Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Size: px
Start display at page:

Download "Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008"

Transcription

1 1 Ph 19a/CS 19a Exercses Due: Wednesday 1 November Whch state dd Alce make? Consder a game n whch Alce prepares one of two possble states: ether ρ 1 wth a pror probablty p 1, or ρ wth a pror probablty p = 1 p 1. Bob s to perform a measurement and on the bass of the outcome to guess whch state Alce prepared. If Bob s guess s rght, he wns; f he guesses wrong, Alce wns. In ths exercse you wll fnd Bob s best strategy, and determne hs optmal probablty of error. Let s suppose (for now) that Bob performs a POVM wth two possble outcomes, correspondng to the two nonnegatve Hermtan operators E 1 and E = I E 1. If Bob s outcome s E 1, he guesses that Alce s state was ρ 1, and f t s E, he guesses ρ. Then the probablty that Bob guesses wrong s p error = p 1 tr (ρ 1 E ) + p tr (ρ E 1 ). (1) a) Show that p error = p 1 + λ E 1, () where { } denotes the orthonormal bass of egenstates of the Hermtan operator p ρ p 1 ρ 1, and the λ s are the correspondng egenvalues. b) Bob s best strategy s to perform the two-outcome POVM that mnmzes ths error probablty. Fnd the nonnegatve operator E 1 that mnmzes p error, and show that error probablty when Bob performs ths optmal two-outcome POVM s (p error ) optmal = p 1 + neg λ. (3) where neg denotes the sum over all of the negatve egenvalues.

2 c) It s convenent to express ths optmal error probablty n terms of the L 1 norm of the operator p ρ p 1 ρ 1, p ρ p 1 ρ 1 1 = tr p ρ p 1 ρ 1 = λ pos neg λ, (4) the dfference between the sum of postve egenvalues and the sum of negatve egenvalues. Use the property tr (p ρ p 1 ρ 1 ) = p p 1 to show that (p error ) optmal = 1 1 p ρ p 1 ρ 1 1. (5) Check whether the answer makes sense n the case where ρ 1 = ρ and n the case where ρ 1 and ρ have support on orthogonal subspaces. d) Now suppose that Alce decdes at random (wth p 1 = p = 1/) to prepare one of two pure states ψ 1, ψ of a sngle qubt, wth ψ 1 ψ = sn(α), 0 α π/4. (6) Wth a sutable choce of bass, the two states can be expressed as ( ) ( ) cos α snα ψ 1 =, ψ snα =. (7) cos α Fnd Bob s optmal two-outcome measurement, and compute the optmal error probablty. e) Bob wonders whether he can fnd a better strategy f hs POVM {E } has more than two possble outcomes. Let p(a ) denote the probablty that state a was prepared, gven that the measurement outcome was ; t can be computed usng the relatons p p(1 ) = p 1 p( 1) = p 1 tr ρ 1 E, p p( ) = p p( ) = p tr ρ E ; (8) here p( a) denotes the probablty that Bob fnds measurement outcome f Alce prepared the state ρ a, and p denotes the probablty that Bob fnds measurement outcome, averaged over Alce s choce of state. For each outcome, Bob wll make hs decson accordng to whch of the two quanttes p(1 ), p( ) (9)

3 3 s the larger; the probablty that he makes a mstake s the smaller of these two quanttes. Ths probablty of error, gven that Bob obtans outcome, can be wrtten as p error () = mn(p(1 ), p( )) = 1 1 p( ) p(1 ). (10) Show that the probablty of error, averaged over the measurement outcomes, s p error = p p error () = 1 1 tr(p ρ p 1 ρ 1 )E. (11) f) By expandng n terms of the bass of egenstates of p ρ p 1 ρ 1, show that p error 1 1 p ρ p 1 ρ 1 1. (1). Fdelty (Hnt: Use the completeness property E = I.) Snce we have already shown that ths bound can be saturated wth a twooutcome POVM, the POVM wth many outcomes s no better. We saw n Exercse 1.4 that the L 1 norm ρ ρ 1 provdes a useful measure of the dstngushablty of the states ρ and ρ. Another useful measure of dstngushablty s the fdelty F(ρ, ρ), whch s defned as ( F(ρ, ρ) ρ 1 1 ρ 1 = tr ρ 1 ρρ 1 ). (13) (Some authors use the name fdelty for the square root of ths quantty.) The fdelty s nonnegatve, vanshes f ρ and ρ have support on mutually orthogonal subspaces, and attans ts maxmum value 1 f and only f the two states are dentcal. a) The fdelty F(ρ, ρ) s actually symmetrc n ts two arguments, although the symmetry s not manfest n eq. (13). To demonstrate the symmetry, show that for any Hermtan A and B, the L 1 norm obeys AB 1 = BA 1. (14) Hnt: Show that BAAB and ABBA have the same egenvalues.

