Solution 1 for USTC class Physics of Quantum Information

Size: px
Start display at page:

Download "Solution 1 for USTC class Physics of Quantum Information"

Transcription

1 Soluton 1 for USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and Technology of Chna, Hefe, 3006, P.R. Chna 1. Descrbe and prove the no-clonng theorem. The no-clonng theorem states that t s mpossble to create an dentcal copy of an arbtrary unknown quantum state. The prove can be seen n the Box 1.1 on the page 53 of Quantum computon and quantum nformaton by Nelsen.. Prove that non-orthogonal states can t be relably dstngushed. The proof can be seen n the Box.3 on the page 87 of Quantum computon and quantum nformaton by Nelsen. 3. Wrte down the commutaton relatons and ant-commutaton relatons for the Paul matrces and prove them. The commutaton relatons: [σ, σ j ] = ϵ jk σ k, the ant-commutaton relatons: {σ, σ j } = δji, where, j, k = 1,, 3. The proof s omtted. 4. Prove the Cauchy Schwarz nequalty that for any two vectors v and w, v w v v w w. The proof can be seen n the Box.1 on the page 68 of Quantum computon and quantum nformaton by Nelsen.

2 5. Prove that for any -dmenson lnear operator A, A = 1 T raid T raσ k σ k, k=1 n whch σ k k = 1,, 3 are Paul matrces. Suppose that A = 3 j=0 a jσ j, where σ 0 = Id and σ k k = 1,, 3 are Paul matrces, then 3 Aσ k = a j σ j σ k, snce j=0 T rσ j σ k = δ jk, then so T raσ k = 3 3 T ra j σ j σ k = a j δ jk = a k, j=0 j=0 a k = 1 T raσ k, then we get that A = 1 T raid T raσ k σ k, k=1 6. Prove that an operator ρ s the densty operator assocated to some ensemble {p, ψ } f and only f t satsfes the condtons: a Trace condton ρ has trace equal to one b Postve condton ρ s a postve operator The proof can be seen n the Theorem.5 on the page 101 of Quantum computon and quantum nformaton by Nelsen. 7. Let ρ be a densty operator.

3 3 1. Show that ρ can be wrtten as ρ = I + r σ where r s a real three-dmensonal vector such that r 1.. Show that T rρ 1, wth equalty f and only f ρ s a pure state. 3. Show that a state ρ s a pure state f and only f r = Usng the concluson derved n the prevous problem, we get ρ = 1 T rρid T rρσ σ. By defnng r = T rρσ, = 1,, 3 and usng T rρ = 1, we get =1 ρ = I + r σ.. Defne ρ = p ϕ ϕ, then ρ = p ϕ ϕ p j ϕ j ϕ j = p p j ϕ ϕ ϕ j ϕ j,j = p ϕ ϕ j then T rρ = T r p ϕ ϕ = T r p ϕ ϕ = p Snce p = 1, p > 0, then p p = 1, then T rρ 1

4 4 wth equalty f and only f p = 1, p = p 3 =... = p n = 0 whch states ρ s a pure state, 3. Snce then usng we get that snce ρ = I + r σ, T rρ = 1 4 T ri + r σ + r. T ri =, T rσ = 0, = 1,, 3 T rρ = r T rρ 1 wth equalty f and only f ρ s a pure state, then r 1. r = 1 f and only f ρ s a pure state. 8. Consder an experment, n whch we prepare the state 0 wth the probablty C 0,and the state 1 wth the probablty C 1. How to descrbe ths type of quantum state? Compare the dfferences and smlartes between t wth the state C C 1 e θ 1. Ths state s a mxd state, whose densty matrx s ρ = C C = C C 1

5 5 The state ψ = C C 1 e θ 1 s a pure state, whose densty matrx s ρ = C C C 0 C 1 e θ C 0 C 1 e θ 1 0 C 0 C 0 C 1 e θ = C 0 C 1 e θ C 1 It s easy to see that her densty matrxes are dfferent. When measurng these two states, f 0 and 1 bass s used, the probabltes we get 0 and 1 are same; f other bass s used, the probabltes are dfferent. 9. Please prepare the polarzed optcal quantum state C C 1 e θ 1 from an ntal state 0, wth half wave plate and quarter-wave plate. To mplement arbtrary sngle qubt untary transformaton, how many wave plates are at least needed, and how to perform them? For a rotaton δ around an axs n the Bloch Sphere, the operator s gven by the Jones matrx cosθ snθ 1 0 cosθ snθ U δ θ = snθ cosθ 0 e δ snθ cosθ cos θ + e δ sn θ cosθ snθ e δ cosθ snθ = cosθ snθ e δ cosθ snθ e δ cos θ + sn θ n whch the 0 poston s defned as the poston where horzontal polarzed lght stays horzontal and vertcal polarzed stays vertcal or n other words the rotaton axs concurs wth the z-axs n the Bloch Sphere. A HWP rotates the state vector by δ = π. The operator for a HWP reads cosθ snθ U π θ = snθ cosθ A QWP rotates the state vector by δ = π. The operator for a QWP reads U π θ = cosθ snθ snθ 1 cosθ

