AGC Introduction


 Thomasina Mathews
 4 years ago
 Views:
Transcription
1 . Introducton AGC 3 The prmary controller response to a load/generaton mbalance results n generaton adjustment so as to mantan load/generaton balance. However, due to droop, t also results n a nonzero steadystate frequency devaton. Ths frequency devaton must be corrected. Also, the net scheduled export must be mantaned accordng to the rchase agreements. Prmary control does nothng to correct the steadystate frequency error or the net scheduled export. These two problems are handled by provdng a supplementary sgnal from the control center to each generaton unt on automatc generaton control (AGC).
2 The sgnal s derved from the Area Control Error (ACE) and, when receved at a generaton plant, actvates the speed changer motor to adjust the energy supply set pont to the generator. In these notes, we wll learn how the ACE s comted, and we wll see how t s used n correctng steadystate frequency error. 2. evew From our notes AGC, we defned the followng terms: Net Actual Interchange: AP j Net cheduled Interchange: P j Interchange Devaton (defned pg 396 of text): ΔP j =AP j P j () Note that the above terms are each defned wth respect to two dstnct areas. 2
3 We also defned, n AGC, the followng terms: Actual Export: cheduled Export: n AP AP j (2) j n P P j (3) n P Net Devaton: P j (4) j Note that the above three terms are each defned wth respect to a sngle area. We also saw that the net devaton s related to the net actual and scheduled nterchanges, and to the actual and scheduled exports, by: P n j n j AP j P j n j n j P j ( AP j AP j P ) j P (5) Although your text does not defne net devaton, t does use t as the frst term n the ACE expresson of eq. (.3). 3
4 Fnally, we saw n our notes AGC2, when dscussng the multmachne case, that P M f 6 f 6 P... K K (6) P... K K (7) If all unts have the same perunt droop constant,.e., f = 2 = = K, then eqs. (6) and (7) become P M f 6 f P... K P... K (8) 6 (9) In eqs. (8) and (9), ΔP represents the change n total load so that t s postve f load ncreases, negatve f load decreases; postve f gen decreases, negatve f gen ncreases. 4
5 3. Area Control Error The Area Control Error (ACE) s composed of Net Devaton ΔP, from eq. (5), wrtten more compactly below: P AP P (5) When ΔP >, t means that the actual export exceeds the scheduled export, and so the generaton n area should be reduced. teadystate frequency devaton f f 6 () When Δf>, t means the generaton n the system exceeds the load and therefore we should reduce generaton n the area. From the above, our frst mlse may be to mmedately wrte down the ACE for area as: ACE P f (a) Alternatvely (and consstent wth the text) ACE P (b) But we note 2 problems wth eq. (). Frst, we are addng 2 quanttes that have dfferent unts. 5
6 Anytme you come across a relaton that adds 2 or more unts havng dfferent unts, beware. The second problem s that the magntudes of the two terms n eq. () may dffer dramatcally. If we are workng n MW and Hz (or rad/sec), then we may see ΔP n the s of MW whereas we wll see Δf (or Δω) n the hundredths or at most tenths of a Hz. The mplcaton s that the control sgnal, per eq. (), wll greatly favor the export devatons over the frequency devatons. Therefore we need to scale one of them. To do so, we defne area frequency characterstc as β. It has unts of MW/Hz. Your text shows (pg. 393) that f D f DLf (2a) where D D L f (2b) 6
7 D s the dampng coeffcent from the swng equaton (and represents the effect of synchronous generator wndage and frcton); D L s the load dampng coeffcent and represents the tendency of the load to decrease as frequency decreases (an effect manly attrbuted to nducton motors). The f or ω subscrpts ndcate whether we wll comte ACE usng f or ω (text uses ω). EPI [] provdes an nterestng fgure whch compares frequency senstvty for motor loads wth nonmotor loads, shown below n Fg.. Fg. Fgure shows that motor loads reduce about 2% for every % drop n frequency. If we assume that non 7
8 motor loads are unaffected by frequency, a reasonable composte characterstc mght be that total load reduces by % for every % drop n frequency, as ndcated by the total load characterstc n Fg.. To account for load senstvty to frequency devatons, we wll use parameter D L accordng to change n load D L change n frequency (a) from whch we may wrte: change n load D L (b) If our system has a % decrease n power for every % decrease n frequency, then D L =. The dampng terms of eq. (2) are usually sgnfcantly smaller than the regulaton term, so that a reasonable approxmaton s that f (2c) f 8
