Efficient Optimal Control for a Unitary Operation under Dissipative Evolution

Size: px
Start display at page:

Download "Efficient Optimal Control for a Unitary Operation under Dissipative Evolution"

Transcription

1 Effcent Optmal Control for a Untary Operaton under Dsspatve Evoluton Mchael Goerz, Danel Rech, Chrstane P. Koch Unverstät Kassel March 20, 2014 DPG Frühjahrstagung 2014, Berln Sesson Q 43 Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 1 / 20

2 Introducton: numercal optmal control Control Problem Fnd a tme-dependent control (e.g. laser pulse) that steers the system towards some desred goal (e.g. quantum gate) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 2 / 20

3 Introducton: numercal optmal control Control Problem Fnd a tme-dependent control (e.g. laser pulse) that steers the system towards some desred goal (e.g. quantum gate) defne optmzaton functonal for a guess pulse, solve the equaton of moton numercally modfy control pulse to mprove value of optmzaton functonal Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 2 / 20

4 Introducton: numercal optmal control Control Problem Fnd a tme-dependent control (e.g. laser pulse) that steers the system towards some desred goal (e.g. quantum gate) defne optmzaton functonal for a guess pulse, solve the equaton of moton numercally modfy control pulse to mprove value of optmzaton functonal ɛ ɛ new OCT teraton ɛ old Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 2 / 20

5 Introducton: numercal optmal control Control Problem Fnd a tme-dependent control (e.g. laser pulse) that steers the system towards some desred goal (e.g. quantum gate) defne optmzaton functonal for a guess pulse, solve the equaton of moton numercally modfy control pulse to mprove value of optmzaton functonal ɛ ɛ new OCT teraton ɛ old optmal : not lmted to smple ntutve schemes, operate at the quantum speed lmt Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 2 / 20

6 Gate optmzaton CPHASE = dag( 1, 1, 1, 1) CNOT = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 3 / 20

7 Gate optmzaton CPHASE = dag( 1, 1, 1, 1) CNOT = Goal: Maxmze F = 1 d d =1 Two-qubt gates: d = 4 Re Ψ Ô Û(T, 0, ɛ) Ψ Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 3 / 20

8 Gate optmzaton CPHASE = dag( 1, 1, 1, 1) CNOT = Goal: Maxmze F = 1 d d =1 Two-qubt gates: d = 4 ɛ(t) χ(t) ɛ Ĥ Ψ(t) 11 Ô Ô 10 ɛ new ɛ old 01 Ô Ô 00 t 0 t Re Ψ Ô Û(T, 0, ɛ) Ψ T Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 3 / 20

9 OCT for open quantum systems In the real world: decoherence Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 4 / 20

10 OCT for open quantum systems ˆρ(T ) = D(ˆρ(0)); for example ˆρ t = [Ĥ, ˆρ] + L D (ˆρ) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 5 / 20

11 OCT for open quantum systems ˆρ(T ) = D(ˆρ(0)); for example ˆρ t = [Ĥ, ˆρ] + L D (ˆρ) Lft F = 1 d d =1 Re Ψ Ô ˆPÛ(T, 0, ɛ)ˆp Ψ to Louvlle space. Kallush & Kosloff, Phys. Rev. A 73, (2006), Ohtsuk, New J. Phys. 12, (2010) Schulte-Herbrüggen et al., J. Phys. B 44, (2011),... F = 1 d 2 d 2 j=1 ] tr [Ôˆρj (0)Ô ˆρ j (T ) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 5 / 20

12 OCT for open quantum systems ˆρ(T ) = D(ˆρ(0)); for example ˆρ t = [Ĥ, ˆρ] + L D (ˆρ) Lft F = 1 d d =1 Re Ψ Ô ˆPÛ(T, 0, ɛ)ˆp Ψ to Louvlle space. Kallush & Kosloff, Phys. Rev. A 73, (2006), Ohtsuk, New J. Phys. 12, (2010) Schulte-Herbrüggen et al., J. Phys. B 44, (2011),... F = 1 d 2 d 2 j=1 ] tr [Ôˆρj (0)Ô ˆρ j (T ) ˆρ 1 = , ˆρ2 = , ˆρ3 = , d 2 matrces to propagate! (16 for two-qubt gate) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 5 / 20

