center for Nanoscale Systems Cornell University, Ithaca NY Measurement I. Theory of Operation The scanning tunneling microscope

More information

Supplementary Materials. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with

Supplementary Materials. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Supplementary Materials Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure M. Frei 1, S Aradhya 1, M. Koentopp 2, M. S. Hybertsen 3, L. Venkataraman

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Supplementary Materials to Addressable Photo-Charging of Single Quantum Dots Assisted with Atomic Force Microscopy Probe

Supplementary Materials to Addressable Photo-Charging of Single Quantum Dots Assisted with Atomic Force Microscopy Probe Supplementary Materials to Addressable Photo-Charging of Single Quantum Dots Assisted with Atomic Force Microscopy Probe M. Dokukin 1, R. Olac-Vaw 2, N. Guz 1, V. Mitin 2, and I. Sokolov 1,* 1 Dept. of

More information

Dopant Concentration Measurements by Scanning Force Microscopy

Dopant Concentration Measurements by Scanning Force Microscopy 73.40L Scanning Microsc. Microanal. Microstruct. 551 Classification Physics Abstracts - - 61.16P 73.00 Dopant Concentration Measurements by Scanning Force Microscopy via p-n Junctions Stray Fields Jacopo

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

RHK Technology Brief

RHK Technology Brief The Atomic Force Microscope as a Critical Tool for Research in Nanotribology Rachel Cannara and Robert W. Carpick Nanomechanics Laboratory, University of Wisconsin Madison Department of Engineering Physics,

More information

MAGNETIC FORCE MICROSCOPY

MAGNETIC FORCE MICROSCOPY University of Ljubljana Faculty of Mathematics and Physics Department of Physics SEMINAR MAGNETIC FORCE MICROSCOPY Author: Blaž Zupančič Supervisor: dr. Igor Muševič February 2003 Contents 1 Abstract 3

More information

Application of electrostatic force microscopy in nanosystem diagnostics

Application of electrostatic force microscopy in nanosystem diagnostics Materials Science, Vol., No. 3, 003 Application of electrostatic force microscopy in nanosystem diagnostics TEODOR P. GOTSZALK *, PIOTR GRABIEC, IVO W. RANGELOW 3 Fulty of Microsystem Electronics and Photonics,

More information

Physics at the Nanoscale and applica1ons. Phelma / Grenoble INP and Ins1tut Néel / CNRS

Physics at the Nanoscale and applica1ons. Phelma / Grenoble INP and Ins1tut Néel / CNRS Physics at the Nanoscale and applica1ons Clemens.Winkelmann@grenoble.cnrs.fr Phelma / Grenoble INP and Ins1tut Néel / CNRS Physics at the Nanoscale I Basics of quantum mechanics II Sta1s1cal Physics III

More information

Micromechanical Instruments for Ferromagnetic Measurements

Micromechanical Instruments for Ferromagnetic Measurements Micromechanical Instruments for Ferromagnetic Measurements John Moreland NIST 325 Broadway, Boulder, CO, 80305 Phone:+1-303-497-3641 FAX: +1-303-497-3725 E-mail: moreland@boulder.nist.gov Presented at

More information

Accurate thickness measurement of graphene

Accurate thickness measurement of graphene Accurate thickness measurement of graphene Cameron J Shearer *, Ashley D Slattery, Andrew J Stapleton, Joseph G Shapter and Christopher T Gibson * Centre for NanoScale Science and Technology, School of

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Spatially resolving density-dependent screening around a single charged atom in graphene

Spatially resolving density-dependent screening around a single charged atom in graphene Supplementary Information for Spatially resolving density-dependent screening around a single charged atom in graphene Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu,

More information

Local spectroscopy. N. Witkowski W. Sacks

Local spectroscopy. N. Witkowski W. Sacks Local spectroscopy N. Witkowski W. Sacks Outlook 1. STM/STS theory elements a. history of STM and basic idea b. tunnel effect c. STM/STS 2. Technology a. STM design : vibration and thermal drift b. STM

More information

Today s SPM in Nanotechnology

Today s SPM in Nanotechnology Today s SPM in Nanotechnology An introduction for Advanced Applications Qun (Allen) Gu, Ph.D., AFM Scientist, Pacific Nanotechnology IEEE Bay Area Nanotechnology Council, August, 2007 8/17/2015 1 Content