6 6 Snce there are three parameters n the untary matrx Û except the global phase, two QWPs and one HWP are needed to mplement arbtrary sngle qubt untary transformaton. Solve the relaton Û = e δ U π γu πβu π α.e. cosα γ cosα β + γ snα + γ snα β + γ Û = e δ cosα β + γ snα γ + cosα + γ snα β + γ cosα + γ snα β + γ cosα β + γ snα γ cosα γ cosα β + γ + snα + γ snα β + γ we can get the angle of the QWPs and HWP. Let the quantum state go through QWP α, HWPβ and QWPγ one after another we can mplement arbtrary sngle qubt untary transformaton Û. For example, the angles for the wave plates for the 3 standard drectons are untary transformaton QWPα HWPβ QWPγ Î σˆ x π 4 π 4 π 4 ˆσ y π 4 0 π 4 ˆσ z π 4 0 π 4 To get the state C 0 0 +C 1 e θ 1, perform the untary transformaton Û = eδ U π γu πβu π α on the state 0. By solvng the relaton.e. C 0 = e δ U π γu πβu π α 1 C 1 e θ 0 C 0 C 1 e θ = e δ 1 cosα γ cosα β + γ snα + γ snα β + γ cosα β + γ snα γ + cosα + γ snα β + γ we can get the angles of the QWPs and HWP.

7 10. Show that r σ has egenvalues ±1, r = 1,and that the projectors onto the correspondng egenspaces are gven by P ± = I±r σ. Suppose that the normalzed egenvectors of r σ are ϕ + and ϕ,then So, then, and P + = 1 I + r σ r σ ϕ + = + ϕ + r σ ϕ = ϕ I = ϕ + ϕ + + ϕ ϕ = r σ ϕ + ϕ + ϕ ϕ r σ = ϕ + ϕ + ϕ ϕ = I ϕ ϕ ϕ ϕ = 1 I r σ = P 11. Suppose ψ and ϕ are two pure states of a composte quantum system wth components A and B, wth dentcal Schmdt coeffcents. Show that there are untary transformatons U on system A and V on system B such that ψ = U V ϕ. Snce ψ and ϕ has dentcal Schmdt coeffcents, then they can be wrte as ψ = λ A B Let U and V satsfy ϕ = λ a b j A = a a j A = U j a j B = b b j B = V j b 7

8 8 so U and V are untary transformatons on system A and on system B such that ψ = U V ϕ. 1. Prove that suppose ψ s a pure state of a composte system,ab. Then there exst orthonormal states A for system A,and orthonormal states B for system B such that ψ = λ A B, whereλ are non-negatve real numbers satsfyng λ = 1known as Schmdt coeffcents. The proof can be seen n the Theorem.7 on the page 109 of Quantum computon and quantum nformaton by Nelsen. 13. Suppose ABC s a three component quantum system. Show by example that there are quantum states ψ of such systems whch can not be wrtten n the form ψ = λ A B C where λ are real numbers, and A, B, C are orthonormal bases of the respectve systems. Consder the quantum state ψ = , presume that t can be wrtten n the form ψ can be rewrtten as ψ = λ λ ψ = 3 0 A BC A 00 BC. = λ 0 A µ BC + 1 λ 1 A ν BC

9 9 n whch, µ BC = BC ν BC = 00 BC so there exsts a untary matrx U such that 0 A = u 00 0 A + u 01 1 A 1 A = u 10 0 A + u 11 1 A then we get that µ BC = u 00 λ u 01 1 λ 1 1 ν BC = u 10 λ u 11 1 λ 1 1 whch means that µ BC and ν BC can be Schmdt decomposed smultaneously and have the same Schmdt coeffcents. Snce µ BC s the maxmally entangled state and ν BC s a product state, t s mpossble that they have the same Schmdt coeffcents. So ψ can not be wrtten n the form descrbed as above. 14. The ampltude dampng channel can be seen as a POVM performed to the system by the envroment. It s operators are [ ] [ 1 0 E 0 = 0 0 ] γ, E 1 =, 1 γ 0 0 where γ can be seen as a parameter to descrbe the dampng strength. Suppose the ntal state s [ ] a b ρ =, b c please gve the state through the channel.