13 OCT for open quantum systems ˆρ(T ) = D(ˆρ(0)); for example ˆρ t = [Ĥ, ˆρ] + L D (ˆρ) Lft F = 1 d d =1 Re Ψ Ô ˆPÛ(T, 0, ɛ)ˆp Ψ to Louvlle space. Kallush & Kosloff, Phys. Rev. A 73, (2006), Ohtsuk, New J. Phys. 12, (2010) Schulte-Herbrüggen et al., J. Phys. B 44, (2011),... Clam F = 1 d 2 d 2 j=1 ] tr [Ôˆρj (0)Ô ˆρ j (T ) We only need to propagate three matrces (ndependent of d), nstead of d 2. Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 5 / 20

14 A reduced set of densty matrces No need to characterze the full dynamcal map! much less nformaton requred to assess how well a desred untary s mplemented ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 6 / 20

15 A reduced set of densty matrces No need to characterze the full dynamcal map! much less nformaton requred to assess how well a desred untary s mplemented 1 Do we stay n the logcal subspace? ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 6 / 20

16 A reduced set of densty matrces No need to characterze the full dynamcal map! much less nformaton requred to assess how well a desred untary s mplemented 1 Do we stay n the logcal subspace? ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 6 / 20

17 A reduced set of densty matrces No need to characterze the full dynamcal map! much less nformaton requred to assess how well a desred untary s mplemented 1 Do we stay n the logcal subspace? 2 Are we untary, and f yes, dd we mplement the rght gate? ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 6 / 20

18 A reduced set of densty matrces No need to characterze the full dynamcal map! much less nformaton requred to assess how well a desred untary s mplemented 1 Do we stay n the logcal subspace? 2 Are we untary, and f yes, dd we mplement the rght gate? ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 6 / 20

19 A reduced set of densty matrces No need to characterze the full dynamcal map! much less nformaton requred to assess how well a desred untary s mplemented 1 Do we stay n the logcal subspace? 2 Are we untary, and f yes, dd we mplement the rght gate? ˆρ 1 = , ˆρ 2 = , ˆρ 3 = E.g. Ô = dag( 1, 1, 1, 1); For Û = dag(e φ00, e φ01, e φ10, e φ11 ) usng just ˆρ 1 wll not dstngush Û from Ô. (Ûˆρ 1 Û = Ôˆρ 1 Ô = ˆρ 1 ) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 6 / 20

20 A reduced set of densty matrces No need to characterze the full dynamcal map! much less nformaton requred to assess how well a desred untary s mplemented 1 Do we stay n the logcal subspace? 2 Are we untary, and f yes, dd we mplement the rght gate? ˆρ 1 = , ˆρ 2 = , ˆρ 3 = E.g. Ô = dag( 1, 1, 1, 1); For Û = dag(e φ00, e φ01, e φ10, e φ11 ) usng just ˆρ 1 wll not dstngush Û from Ô. (Ûˆρ 1 Û = Ôˆρ 1 Ô = ˆρ 1 ) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 6 / 20

21 Effcent gate optmzaton n Louvlle space Optmzaton States ˆρ 1 = , ˆρ 2 = , ˆρ 3 = populatons phases subspace Functonal J T = 1 3 j=1 w ] j [Ôˆρj tr[ˆρ 2 j (0)] tr Ô D[ˆρ j ] Allow for dfferent weghts ( w j = 1) J T = 0 ff for all ˆρ j : D[ˆρ j ] target state mplemented untary gate Ô. Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 7 / 20

22 Example 1 Optmzaton of a Dagonal Gate usng Rydberg Atoms Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 8 / 20

23 Two trapped neutral atoms Sngle-qubt Hamltonan 1 τ = 25 ns r Ω B (t) Ω R (t) 0 1 In the RWA: Ω R(t) 0 Ĥ 1q = 0 E Ω 1 R(t) Ω B(t) Ω B(t) 0 Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 9 / 20

24 Two trapped neutral atoms Sngle-qubt Hamltonan 1 τ = 25 ns r Ω B (t) Ω R (t) 0 1 In the RWA: Ω R(t) 0 Ĥ 1q = 0 E Ω 1 R(t) Ω B(t) Ω B(t) 0 Two-qubt Hamltonan Ĥ 2q = Ĥ 1q Ĥ 1q U rr rr Dpole-dpole nteracton when both atoms n Rydberg state. Only dagonal gates! Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 9 / 20