4 4 The overlap of two probablty dstrbutons {p } and { p } s defned as Overlap({p }, { p }) p p. (15) Suppose that we try to dstngush the two states ρ and ρ by performng the POVM {E }. Then the two correspondng probablty dstrbutons have the overlap Overlap(ρ, ρ; {E }) tr ρe tr ρe. (16) It turns out that the mnmal overlap that can be acheved by any POVM s mn {E } [Overlap(ρ, ρ; {E })] = ρ 1 ρ 1 1 = F(ρ, ρ). (17) In ths exercse, you wll show that the square root of the fdelty bounds the overlap, but not that the bound can be saturated. b) The space of lnear operators actng on a Hlbert space s tself a Hlbert space, where the nner product (A, B) of two operators A and B s ( ) (A, B) tr A B. (18) For ths nner product, the Schwarz nequalty becomes ( ) 1/ ( 1/ tr A B tr A A tr B B), (19) Choosng A = ρe 1 1 and B = U ρ E 1 1 (for an arbtrary untary U), use ths form of the Schwarz nequalty to show that c) Now use the polar decomposton (where V s untary) to wrte Overlap(ρ, ρ; {E }) tr ρ 1 U ρ 1. (0) A = V A A (1) ρ 1 ρ 1 = V ρ 1 ρρ 1, () and by choosng the untary U n eq. (0) to be U = V 1, show that Overlap(ρ, ρ; {E }) F(ρ, ρ). (3)

5 5 d) We can obtan an explct formula for the fdelty n the case of two states of a sngle qubt. Usng the Bloch parametrzaton ρ( P) = 1 ( I + σ P ), (4) show that the fdelty of two sngle-qubt states wth polarzaton vectors P and Q s F( P, Q) = 1 ( ) 1 + P Q + (1 P )(1 Q ). (5) Hnt: Frst note that the egenvalues of a matrx can be expressed n terms of the trace and determnant ( of ) the matrx. Then evaluate the determnant and trace of ρ 1 ρρ 1, and calculate the fdelty usng the correspondng expresson for the egenvalues..3 Eavesdroppng and dsturbance Alce wants to send a message to Bob. Alce s equpped to prepare ether one of the two states u or v. These two states, n a sutable bass, can be expressed as u = ( cosα sn α ), v = ( ) snα cos α, (6) where 0 < α < π/4. Suppose that Alce decdes at random to send ether u or v to Bob, and Bob s to make a measurement to determne what she sent. Snce the two states are not orthogonal, Bob cannot dstngush the states perfectly. a) Bob realzes that he can t expect to be able to dentfy Alce s qubt every tme, so he settles for a procedure that s successful only some of the tme. He performs a POVM wth three possble outcomes: u, v, or DON T KNOW. If he obtans the result u, he s certan that v was sent, and f he obtans v, he s certan that u was sent. If the result s DON T KNOW, then hs measurement s nconclusve. Ths POVM s defned by the operators E u = A(I u u ), E v = A(I v v ), E DK = (1 A)I + A ( u u + v v ), (7) where A s a postve real number. How should Bob choose A to mnmze the probablty of the outcome DK, and what