10 10 ϵρ = E 0 ρe 0 + E 1ρE = 0 a b γ b c 0 0 γ a b 0 γ + 1 γ 0 0 b c 0 0 a + cγ 1 γb = 1 γb 1 γc See page 380 of Quantum computon and quantum nformaton by Nelsen for reference 15. Suppose a two partcle pure state s of the form Φ = j a j j. By defnng A j = a j, calculate the reduced densty matrces ρ A and ρ B. ρ AB = ϕ ϕ = a j a kl j kl jkl ρ A = T r B ρ AB = a j a kl k A l j B jkl = a j a kl k δ lj jkl = a j a kj k jk ρ B = T r A ρ AB = a j a kl j l B k A jkl = a j a kl j l δ k jkl = a j a l j l jl

11 11 Let A j = a j, then ρ A k = A j A kj = A j A jk = AA k j ρ B jl = A j A l = A T j A l = AT A jl so ρ A = AA ρ B = A T A j

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Solutions to Chapter 1 exercises

Solutions to Chapter 1 exercises Appendx S Solutons to Chapter exercses Soluton to Exercse.. Usng the result of Ex. A.5, we wrte don t forget the complex conjugaton where approprate! ψ ψ N alve ψ dead ψ N 4alve alve + alve dead dead alve

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008 1 Ph 19a/CS 19a Exercses Due: Wednesday 1 November 008.1 Whch state dd Alce make? Consder a game n whch Alce prepares one of two possble states: ether ρ 1 wth a pror probablty p 1, or ρ wth a pror probablty

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

2. Postulates of Quantum Mechanics. [Last revised: Friday 7 th December, 2018, 21:27]

2. Postulates of Quantum Mechanics. [Last revised: Friday 7 th December, 2018, 21:27] 2. Postulates of Quantum Mechancs [Last revsed: Frday 7 th December, 2018, 21:27] 24 States and physcal systems In the prevous chapter, wth the help of the Stern-Gerlach experment, we have shown the falure

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić 147 Kragujevac J. Math. 25 (2003) 147 154. CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE Jovanka Nkć Faculty of Techncal Scences, Unversty of Nov Sad, Trg Dosteja Obradovća

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

arxiv:quant-ph/ Jul 2002

arxiv:quant-ph/ Jul 2002 Lnear optcs mplementaton of general two-photon proectve measurement Andrze Grudka* and Anton Wóck** Faculty of Physcs, Adam Mckewcz Unversty, arxv:quant-ph/ 9 Jul PXOWRZVNDR]QDRODQG Abstract We wll present

More information

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems Explct constructons of all separable two-qubts densty matrces and related problems for three-qubts systems Y. en-ryeh and. Mann Physcs Department, Technon-Israel Insttute of Technology, Hafa 2000, Israel

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Quadratic speedup for unstructured search - Grover s Al-

Quadratic speedup for unstructured search - Grover s Al- Quadratc speedup for unstructured search - Grover s Al- CS 94- gorthm /8/07 Sprng 007 Lecture 11 001 Unstructured Search Here s the problem: You are gven a boolean functon f : {1,,} {0,1}, and are promsed

More information

(δr i ) 2. V i. r i 2,

(δr i ) 2. V i. r i 2, Cartesan coordnates r, = 1, 2,... D for Eucldean space. Dstance by Pythagoras: (δs 2 = (δr 2. Unt vectors ê, dsplacement r = r ê Felds are functons of poston, or of r or of {r }. Scalar felds Φ( r, Vector

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

arxiv: v2 [quant-ph] 29 Jun 2018

arxiv: v2 [quant-ph] 29 Jun 2018 Herarchy of Spn Operators, Quantum Gates, Entanglement, Tensor Product and Egenvalues Wll-Hans Steeb and Yorck Hardy arxv:59.7955v [quant-ph] 9 Jun 8 Internatonal School for Scentfc Computng, Unversty

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices Supplementary Informaton for Observaton of Party-Tme Symmetry n Optcally Induced Atomc attces Zhaoyang Zhang 1,, Yq Zhang, Jteng Sheng 3, u Yang 1, 4, Mohammad-Al Mr 5, Demetros N. Chrstodouldes 5, Bng