25 Optmzaton of a Rydberg gate 0.20 τ = 25 ns, T = 75 ns full bass 0.15 gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 10 / 20

26 Optmzaton of a Rydberg gate 0.20 τ = 25 ns, T = 75 ns full bass 3 states 0.15 gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 10 / 20

27 Dagonal gates 1 τ = 25 ns r Ω B (t) Ω R (t) 0 1 no couplng between 0, 1 Û = dag(e φ00, e φ01, e φ10, e φ11 ) only dagonal gates are possble Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 11 / 20

28 Dagonal gates 1 τ = 25 ns r Ω B (t) Ω R (t) 0 1 no couplng between 0, 1 Û = dag(e φ00, e φ01, e φ10, e φ11 ) only dagonal gates are possble ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 11 / 20

29 Dagonal gates 1 τ = 25 ns r Ω B (t) Ω R (t) 0 1 no couplng between 0, 1 Û = dag(e φ00, e φ01, e φ10, e φ11 ) only dagonal gates are possble ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 11 / 20

30 Optmzaton of a Rydberg gate 0.20 τ = 25 ns, T = 75 ns full bass 3 states 0.15 gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 12 / 20

31 Optmzaton of a Rydberg gate 0.20 τ = 25 ns, T = 75 ns full bass 3 states 2 states 0.15 gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 12 / 20

32 Optmzaton of a Rydberg gate τ = 25 ns, T = 75 ns full bass 3 states 2 states 2 states (weghted) gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 12 / 20

33 Optmzaton of a Rydberg gate asymptotc behavor 10-1 τ = 25 ns, T = 75 ns full bass 3 states 2 states 2 states (weghted) gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 13 / 20

34 Example 2 Optmzaton of a non-dagonal gate usng transmon qubts Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 14 / 20

35 Two coupled transmon qubts A. Blas et al. PRA 75, (2007) Cavty medates drven exctaton of qubt nteracton between left and rght qubt left qubt g eff ɛ(t) 0 J eff j rght qubt gj eff ɛ(t) 0 Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 15 / 20

36 Two coupled transmon qubts A. Blas et al. PRA 75, (2007) Cavty medates drven exctaton of qubt nteracton between left and rght qubt left qubt g eff ɛ(t) 0 J eff j rght qubt gj eff ɛ(t) 0 Many gates possble, e.g. SWAP: Ô = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 15 / 20

37 Optmzaton of a transmon gate 10 0 full bass gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 16 / 20

38 Optmzaton of a transmon gate 10 0 full bass 3 states gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 16 / 20

39 Optmzaton of a transmon gate 10 0 full bass 3 states 3 states (weghted) gate error OCT teraton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 16 / 20

40 Optmzaton of a transmon gate CPU tme 10 0 full bass 3 states 3 states (weghted) gate error number of propagatons (equvalent to CPU tme) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 17 / 20

41 Optmzaton of a transmon gate CPU tme 10 0 full bass 3 states 3 states (weghted) asymptotc regon gate error number of propagatons (equvalent to CPU tme) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 17 / 20

42 Usng pure states only ˆρ 1 = , ˆρ 2 = , ˆρ 3 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 18 / 20

43 Usng pure states only ˆρ 1 = , ˆρ 2 = , ˆρ 3 = ˆρ 1 = , ˆρ 2 = , ˆρ 3 = , ˆρ 4 = , ˆρ 5 = Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 18 / 20

44 optmzaton of a transmon gate CPU tme 10 0 full bass 3 states 3 states (weghted) asymptotc regon gate error number of propagatons (equvalent to CPU tme) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 19 / 20

45 optmzaton of a transmon gate CPU tme 10 0 full bass 3 states 3 states (weghted) 5 states asymptotc regon gate error number of propagatons (equvalent to CPU tme) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 19 / 20

46 Concluson A set of three densty matrces s suffcent for gate optmzaton: (ndependent of dmenson of Hlbert space!) one to check dynamcal map on subspace one to check the bass one to check the phases Further reducton possble for restrcted systems States can (should!) be weghted accordng to physcal nterpretaton Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 20 / 20