6 6 s ths mnmal DK probablty (assumng that Alce chooses from { u, v } equprobably)? Hnt: If A s too large, E DK wll have negatve egenvalues, and Eq.(7) wll not be a POVM. b) Eve also wants to know what Alce s sendng to Bob. Hopng that Alce and Bob won t notce, she ntercepts each qubt that Alce sends, by performng an orthogonal measurement that projects onto the bass {( ( 1 0), 0 1)}. If she obtans the outcome ( 1 0), she sends the state u on to Bob, and f she obtans the outcome ( 0 1), she sends v on to Bob. Therefore each tme Bob s POVM has a conclusve outcome, Eve knows wth certanty what that outcome s. But Eve s tamperng causes detectable errors; sometmes Bob obtans a conclusve outcome that actually dffers from what Alce sent. What s the probablty of such an error, when Bob s outcome s conclusve?.4 The prce of quantum state encrypton Alce and Bob are workng on a top secret project. I can t tell you exactly what the project s, but I wll reveal that Alce and Bob are connected by a perfect quantum channel, and that Alce uses the channel to send quantum states to Bob. Alce and Bob are worred that an eavesdropper (Eve) mght ntercept some of Alce s transmssons. By measurng the ntercepted quantum state, Eve could learn somethng about what Alce s sendng, and perhaps make an nference about the nature of the project. To protect aganst eavesdroppng, Alce and Bob decde to encrypt the quantum states that Alce sends. They share a secret key, a strng of random bts about whch the eavesdropper knows nothng. By consumng n bts of secret key, Alce can encrypt, and Bob can decrypt, an arbtrary n-qubt state ρ. For every possble state ρ, the encrypted state looks exactly the same to Eve, so she cannot fnd out anythng about ρ. Here s how the encrypton procedure works: We may express the n bt strng x as x = x 1 x x n, where x {0, 1,,3}, and denote a tensor product of n Paul operators as σ(x) = σ x1 σ x σ xn 1 σ xn (8)

7 7 (where σ 0 = I). Note that σ(x) = I n, the dentty operator actng on n qubts. To encrypt, Alce consults her random strng to determne x (whch s chosen unformly at random), and apples σ(x) to the state, obtanng σ(x)ρσ(x). To decrypt, Bob, consults the same strng and apples σ(x) to recover ρ. a) Snce Eve does not know the secret key, to her the encrypted state s ndstngushable from Show that, for any n-qubt state ρ E(ρ) = 1 n σ(x)ρσ(x). (9) x E(ρ) = 1 ni n. (30) Snce E(ρ) s ndependent of ρ, no nformaton about ρ s accessble to Eve. b) Alce wonders f t s possble to encrypt the state usng a shorter key. Alce and Bob could use ther shared randomness to sample an arbtrary probablty dstrbuton. That s, they could agree on a set of N untary matrces {U a, a = 1,, 3,..., N}, and Alce could encrypt by applyng U a wth probablty p a. Then Bob could decrypt by applyng Ua 1. To Eve, the encrypted state would then appear to be E (ρ) = a p a U a ρu 1 a. (31) Show that, f E (ρ) = I n, then p a n for each a. Hnt: Note that E has an operator sum representaton wth Kraus operators {σ(x)/ n } and that E has an operator sum representaton wth Kraus operators { p a U a }. Furthermore E = E. Therefore, there exsts an M M untary matrx V ax (where M = Max(N, n such that p a U a = x V axσ(x)/ n. Now express p a tr U a U a n terms of V ( ). Remark: The result shows that encrypton requres N n, and that at least n bts of key are requred to specfy U a. Thus the

8 8 encrypton scheme n whch σ(x) s appled s the most effcent possble scheme. (For encrypton to be effectve, t s enough for E(ρ) to be ndependent of ρ; t s not necessary that E(ρ) = I n / n. But the same result apples under the weaker assumpton that E(ρ) s ndependent of ρ.).5 Untal maps and majorzaton Recall that the acton of a trace-preservng completely postve (TPCP) map E can be expressed as E(ρ) = µ M µ ρm µ, (3) where M µm µ = I. (33) µ A TPCP map s sad to be untal f E(I) = I, or equvalently f Mµ M µ = I. (34) If A s a nonnegatve Hermtan operator wth unt trace (tr A = 1), let λ(a) denote the vector of egenvalues of A, whch can be regarded as a probablty vector. If A and B are nonnegatve Hermtan operators wth unt trace, we say that A B ( A s majorzed by B ) f λ(a) λ(b). (Recall that for two probablty vectors p and q, we say that p q f there s a doubly stochastc matrx D such that p = Dq.) Show that f ρ s a densty operator and E s a untal map, then E(ρ) ρ. (35) Hnt: Express ρ = U U where s dagonal and U s untary, and express ρ E(ρ) = V V, where s dagonal and V s untary. Then try to show that the dagonal entres of can be expressed as a doubly stochastc matrx actng on the dagonal entres of. Remark: A untal map s the natural quantum generalzaton of a doubly stochastc map (a doubly stochastc map can be regarded as the specal case of a untal map that preserves the bass n whch ρ s dagonal). The result of the exercse shows that a untal map takes an nput densty operator to an output densty operator that s no less random than the nput.