9 (2d) Then the ACE equaton becomes: ACE P Bff (2e) ACE P B (2f) where B f (or B ω ) s the frequency bas characterstc for area ; t s generally set equal to the area frequency characterstc, β f (or β ω ), as shown n your text on p Example (smlar to Ex.5 n text) Consder the twoarea nterconnecton shown n Fg. wth data gven as below. A MW A2 Fg. Area Area 2 Load=2, MW Load=4, MW Capacty=2, MW Capacty=42, MW Gen=9, MW Gen=4, MW =.5 =.5 The scheduled nterchange s MW flowng from A2 to A, so that scheduled exports are: 9
10 P = MW P 2 = MW There are two parts to ths problem:.determne frequency and generaton of each area and the te lne flow after a MW loss of load n A, but before secondary control has taken effect (ths means we wll determne only the effect of prmary control). 2.epeat () after secondary control acton has taken effect. oluton: We assume that area capactes are the ratngs: =2 2 =42 We also note that the load decreases, therefore ΔP= MW..From eq. (8), f P 6... Therefore K f.86*6. 484Hz so that f=6.484 Hz..5( ).86 [2 42]
11 Then we can comte the ncrease n generaton n each area per eq. (9). For Area : P P (2)( ) 322. M Therefore For Area 2: P P M ,677. 4MW 2P (42)( ) 677. M Therefore P M ,322. 6MW 2 MW MW It s of nterest now to obtan the actual exports, and we can do ths for each area by takng the dfference between load and generaton. The loads n areas and 2 were 2 and 4, but remember that we lost MW of load n area, so that ts value s now 9. Generaton levels were comted above. Therefore AP =8,6779,= MW AP 2 =4, ,=322.6 MW
12 o clearly the new telne flow s MW from A2 to A. Note: For multple areas, calculatng telne flows requres a power flow soluton (DC power flow s sutable to use here). From eq. (5), net devaton s: P AP P ( ) P AP P () To fnd the effect of supplementary control, we frst need to comte the frequency bas parameters. We neglect effects of dampng terms, so that we use eq. (2c) or (2d): f (2c) f (2d) But note that the droop constant n (2c) or (2d) s not n perunt. To convert to perunt, recall eqs. (3) and (4) from AGC2 notes: 2
13 f P M f / r f f P M P M (3a) (3b) / / P / M r f P M P M ubsttutng eq. (3a) or (3b) nto (4) gves: Therefore f P M / f / / P / M r r f P M f r r P f f r p u r M f f r r (4) (5a) (5b) (6a) (6b) We can use (6a) to calculate the frequency bas term of (2c), whch s used n the ACE equaton of (2d): ACE P B f (2d) f 3
14 Alternatvely, we can use (6b) to calculate the frequency bas terms of (2d), whch s used n the ACE equaton of (2e): ACE In the rest of ths example, we wll use (6a), (2c), and (2d). P B (2e) Applyng eq. (6a) to obtan f and f2, we get f.5 6 f r 2 f.5 6 f 2 r Hz/ MW.7429Hz/ MW Then the frequency bas terms are obtaned as B B f f 2 f f MW / Hz MW / Now we can comte the ACE n each area: P B f ( AP P ) B f Hz ACE f f ( ) (.484) MW 4
15 ACE 2 P 2 f 2 f ( AP2 P2 ) f 2f ( ) 4(.484) MW o what does ths mean? ACE ndcates that the generators n A receve a sgnal to decrease generaton by MW. ecall from page 9 that after prmary control acton, P M =8,677.4 MW. Wth a MW decrease, then P M =7,677.4 MW. ACE 2 ndcates that the generators n A2 do not change, so P M2 =4,322.6 MW. But now consder that prevous to the secondary control acton, we were at a steady state (wth steadystate frequency devaton of.484 so that f=6.484 Hz). Now the ACE sgnal has caused a decrease n A generaton by MW. Ths acton creates a loadgeneraton mbalance of ΔP=+ MW that wll cause unt prmary controllers to act n both areas. From eq. (8): 5
16 f P 6... Therefore K f.86*6. 484Hz.5( ).86 [2 42] so that f= = 6Hz. Then we comte the ncrease n generaton n each area per eq. (9). For Area : P P (2)( ) 322. M Therefore For Area 2: P P M , MW 2P (42)( ) 677. M Therefore P M 4, , MW 2 MW MW The exports for the two areas wll then be: AP =8,9,= MW AP 2 =4,4,=+ MW A summary of the stuaton s gven below, where we see that the fnal control acton has resulted n A generaton entrely compensatng 6
17 for the A load decrease of MW (wth area exports unchanged). Area Area 2 Load=9, MW Load=4, MW Gen=8, MW Gen=4, MW [] Interconnected Power ystem Dynamcs Tutoral, Electrc Power esearch Insttute EPI T7726, March
Section 8.3 Polar Form of Complex Numbers
80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the
More informationStructure and Drive Paul A. Jensen Copyright July 20, 2003
Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.
More informationUncertainty in measurements of power and energy on power networks
Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:
More information8.6 The Complex Number System
8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want
More informationTemperature. Chapter Heat Engine
Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the
More informationCOMPLEX NUMBERS AND QUADRATIC EQUATIONS
COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s nonnegatve Hence the equatons x, x, x + 7 0 etc are not
More informationOnesided finitedifference approximations suitable for use with Richardson extrapolation