47 Concluson A set of three densty matrces s suffcent for gate optmzaton: (ndependent of dmenson of Hlbert space!) one to check dynamcal map on subspace one to check the bass one to check the phases Further reducton possble for restrcted systems States can (should!) be weghted accordng to physcal nterpretaton Gate optmzaton n open quantum systems wth large Hlbert spaces have become sgnfcantly more feasble. Reference: M. H. Goerz, D. M. Rech, C. P. Koch. arxv: In press: New Journal of Physcs (specal ssue) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 20 / 20

48 Concluson A set of three densty matrces s suffcent for gate optmzaton: (ndependent of dmenson of Hlbert space!) one to check dynamcal map on subspace one to check the bass one to check the phases Further reducton possble for restrcted systems States can (should!) be weghted accordng to physcal nterpretaton Gate optmzaton n open quantum systems wth large Hlbert spaces have become sgnfcantly more feasble. Reference: M. H. Goerz, D. M. Rech, C. P. Koch. arxv: In press: New Journal of Physcs (specal ssue) Thank you Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 20 / 20

49 Optmzed dynamcs of the Rydberg gate populaton feld ( rel. unts ) tme (ns) 00 r0 0r rr nt Ω R (t) guess Ω B (t) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 21 / 20

50 populaton feld ( rel. unts ) populaton feld ( rel. unts ) wth dsspaton, full bass tme (ns) wthout dsspaton, full bass tme (ns) 00 r0 0r rr nt Ω R (t) guess Ω B (t) 00 r0 0r rr nt Ω R (t) guess Ω B (t) populaton feld ( rel. unts ) wth dsspaton, two states (weghted) 1 00 r r rr nt tme (ns) Ω R (t) guess Ω B (t) wthout dsspaton, two states (weghted) 1 00 r r rr nt 0 populaton feld ( rel. unts ) tme (ns) Ω R (t) guess Ω B (t) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 22 / 20

51 Two Coupled Transmon Qubts A. Blas et al. PRA 75, (2007) J. Koch et al. PRA 76, (2007) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 23 / 20

52 Two Coupled Transmon Qubts A. Blas et al. PRA 75, (2007) J. Koch et al. PRA 76, (2007) Full Hamltonan Ĥ = ω c â â + ω }{{} 1ˆb 1ˆb 1 + ω 2ˆb 2ˆb 2 1 }{{} 2 (α 1ˆb 1ˆb 1ˆb 1ˆb 1 + α 2ˆb 2ˆb 2ˆb 2ˆb 2 ) + 1 }{{} g 1 (ˆb 1â + ˆb 1 â ) + g 2 (ˆb 2â + ˆb 2 â ) + ɛ (t)â + ɛ(t)â }{{}}{{} 4 5 Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 23 / 20

53 Effectve Hamltonan Ĥ eff = q=1,2 + j N q 1 =0 (ω (q) Jj eff (Ĉ (1) Ĉ + (2) + χ (q) )ˆΠ (q) + N q 1 g q=1,2 j + Ĉ + (1) =0 Ĉ (2) j ). eff (q) ɛ(t)(ĉ + (q) + Ĉ (q) ) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 24 / 20

54 Effectve Hamltonan Ĥ eff = q=1,2 + j N q 1 =0 (ω (q) Jj eff (Ĉ (1) Ĉ + (2) + χ (q) )ˆΠ (q) + N q 1 g q=1,2 j + Ĉ + (1) =0 Ĉ (2) j ). eff (q) ɛ(t)(ĉ + (q) + Ĉ (q) ) wth ω (q) = ω q 1 2 ( 2 )α q, g (q) = g q ˆΠ (q) χ (q) = eff (q) g = = q, Ĉ + (q) (ω (q) (g (q) ) 2 ω (q) (ω (q) 1 ωc ) g (q) ω (q) 1 ωc ) = 1 q Jj eff = 1 eff (1) 2g g (2) j + 1 eff (2) 2gj g (1) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 24 / 20