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 017 018 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Dynamic Systems on Graphs

Dynamic Systems on Graphs Prepared by F.L. Lews Updated: Saturday, February 06, 200 Dynamc Systems on Graphs Control Graphs and Consensus A network s a set of nodes that collaborates to acheve what each cannot acheve alone. A network,

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

7. Products and matrix elements

7. Products and matrix elements 7. Products and matrx elements 1 7. Products and matrx elements Based on the propertes of group representatons, a number of useful results can be derved. Consder a vector space V wth an nner product ψ

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

Solutions to Chapter 1 exercises

Solutions to Chapter 1 exercises Appendx S Solutons to Chapter exercses Soluton to Exercse.. Usng the result of Ex. A.5, we wrte don t forget the complex conjugaton where approprate! ψ ψ N alve ψ dead ψ N 4alve alve + alve dead dead alve

More information

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order: 68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

More information

CSE 599d - Quantum Computing Introduction to Quantum Error Correction

CSE 599d - Quantum Computing Introduction to Quantum Error Correction CSE 599d - Quantum Computng Introducton to Quantum Error Correcton Dave Bacon Department of Computer Scence & Engneerng, Unversty of Washngton In the last lecture we saw that open quantum systems could

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

MATH Homework #2

MATH Homework #2 MATH609-601 Homework #2 September 27, 2012 1. Problems Ths contans a set of possble solutons to all problems of HW-2. Be vglant snce typos are possble (and nevtable). (1) Problem 1 (20 pts) For a matrx

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C Some basc nequaltes Defnton. Let V be a vector space over the complex numbers. An nner product s gven by a functon, V V C (x, y) x, y satsfyng the followng propertes (for all x V, y V and c C) (1) x +

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k)

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k) STAT 309: MATHEMATICAL COMPUTATIONS I FALL 08 LECTURE 7. sor method remnder: n coordnatewse form, Jacob method s = [ b a x (k) a and Gauss Sedel method s = [ b a = = remnder: n matrx form, Jacob method

More information

Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement

Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement Effcent many-party controlled teleportaton of mult-qut quantum nformaton va entanglement Chu-Png Yang, Shh-I Chu, Syuan Han Physcal Revew A, 24 Presentng: Vctora Tchoudakov Motvaton Teleportaton va the

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

} Often, when learning, we deal with uncertainty:

} Often, when learning, we deal with uncertainty: Uncertanty and Learnng } Often, when learnng, we deal wth uncertanty: } Incomplete data sets, wth mssng nformaton } Nosy data sets, wth unrelable nformaton } Stochastcty: causes and effects related non-determnstcally

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Lecture Space-Bounded Derandomization

Lecture Space-Bounded Derandomization Notes on Complexty Theory Last updated: October, 2008 Jonathan Katz Lecture Space-Bounded Derandomzaton 1 Space-Bounded Derandomzaton We now dscuss derandomzaton of space-bounded algorthms. Here non-trval

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems Explct constructons of all separable two-qubts densty matrces and related problems for three-qubts systems Y. en-ryeh and. Mann Physcs Department, Technon-Israel Insttute of Technology, Hafa 2000, Israel

More information

Communication Complexity 16:198: February Lecture 4. x ij y ij

Communication Complexity 16:198: February Lecture 4. x ij y ij Communcaton Complexty 16:198:671 09 February 2010 Lecture 4 Lecturer: Troy Lee Scrbe: Rajat Mttal 1 Homework problem : Trbes We wll solve the thrd queston n the homework. The goal s to show that the nondetermnstc

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

Supplementary Information

Supplementary Information Supplementary Informaton Quantum correlatons wth no causal order Ognyan Oreshkov 2 Fabo Costa Časlav Brukner 3 Faculty of Physcs Unversty of Venna Boltzmanngasse 5 A-090 Venna Austra. 2 QuIC Ecole Polytechnque