Journal of Computatonal Physcs 219 (2006) 13 20 Short note Onesded fntedfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,
More informationEEE 241: Linear Systems
EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they
More informationPHYS 705: Classical Mechanics. Calculus of Variations II
1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary
More informationC/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1
C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned
More informationComplex Numbers, Signals, and Circuits
Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =
More informationInductance Calculation for Conductors of Arbitrary Shape
CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors
More informationPhysics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.
Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7 (a) no (b) yes (c) all te Queston 78 0 μc Queston 70, c;, a;, d; 4, b Problem 7 (a) Let be the current
More informationPulse Coded Modulation
Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITUT G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal
More informationNumerical Heat and Mass Transfer
Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06FnteDfference Method (Onedmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and
More informationIndeterminate pinjointed frames (trusses)
Indetermnate pnjonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all
More informationCanonical transformations
Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,
More information6.3.7 Example with Runga Kutta 4 th order method
6.3.7 Example wth Runga Kutta 4 th order method Agan, as an example, 3 machne, 9 bus system shown n Fg. 6.4 s agan consdered. Intally, the dampng of the generators are neglected (.e. d = 0 for = 1, 2,
More informationCHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE
CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng
More information1 Matrix representations of canonical matrices
1 Matrx representatons of canoncal matrces 2d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3d rotaton around the xaxs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3d rotaton around the yaxs:
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space
More informationComplex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)
Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For
More informationChapter 8. Potential Energy and Conservation of Energy
Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and nonconservatve forces Mechancal Energy Conservaton of Mechancal
More informationNUMERICAL DIFFERENTIATION
NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the
More informationGraph Reconstruction by Permutations
Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France emal: lle@ml.unvmrs.fr Computer
More informationA FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX
Hacettepe Journal of Mathematcs and Statstcs Volume 393 0 35 33 FORMUL FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIGONL MTRIX H Kıyak I Gürses F Yılmaz and D Bozkurt Receved :08 :009 : ccepted 5
More informationDifference Equations
Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1
More informationLecture 10 Support Vector Machines II
Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the faketest data; fxed
More informationPhysics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian1
P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the
More informationAdvanced Circuits Topics  Part 1 by Dr. Colton (Fall 2017)
Advanced rcuts Topcs  Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed
More informationFoundations of Arithmetic
Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an
More informationPressure Measurements Laboratory
Lab # Pressure Measurements Laboratory Objectves:. To get handson experences on how to make pressure (surface pressure, statc pressure and total pressure nsde flow) measurements usng conventonal pressuremeasurng
More informationTHE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD
Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7 www.amcm.pcz.pl pissn 999965 DOI:.75/jamcm.7.3. eissn 353588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS
More informationPhysics for Scientists & Engineers 2
Equpotental Surfaces and Lnes Physcs for Scentsts & Engneers 2 Sprng Semester 2005 Lecture 9 January 25, 2005 Physcs for Scentsts&Engneers 2 1 When an electrc feld s present, the electrc potental has a
More informationChapter  2. Distribution System Power Flow Analysis
Chapter  2 Dstrbuton System Power Flow Analyss CHAPTER  2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load
More informationTransfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system
Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng
More information4.2 Chemical Driving Force