55 IBM Qubt Poletto et al. PRL 109, (2012) qubt frequency ω GHz qubt frequency ω GHz drve frequency ω d GHz anharmoncty α MHz anharmoncty α MHz effectve qubt-qubt couplng J -2.3 MHz qubt 1,2 decay tme T µs, 32.0 µs qubt 1,2 dephasng tme T µs, 16.0 µs Effectve Hamltonan Ĥ eff = jq ( (ω (q) + χ (q) )ˆΠ (q) eff (q) + g ɛ(t)(ĉ + (q) + Ĉ (q) ) + J eff j (Ĉ (1) Ĉ + (2) ) j + c.c.) Master Equaton L D (ˆρ) = ( ) N 1 ] N 1 ] γ q D [ 1 q ˆρ + γ φ,q D [ q ˆρ, q=1,2 =1 [Â] wth D ˆρ = ˆρ ( ˆρ 1 + ˆρ Â) 2 =0 Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 25 / 20

56 IBM Qubt Poletto et al. PRL 109, (2012) qubt frequency ω GHz qubt frequency ω GHz drve frequency ω d GHz anharmoncty α MHz anharmoncty α MHz effectve qubt-qubt couplng J -2.3 MHz qubt 1,2 decay tme T µs, 32.0 µs qubt 1,2 dephasng tme T µs, 16.0 µs Effectve Hamltonan Ĥ eff = jq ( (ω (q) + χ (q) )ˆΠ (q) eff (q) + g ɛ(t)(ĉ + (q) + Ĉ (q) ) + J eff Near resonance of α 1 wth ω 1 ω 2 j (Ĉ (1) Ĉ + (2) ) j + c.c.) Master Equaton L D (ˆρ) = ( ) N 1 ] N 1 ] γ q D [ 1 q ˆρ + γ φ,q D [ q ˆρ, q=1,2 =1 [Â] wth D ˆρ = ˆρ ( ˆρ 1 + ˆρ Â) 2 =0 Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 25 / 20

57 IBM Qubt Poletto et al. PRL 109, (2012) qubt frequency ω GHz qubt frequency ω GHz drve frequency ω d GHz anharmoncty α MHz anharmoncty α MHz effectve qubt-qubt couplng J -2.3 MHz qubt 1,2 decay tme T µs, 32.0 µs qubt 1,2 dephasng tme T µs, 16.0 µs Effectve Hamltonan Ĥ eff = jq ( (ω (q) + χ (q) )ˆΠ (q) eff (q) + g ɛ(t)(ĉ + (q) + Ĉ (q) ) + J eff Near resonance of α 1 wth ω 1 ω 2 sngle frequency drve centered between two qubts j (Ĉ (1) Ĉ + (2) ) j + c.c.) Master Equaton L D (ˆρ) = ( ) N 1 ] N 1 ] γ q D [ 1 q ˆρ + γ φ,q D [ q ˆρ, q=1,2 =1 [Â] wth D ˆρ = ˆρ ( ˆρ 1 + ˆρ Â) 2 =0 Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 25 / 20

58 Transmon Optmzed Pulse feld (MHz) feld phase (π) spectrum (arb. unts) Ω guess arg(ω) arg(guess) tme (ns) frequency (MHz) Mchael Goerz Un Kassel Effcent OCT for a Untary under Dsspaton 26 / 20

59 populaton Transmon Populaton Dynamcs log tme (ns) 1.5 rght qubt σj 1 j left qubt σ rght qubt σj 1 j left qubt σ log. subsp log. populaton 0.5 qubt exctaton 1.5 qubt exctaton (b) (a) populaton tme (ns) tme (ns) (b) qubt exctaton ulaton Mchael Goerz FIG. rght 10: Populaton dynamcs for (t ˆ = 0) = 01h01 (a) and (t ˆ = 0) = 11h11 (b) und qubt σj Ψ(t = 0) = 01 each of the two propagated Ψ(t =value 0) = 11 states, the expectaton of the rght qubt exctaton quant j devaton n gray, the expectaton value for the correspondng qua panel, wth the standard s shown n the center panel, and the populaton dynamcs for all the logcal subspace sta (colored lnes), along wth the total populaton n the logcal subspace (black lne). left qubt σ APPENDIX A: THREE STATES ARE SUFFICIENT TO ASSESS WHETHE UNITARY IS IMPLEMENTED In the followng we 10 dscuss the functonal Jdst, Un Kassel Effcent OCT for a Untary under Dsspaton 27 / 20

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit at the Quantum Speed Limit Michael Goerz Tommaso Calarco Christiane P. Koch Universität Kassel Universität Ulm DPG Spring Meeting Dresden March 6, 2 Universal Quantum Computing Controlled Phasegate e iχ

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008 1 Ph 19a/CS 19a Exercses Due: Wednesday 1 November 008.1 Whch state dd Alce make? Consder a game n whch Alce prepares one of two possble states: ether ρ 1 wth a pror probablty p 1, or ρ wth a pror probablty

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

Entanglement vs Discord: Who Wins?