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

arxiv:quant-ph/ v1 16 Mar 2000

arxiv:quant-ph/ v1 16 Mar 2000 Partal Teleportaton of Entanglement n the Nosy Envronment Jnhyoung Lee, 1,2 M. S. Km, 1 Y. J. Park, 2 and S. Lee 1 School of Mathematcs and Physcs, The Queen s Unversty of Belfast, BT7 1NN, Unted Kngdom

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

An Inequality for the trace of matrix products, using absolute values

An Inequality for the trace of matrix products, using absolute values arxv:1106.6189v2 [math-ph] 1 Sep 2011 An Inequalty for the trace of matrx products, usng absolute values Bernhard Baumgartner 1 Fakultät für Physk, Unverstät Wen Boltzmanngasse 5, A-1090 Venna, Austra

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

Supplementary Information

Supplementary Information Supplementary Informaton Quantum correlatons wth no causal order Ognyan Oreshkov 2 Fabo Costa Časlav Brukner 3 Faculty of Physcs Unversty of Venna Boltzmanngasse 5 A-090 Venna Austra. 2 QuIC Ecole Polytechnque

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

arxiv: v1 [quant-ph] 6 Sep 2007

arxiv: v1 [quant-ph] 6 Sep 2007 An Explct Constructon of Quantum Expanders Avraham Ben-Aroya Oded Schwartz Amnon Ta-Shma arxv:0709.0911v1 [quant-ph] 6 Sep 2007 Abstract Quantum expanders are a natural generalzaton of classcal expanders.

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Matrix Mechanics Exercises Using Polarized Light

Matrix Mechanics Exercises Using Polarized Light Matrx Mechancs Exercses Usng Polarzed Lght Frank Roux Egenstates and operators are provded for a seres of matrx mechancs exercses nvolvng polarzed lght. Egenstate for a -polarzed lght: Θ( θ) ( ) smplfy

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

für Mathematik in den Naturwissenschaften Leipzig

für Mathematik in den Naturwissenschaften Leipzig ŠܹÈÐ Ò ¹ÁÒ Ø ØÙØ für Mathematk n den Naturwssenschaften Lepzg Bounds for multpartte concurrence by Mng L, Shao-Mng Fe, and Zh-X Wang Preprnt no.: 11 010 Bounds for multpartte concurrence Mng L 1, Shao-Mng

More information

7. Products and matrix elements

7. Products and matrix elements 7. Products and matrx elements 1 7. Products and matrx elements Based on the propertes of group representatons, a number of useful results can be derved. Consder a vector space V wth an nner product ψ

More information

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES TAKASHI ITOH AND MASARU NAGISA Abstract We descrbe the Haagerup tensor product l h l and the extended Haagerup tensor product l eh l n terms of

More information

Lecture notes for the course: Quantum Information

Lecture notes for the course: Quantum Information Lecture notes for the course: Quantum Informaton gven by Dr. Benn Reznk Sprng 003, Tel-Avv Unversty wrtten by Amr Segner last modfed: March 3rd 005 Caveat: These lecture notes were wrtten whle I was studyng

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

Generalized measurements to distinguish classical and quantum correlations

Generalized measurements to distinguish classical and quantum correlations Generalzed measurements to dstngush classcal and quantum correlatons. R. Usha Dev Department of physcs, angalore Unversty, angalore-560 056, Inda and. K. Rajagopal, Department of omputer Scence and enter

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

332600_08_1.qxp 4/17/08 11:29 AM Page 481

332600_08_1.qxp 4/17/08 11:29 AM Page 481 336_8_.qxp 4/7/8 :9 AM Page 48 8 Complex Vector Spaces 8. Complex Numbers 8. Conjugates and Dvson of Complex Numbers 8.3 Polar Form and DeMovre s Theorem 8.4 Complex Vector Spaces and Inner Products 8.5

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Quantum and Classical Information Theory with Disentropy

Quantum and Classical Information Theory with Disentropy Quantum and Classcal Informaton Theory wth Dsentropy R V Ramos rubensramos@ufcbr Lab of Quantum Informaton Technology, Department of Telenformatc Engneerng Federal Unversty of Ceara - DETI/UFC, CP 6007

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

PHZ 6607 Lecture Notes

PHZ 6607 Lecture Notes NOTE PHZ 6607 Lecture Notes 1. Lecture 2 1.1. Defntons Books: ( Tensor Analyss on Manfols ( The mathematcal theory of black holes ( Carroll (v Schutz Vector: ( In an N-Dmensonal space, a vector s efne