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

e - c o m p a n i o n

e - c o m p a n i o n OPERATIONS RESEARCH http://dxdoorg/0287/opre007ec e - c o m p a n o n ONLY AVAILABLE IN ELECTRONIC FORM 202 INFORMS Electronc Companon Generalzed Quantty Competton for Multple Products and Loss of Effcency

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Errata to Invariant Theory with Applications January 28, 2017

Errata to Invariant Theory with Applications January 28, 2017 Invarant Theory wth Applcatons Jan Drasma and Don Gjswjt http: //www.wn.tue.nl/~jdrasma/teachng/nvtheory0910/lecturenotes12.pdf verson of 7 December 2009 Errata and addenda by Darj Grnberg The followng

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

AGC Introduction

AGC Introduction . Introducton AGC 3 The prmary controller response to a load/generaton mbalance results n generaton adjustment so as to mantan load/generaton balance. However, due to droop, t also results n a non-zero

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Lecture notes for the course: Quantum Information

Lecture notes for the course: Quantum Information Lecture notes for the course: Quantum Informaton gven by Dr. Benn Reznk Sprng 003, Tel-Avv Unversty wrtten by Amr Segner last modfed: March 3rd 005 Caveat: These lecture notes were wrtten whle I was studyng

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

MATH 281A: Homework #6

MATH 281A: Homework #6 MATH 28A: Homework #6 Jongha Ryu Due date: November 8, 206 Problem. (Problem 2..2. Soluton. If X,..., X n Bern(p, then T = X s a complete suffcent statstc. Our target s g(p = p, and the nave guess suggested

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Low correlation tensor decomposition via entropy maximization

Low correlation tensor decomposition via entropy maximization CS369H: Herarches of Integer Programmng Relaxatons Sprng 2016-2017 Low correlaton tensor decomposton va entropy maxmzaton Lecture and notes by Sam Hopkns Scrbes: James Hong Overvew CS369H). These notes

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

be a second-order and mean-value-zero vector-valued process, i.e., for t E

be a second-order and mean-value-zero vector-valued process, i.e., for t E CONFERENCE REPORT 617 DSCUSSON OF TWO PROCEDURES FOR EXPANDNG A VECTOR-VALUED STOCHASTC PROCESS N AN ORTHONORMAL WAY by R. GUTkRREZ and M. J. VALDERRAMA 1. ntroducton Snce K. Karhunen [l] and M. Lo&e [2]

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one)

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one) Why Bayesan? 3. Bayes and Normal Models Alex M. Martnez alex@ece.osu.edu Handouts Handoutsfor forece ECE874 874Sp Sp007 If all our research (n PR was to dsappear and you could only save one theory, whch

More information

für Mathematik in den Naturwissenschaften Leipzig

für Mathematik in den Naturwissenschaften Leipzig ŠܹÈÐ Ò ¹ÁÒ Ø ØÙØ für Mathematk n den Naturwssenschaften Lepzg Asymptotcally optmal dscrmnaton between multple pure quantum states by Mchael Nussbaum, and Arleta Szkola Preprnt no.: 1 2010 Asymptotcally

More information

Matrix Mechanics Exercises Using Polarized Light

Matrix Mechanics Exercises Using Polarized Light Matrx Mechancs Exercses Usng Polarzed Lght Frank Roux Egenstates and operators are provded for a seres of matrx mechancs exercses nvolvng polarzed lght. Egenstate for a -polarzed lght: Θ( θ) ( ) smplfy

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Norm Bounds for a Transformed Activity Level. Vector in Sraffian Systems: A Dual Exercise

Norm Bounds for a Transformed Activity Level. Vector in Sraffian Systems: A Dual Exercise ppled Mathematcal Scences, Vol. 4, 200, no. 60, 2955-296 Norm Bounds for a ransformed ctvty Level Vector n Sraffan Systems: Dual Exercse Nkolaos Rodousaks Department of Publc dmnstraton, Panteon Unversty

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

An Introduction to Morita Theory

An Introduction to Morita Theory An Introducton to Morta Theory Matt Booth October 2015 Nov. 2017: made a few revsons. Thanks to Nng Shan for catchng a typo. My man reference for these notes was Chapter II of Bass s book Algebrac K-Theory

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information