Entanglement vs Discord: Who Wins? Entanglement vs Dscord: Who Wns? Vlad Gheorghu Department of Physcs Carnege Mellon Unversty Pttsburgh, PA 15213, U.S.A. Januray 20, 2011 Vlad Gheorghu (CMU) Entanglement vs Dscord: Who Wns? Januray 20,

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

) is the unite step-function, which signifies that the second term of the right-hand side of the

) is the unite step-function, which signifies that the second term of the right-hand side of the Casmr nteracton of excted meda n electromagnetc felds Yury Sherkunov Introducton The long-range electrc dpole nteracton between an excted atom and a ground-state atom s consdered n ref. [1,] wth the help

More information

An Inequality for the trace of matrix products, using absolute values

An Inequality for the trace of matrix products, using absolute values arxv:1106.6189v2 [math-ph] 1 Sep 2011 An Inequalty for the trace of matrx products, usng absolute values Bernhard Baumgartner 1 Fakultät für Physk, Unverstät Wen Boltzmanngasse 5, A-1090 Venna, Austra

More information

arxiv: v1 [quant-ph] 2 Jan 2018

arxiv: v1 [quant-ph] 2 Jan 2018 Nonlnear Party Readout wth a Mcrowave Photodetector M. Schöndorf 1 and F. K. Wlhelm 1 1 Theoretcal Physcs, Saarland Unversty, 6613 Saarbrücken, Germany arxv:1801.00713v1 [quant-ph Jan 018 Robust hgh-fdelty

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Chap 5. Dynamics in Condensed Phases

Chap 5. Dynamics in Condensed Phases PG/KA/Chap 5-1 Chap 5. Dynamcs n Condensed Phases Generalzed Langevn Equaton Phenomenologcal ntroducton m v = m Γ(t τ)v(τ)dτ + R(t) Γ(t) : frcton kernel frcton depends on the past ( = memory effect : delayed

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

arxiv:quant-ph/ Jul 2002

arxiv:quant-ph/ Jul 2002 Lnear optcs mplementaton of general two-photon proectve measurement Andrze Grudka* and Anton Wóck** Faculty of Physcs, Adam Mckewcz Unversty, arxv:quant-ph/ 9 Jul PXOWRZVNDR]QDRODQG Abstract We wll present

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

arxiv: v1 [quant-ph] 12 Sep 2017

arxiv: v1 [quant-ph] 12 Sep 2017 Desgnng Kerr nteractons usng multple superconductng qubt types n a sngle crcut arxv:1709.0406v1 [quant-ph] 1 Sep 017 Matthew Ellott Advanced Technology Insttute and Department of Physcs, Unversty of Surrey,

More information

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems Explct constructons of all separable two-qubts densty matrces and related problems for three-qubts systems Y. en-ryeh and. Mann Physcs Department, Technon-Israel Insttute of Technology, Hafa 2000, Israel

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Dynamics of a Superconducting Qubit Coupled to an LC Resonator

Dynamics of a Superconducting Qubit Coupled to an LC Resonator Dynamcs of a Superconductng Qubt Coupled to an LC Resonator Y Yang Abstract: We nvestgate the dynamcs of a current-based Josephson juncton quantum bt or qubt coupled to an LC resonator. The Hamltonan of

More information

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA Polymer Chans Ju L GEM4 Summer School 006 Cell and Molecular Mechancs n BoMedcne August 7 18, 006, MIT, Cambrdge, MA, USA Outlne Freely Jonted Chan Worm-Lke Chan Persstence Length Freely Jonted Chan (FJC)

More information

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs)

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs) Problem adapted reduced models based on Reacton-Dffuson Manfolds (REDIMs) V Bykov, U Maas Thrty-Second Internatonal Symposum on ombuston, Montreal, anada, 3-8 August, 8 Problem Statement: Smulaton of reactng

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Hierarchical State Estimation Using Phasor Measurement Units