4.2. CHEMICL DRIVING FORCE 103 4.2 Chemcal Drvng Force second effect of a chemcal concentraton gradent on dffuson s to change the nature of the drvng force. Ths s because dffuson changes the bondng n a
More informationPhysics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.
Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 31 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 34
More informationLinear Feature Engineering 11
Lnear Feature Engneerng 11 2 LeastSquares 2.1 Smple leastsquares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19
More informationAffine transformations and convexity
Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/
More informationModule 3: The WholeProcess Perspective for Thermochemical Hydrogen
"Thermodynamc Analyss of Processes for Hydrogen Generaton by Decomposton of Water" by John P. O'Connell Department of Chemcal Engneerng Unversty of Vrgna Charlottesvlle, VA 22944741 A Set of Energy Educaton
More informationChapter Newton s Method
Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve
More informationINDUCTANCE. RC Cicuits vs LR Circuits
INDUTANE R cuts vs LR rcuts R rcut hargng (battery s connected): (1/ )q + (R)dq/ dt LR rcut = (R) + (L)d/ dt q = e t/ R ) = / R(1  e (R/ L)t ) q ncreases from 0 to = dq/ dt decreases from / R to 0 Dschargng
More informationSIMPLE LINEAR REGRESSION
Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two
More informationCorrelation and Regression. Correlation 9.1. Correlation. Chapter 9
Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,
More informationECE559VV Project Report
ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUMRATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sumrate
More information1 GSW Iterative Techniques for y = Ax
1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn
More informationSolution Thermodynamics
Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs
More information1 Convex Optimization
Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,
More informationPhysics 5153 Classical Mechanics. Principle of Virtual Work1
P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal
More informationFormulas for the Determinant
page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use
More informationModule 9. Lecture 6. Duality in Assignment Problems
Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept
More informationCHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:
HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4
More informationFrequency dependence of the permittivity
Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but
More informationMA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials
MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have
More informationSolution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method
Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another wellknown teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222
More informationCOMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD
COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, MskolcEgyetemváros,
More informationImportant Instructions to the Examiners:
Summer 0 Examnaton Subject & Code: asc Maths (70) Model Answer Page No: / Important Instructons to the Examners: ) The Answers should be examned by key words and not as wordtoword as gven n the model
More information( ) = ( ) + ( 0) ) ( )
EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More informationPhysics 114 Exam 2 Fall 2014 Solutions. Name:
Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,
More information= z 20 z n. (k 20) + 4 z k = 4
Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5
More informationDummy variables in multiple variable regression model
WESS Econometrcs (Handout ) Dummy varables n multple varable regresson model. Addtve dummy varables In the prevous handout we consdered the followng regresson model: y x 2x2 k xk,, 2,, n and we nterpreted
More information2 Finite difference basics
Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T
More informationˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)
7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to
More informationLecture 16 Statistical Analysis in Biomaterials Research (Part II)
3.051J/0.340J 1 Lecture 16 Statstcal Analyss n Bomaterals Research (Part II) C. F Dstrbuton Allows comparson of varablty of behavor between populatons usng test of hypothess: σ x = σ x amed for Brtsh statstcan
More informationU.C. Berkeley CS294: Beyond WorstCase Analysis Luca Trevisan September 5, 2017
U.C. Berkeley CS94: Beyond WorstCase Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that
More informationProblem Set 9 Solutions
Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem
More information= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the righthand side of the system.
Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and
More informationHomework Assignment 3 Due in class, Thursday October 15
Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.
More informationOPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming
OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or
More informationExpected Value and Variance
MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or
More informationMore metrics on cartesian products
More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationLecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES
COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve
More informationEconomics 130. Lecture 4 Simple Linear Regression Continued
Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do
More informationBe true to your work, your word, and your friend.
Chemstry 13 NT Be true to your work, your word, and your frend. Henry Davd Thoreau 1 Chem 13 NT Chemcal Equlbrum Module Usng the Equlbrum Constant Interpretng the Equlbrum Constant Predctng the Drecton
More informationn α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0
MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector
More informationThe Order Relation and Trace Inequalities for. Hermitian Operators
Internatonal Mathematcal Forum, Vol 3, 08, no, 50757 HIKARI Ltd, wwwmhkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence
More informationLINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity
LINEAR REGRESSION ANALYSIS MODULE IX Lecture  31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased
More informationDeterminants Containing Powers of Generalized Fibonacci Numbers
1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 19 (2016), Artcle 1671 Determnants Contanng Powers of Generalzed Fbonacc Numbers Aram Tangboonduangjt and Thotsaporn Thanatpanonda Mahdol Unversty Internatonal
More informationLectures  Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix
Lectures  Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could
More informationMACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression
11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING
More informationMAE140  Linear Circuits  Fall 13 Midterm, October 31
Instructons ME140  Lnear Crcuts  Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator
More informationCHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR OF SEPARATION PRODUCTS OUTPUT DETERMINATION
Górnctwo Geonżynera Rok 0 Zeszyt / 006 Igor Konstantnovch Mladetskj * Petr Ivanovch Plov * Ekaterna Nkolaevna Kobets * Tasya Igorevna Markova * CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR
More informationDUE: WEDS FEB 21ST 2018
HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant
More informationOverTemperature protection for IGBT modules
OverTemperature protecton for IGBT modules Ke Wang 1, Yongjun Lao 2, Gaosheng Song 1, Xanku Ma 1 1 Mtsubsh Electrc & Electroncs (Shangha) Co., Ltd., Chna Room2202, Tower 3, Kerry Plaza, No.11 Zhongxns
More informationKernel Methods and SVMs Extension
Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general
More informationPHYSICS  CLUTCH CH 28: INDUCTION AND INDUCTANCE.
!! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t  Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways
More informationCOMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS
Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 63 ISSN: 97537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS
More informationFREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced,
FREQUENCY DISTRIBUTIONS Page 1 of 6 I. Introducton 1. The dea of a frequency dstrbuton for sets of observatons wll be ntroduced, together wth some of the mechancs for constructng dstrbutons of data. Then
More informationTHE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens
THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of
More informationDigital Signal Processing
Dgtal Sgnal Processng Dscretetme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over
More informationChapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems
Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons
More informationSee Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)
Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of nonnegatve nteger values Examples: number of drver route changes per week, the number of trp departure changes
More information,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.
Suppleentary Materal Dervaton of Eq. 1a. Assue j s a functon of the rate constants for the N coponent reactons: j j (k 1,,..., k,..., k N ( The dervatve wth respect to teperature T s calculated by usng
More informationx = , so that calculated
Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to
More informationEEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming
EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle
More information8.592J: Solutions for Assignment 7 Spring 2005
8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1
More informationResource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis
Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques
More information