More information

Improving nano-scale imaging of of intergrated micro-raman/afm systems using negativestiffness

Improving nano-scale imaging of of intergrated micro-raman/afm systems using negativestiffness See vibration isolation technology @ www.minusk.com?pdf) Electronic Products and Technology - May 2014 Improving nano-scale imaging of of intergrated micro-raman/afm systems using negativestiffness vibration

More information

Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography,

Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography, a b 1 mm Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography, (a1, a2) 50nm Pd evaporated on Si wafer with 100 nm Si 2 insulating layer and 5nm Cr as an adhesion

More information

NANOTRIBOLOGY - The road to no WEAR! by Richie Khandelwal (MT03B023) & Sahil Sahni (MT03B024)

NANOTRIBOLOGY - The road to no WEAR! by Richie Khandelwal (MT03B023) & Sahil Sahni (MT03B024) NANOTRIBOLOGY - The road to no WEAR! by Richie Khandelwal (MT03B023) & Sahil Sahni (MT03B024) Feynman once said "there is plenty of room at the bottom". Today we experience the relevance of this statement

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

Bridge between research in modern physics and entrepreneurship in nanotechnology. Quantum Physics

Bridge between research in modern physics and entrepreneurship in nanotechnology. Quantum Physics Bridge between research in modern physics and entrepreneurship in nanotechnology Quantum Physics The physics of the very small with great applications Part 2 QUANTUM PROPERTIES & TECHNOLOGY TRANSLATION

More information

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Biomedical Nanotechnology. Lec-05 Characterisation of Nanoparticles

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Biomedical Nanotechnology. Lec-05 Characterisation of Nanoparticles INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE Biomedical Nanotechnology Lec-05 Characterisation of Nanoparticles Dr. P. Gopinath Department of Biotechnology Indian Institute

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

672 Advanced Solid State Physics. Scanning Tunneling Microscopy 672 Advanced Solid State Physics Scanning Tunneling Microscopy Biao Hu Outline: 1. Introduction to STM 2. STM principle & working modes 3. STM application & extension 4. STM in our group 1. Introduction

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

A CONTROL SYSTEMS PERSPECTIVE ON NANOINTERROGATION

A CONTROL SYSTEMS PERSPECTIVE ON NANOINTERROGATION A CONTROL SYSTEMS PERSPECTIVE ON NANOINTERROGATION Scanning Probe Microscopy At the 1959 annual meeting of the American Physical Society, Richard Feynman gave a seminal talk titled There s Plenty of Room

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/22/07 Prof. C. Ortiz, MIT-DMSE

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/22/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 5: AFM IMAGING Outline : LAST TIME : HRFS AND FORCE-DISTANCE CURVES... 2 ATOMIC FORCE MICROSCOPY : GENERAL COMPONENTS AND FUNCTIONS... 3 Deflection vs. Height Images... 4 3D Plots and 2D Section

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division AFM Imaging In Liquids W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division Imaging Techniques: Scales Proteins 10 nm Bacteria 1μm Red Blood Cell 5μm Human Hair 75μm Si Atom Spacing 0.4nm

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

Molecular and carbon based electronic systems

Molecular and carbon based electronic systems Molecular and carbon based electronic systems Single molecule deposition and properties on surfaces Bottom Up Top Down Fundamental Knowledge & Functional Devices Thilo Glatzel, thilo.glatzel@unibas.ch

More information

Scanning Tunneling Microscopy and its Application

Scanning Tunneling Microscopy and its Application Chunli Bai Scanning Tunneling Microscopy and its Application With 181 Figures SHANGHAI SCIENTIFIC & TECHNICAL PUBLISHERS Jpl Springer Contents 1. Introduction 1 1.1 Advantages of STM Compared with Other

More information

Chapter 2 Scanning Probe Microscopy Principle of Operation, Instrumentation, and Probes

Chapter 2 Scanning Probe Microscopy Principle of Operation, Instrumentation, and Probes Chapter 2 Scanning Probe Microscopy Principle of Operation, Instrumentation, and Probes Bharat Bhushan and Othmar Marti Abstract Since the introduction of the STM in 1981 and the AFM in 1985, many variations

More information

3.1 Electron tunneling theory

3.1 Electron tunneling theory Scanning Tunneling Microscope (STM) was invented in the 80s by two physicists: G. Binnig and H. Rorher. They got the Nobel Prize a few years later. This invention paved the way for new possibilities in

More information