Hierarchical State Estimation Using Phasor Measurement Units Herarchcal State Estmaton Usng Phasor Measurement Unts Al Abur Northeastern Unversty Benny Zhao (CA-ISO) and Yeo-Jun Yoon (KPX) IEEE PES GM, Calgary, Canada State Estmaton Workng Group Meetng July 28,

More information

A Fast Computer Aided Design Method for Filters

A Fast Computer Aided Design Method for Filters 2017 Asa-Pacfc Engneerng and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 A Fast Computer Aded Desgn Method for Flters Gang L ABSTRACT *Ths paper presents a fast computer aded desgn method

More information

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort Estmatng Delas Would be nce to have a back of the envelope method for szng gates for speed Logcal Effort ook b Sutherland, Sproull, Harrs Chapter s on our web page Gate Dela Model Frst, normalze a model

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Квантовые цепи и кубиты

Квантовые цепи и кубиты Квантовые цепи и кубиты Твердотельные наноструктуры и устройства для квантовых вычислений Лекция А.В. Устинов Karlsruhe Insttute of Technology, Germany Russan Quantum Center, Russa Alexey Ustnov Sold-state

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Quadratic speedup for unstructured search - Grover s Al-

Quadratic speedup for unstructured search - Grover s Al- Quadratc speedup for unstructured search - Grover s Al- CS 94- gorthm /8/07 Sprng 007 Lecture 11 001 Unstructured Search Here s the problem: You are gven a boolean functon f : {1,,} {0,1}, and are promsed

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J LECTURE 6 Shortest Paths III All-pars shortest paths Matrx-multplcaton algorthm Floyd-Warshall algorthm Johnson s algorthm Prof. Charles E. Leserson Shortest paths

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Supplemental document

Supplemental document Electronc Supplementary Materal (ESI) for Physcal Chemstry Chemcal Physcs. Ths journal s the Owner Socetes 01 Supplemental document Behnam Nkoobakht School of Chemstry, The Unversty of Sydney, Sydney,

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Spin. Introduction. Michael Fowler 11/26/06

Spin. Introduction. Michael Fowler 11/26/06 Spn Mchael Fowler /6/6 Introducton The Stern Gerlach experment for the smplest possble atom, hydrogen n ts ground state, demonstrated unambguously that the component of the magnetc moment of the atom along

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Einstein-Podolsky-Rosen Paradox

Einstein-Podolsky-Rosen Paradox H 45 Quantum Measurement and Spn Wnter 003 Ensten-odolsky-Rosen aradox The Ensten-odolsky-Rosen aradox s a gedanken experment desgned to show that quantum mechancs s an ncomplete descrpton of realty. The

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

Lecture Notes 7: The Unruh Effect

Lecture Notes 7: The Unruh Effect Quantum Feld Theory for Leg Spnners 17/1/11 Lecture Notes 7: The Unruh Effect Lecturer: Prakash Panangaden Scrbe: Shane Mansfeld 1 Defnng the Vacuum Recall from the last lecture that choosng a complex

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

A Computational Viewpoint on Classical Density Functional Theory

A Computational Viewpoint on Classical Density Functional Theory A Computatonal Vewpont on Classcal Densty Functonal Theory Matthew Knepley and Drk Gllespe Computaton Insttute Unversty of Chcago Department of Molecular Bology and Physology Rush Unversty Medcal Center

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

Entropic Dynamics: an Inference Approach to Time and Quantum Theory

Entropic Dynamics: an Inference Approach to Time and Quantum Theory Entropc Dynamcs: an Inference Approach to Tme and Quantum Theory Arel Catcha Department of hyscs Unversty at Albany - SUNY EmQM-13 Venna, 10/013 Queston: Do the laws of hyscs reflect Laws of Nature? Or...