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Photons and Quantum Information. Stephen M. Barnett

Photons and Quantum Information. Stephen M. Barnett Photons and Quantum Informaton Stehen M. Barnett . bt about hotons. Otcal olarsaton 3. Generalsed measurements 4. State dscrmnaton Mnmum error Unambguous Maxmum confdence . bt about hotons Photoelectrc

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

WAVE PROPAGATION, REFLECTION AND TRANSMISSION IN CURVED BEAMS

WAVE PROPAGATION, REFLECTION AND TRANSMISSION IN CURVED BEAMS ICSV4 Carns Australa 9- July, 7 WAVE PROPAGATION, REFECTION AND TRANSMISSION IN CURVED BEAMS Seung-Kyu ee, Bran Mace and Mchael Brennan NVH Team, R&D Centre, Hankook Tre Co., td. -, Jang-Dong, Yuseong-Gu,

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

w ). Then use the Cauchy-Schwartz inequality ( v w v w ).] = in R 4. Can you find a vector u 4 in R 4 such that the

w ). Then use the Cauchy-Schwartz inequality ( v w v w ).] = in R 4. Can you find a vector u 4 in R 4 such that the Math S-b Summer 8 Homework #5 Problems due Wed, July 8: Secton 5: Gve an algebrac proof for the trangle nequalty v+ w v + w Draw a sketch [Hnt: Expand v+ w ( v+ w) ( v+ w ) hen use the Cauchy-Schwartz

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

arxiv:quant-ph/ Feb 2000

arxiv:quant-ph/ Feb 2000 Entanglement measures and the Hlbert-Schmdt dstance Masanao Ozawa School of Informatcs and Scences, Nagoya Unversty, Chkusa-ku, Nagoya 464-86, Japan Abstract arxv:quant-ph/236 3 Feb 2 In order to construct

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

A crash course in real-world quantum mechanics

A crash course in real-world quantum mechanics A crash course n real-world quantum mechancs Basc postulates for an solated quantum system Pure states (mnmum-uncertanty states) of a physcal system are represented by vectors n a complex Hlbert space.

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX Hacettepe Journal of Mathematcs and Statstcs Volume 393 0 35 33 FORMUL FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIGONL MTRIX H Kıyak I Gürses F Yılmaz and D Bozkurt Receved :08 :009 : ccepted 5

More information

e - c o m p a n i o n

e - c o m p a n i o n OPERATIONS RESEARCH http://dxdoorg/0287/opre007ec e - c o m p a n o n ONLY AVAILABLE IN ELECTRONIC FORM 202 INFORMS Electronc Companon Generalzed Quantty Competton for Multple Products and Loss of Effcency

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mt.edu 6.13/ESD.13J Electromagnetcs and Applcatons, Fall 5 Please use the followng ctaton format: Markus Zahn, Erch Ippen, and Davd Staeln, 6.13/ESD.13J Electromagnetcs and

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

On the symmetric character of the thermal conductivity tensor

On the symmetric character of the thermal conductivity tensor On the symmetrc character of the thermal conductvty tensor Al R. Hadjesfandar Department of Mechancal and Aerospace Engneerng Unversty at Buffalo, State Unversty of New York Buffalo, NY 146 USA ah@buffalo.edu

More information

Efficient, General Point Cloud Registration with Kernel Feature Maps

Efficient, General Point Cloud Registration with Kernel Feature Maps Effcent, General Pont Cloud Regstraton wth Kernel Feature Maps Hanchen Xong, Sandor Szedmak, Justus Pater Insttute of Computer Scence Unversty of Innsbruck 30 May 2013 Hanchen Xong (Un.Innsbruck) 3D Regstraton

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Numerical Properties of the LLL Algorithm

Numerical Properties of the LLL Algorithm Numercal Propertes of the LLL Algorthm Frankln T. Luk a and Sanzheng Qao b a Department of Mathematcs, Hong Kong Baptst Unversty, Kowloon Tong, Hong Kong b Dept. of Computng and Software, McMaster Unv.,

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Entanglement vs Discord: Who Wins?

Entanglement vs Discord: Who Wins? Entanglement vs Dscord: Who Wns? Vlad Gheorghu Department of Physcs Carnege Mellon Unversty Pttsburgh, PA 15213, U.S.A. Januray 20, 2011 Vlad Gheorghu (CMU) Entanglement vs Dscord: Who Wns? Januray 20,

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information