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mt.edu 6.13/ESD.13J Electromagnetcs and Applcatons, Fall 5 Please use the followng ctaton format: Markus Zahn, Erch Ippen, and Davd Staeln, 6.13/ESD.13J Electromagnetcs and

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

A Simple Inventory System

A Simple Inventory System A Smple Inventory System Lawrence M. Leems and Stephen K. Park, Dscrete-Event Smulaton: A Frst Course, Prentce Hall, 2006 Hu Chen Computer Scence Vrgna State Unversty Petersburg, Vrgna February 8, 2017

More information

Solutions to Chapter 1 exercises

Solutions to Chapter 1 exercises Appendx S Solutons to Chapter exercses Soluton to Exercse.. Usng the result of Ex. A.5, we wrte don t forget the complex conjugaton where approprate! ψ ψ N alve ψ dead ψ N 4alve alve + alve dead dead alve

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

A crash course in real-world quantum mechanics

A crash course in real-world quantum mechanics A crash course n real-world quantum mechancs Basc postulates for an solated quantum system Pure states (mnmum-uncertanty states) of a physcal system are represented by vectors n a complex Hlbert space.

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Devce Applcatons Class 9 Group Theory For Crystals Dee Dagram Radatve Transton Probablty Wgner-Ecart Theorem Selecton Rule Dee Dagram Expermentally determned energy

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Lecture 6. P ω ω ε χ ω ω ω ω E ω E ω (2) χ ω ω ω χ ω ω ω χ ω ω ω (2) (2) (2) (,, ) (,, ) (,, ) (2) (2) (2)

Lecture 6. P ω ω ε χ ω ω ω ω E ω E ω (2) χ ω ω ω χ ω ω ω χ ω ω ω (2) (2) (2) (,, ) (,, ) (,, ) (2) (2) (2) Lecture 6 Symmetry Propertes of the Nonlnear Susceptblty Consder mutual nteracton of three waves: ω, ω, ω = ω + ω 3 ω = ω ω ; ω = ω ω 3 3 P ω ω ε ω ω ω ω E ω E ω n + m = 0 jk m + n, n, m j n k m jk nm

More information

En Route Traffic Optimization to Reduce Environmental Impact

En Route Traffic Optimization to Reduce Environmental Impact En Route Traffc Optmzaton to Reduce Envronmental Impact John-Paul Clarke Assocate Professor of Aerospace Engneerng Drector of the Ar Transportaton Laboratory Georga Insttute of Technology Outlne 1. Introducton

More information

Delay equations with engineering applications Gábor Stépán Department of Applied Mechanics Budapest University of Technology and Economics

Delay equations with engineering applications Gábor Stépán Department of Applied Mechanics Budapest University of Technology and Economics Delay equatons wth engneerng applcatons Gábor Stépán Department of Appled Mechancs Budapest Unversty of Technology and Economcs Contents Delay equatons arse n mechancal systems by the nformaton system

More information

Probabilistic method to determine electron correlation energy

Probabilistic method to determine electron correlation energy Probablstc method to determne electron elaton energy T.R.S. Prasanna Department of Metallurgcal Engneerng and Materals Scence Indan Insttute of Technology, Bombay Mumba 400076 Inda A new method to determne

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J/SMA5503 Lecture 9 Prof. Erk Demane Shortest paths Sngle-source shortest paths Nonnegate edge weghts Djkstra s algorthm: OE + V lg V General Bellman-Ford: OVE DAG One

More information

N.T.Phong Y.H.Ahn YongPhyong Yonsei Univ.

N.T.Phong Y.H.Ahn YongPhyong Yonsei Univ. Leptogeness n a seesaw model wth Frtzsch type lepton mass matrces N.T.Phong Y.H.hn 008. 0. 6 YongPhyong Yonse Unv. Introducton Present knowledge of Neutrno data (at 3 σ ) hep-ph/040517 Mxng ngles 0.3 Sn

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

Foldy-Wouthuysen Transformation with Dirac Matrices in Chiral Representation. V.P.Neznamov RFNC-VNIIEF, , Sarov, Nizhniy Novgorod region

Foldy-Wouthuysen Transformation with Dirac Matrices in Chiral Representation. V.P.Neznamov RFNC-VNIIEF, , Sarov, Nizhniy Novgorod region Foldy-Wouthuysen Transormaton wth Drac Matrces n Chral Representaton V.P.Neznamov RFNC-VNIIEF, 679, Sarov, Nzhny Novgorod regon Abstract The paper oers an expresson o the general Foldy-Wouthuysen transormaton

More information

Note on the Electron EDM

Note on the Electron EDM Note on the Electron EDM W R Johnson October 25, 2002 Abstract Ths s a note on the setup of an electron EDM calculaton and Schff s Theorem 1 Basc Relatons The well-known relatvstc nteracton of the electron

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information