Supplemental document

Size: px
Start display at page:

Download "Supplemental document"

Transcription

1 Electronc Supplementary Materal (ESI) for Physcal Chemstry Chemcal Physcs. Ths journal s the Owner Socetes 01 Supplemental document Behnam Nkoobakht School of Chemstry, The Unversty of Sydney, Sydney, Australa S1 Dervaton of the electrostatc Hamltonan Ths secton s devoted to the evaluaton of the electrostatc effectve Hamltonan H es (.e. Eq. () of the text) for the trply degenerate electronc state T g n an octahedral system, whch has JT actve modes e g and t g wth = 1,. To the best of our knowledge, the dervaton of the electrostatc Hamltonan up to quadratc terms contanng blnear and couplng terms among JT actve modes were not reported n the lterature. To set up the electrostatc Hamltonan, we select the followng electronc bass set 1] ψ ξ = ηζf(r) ψ η = ξζf(r) ψ ζ = ξηf(r), (S1) where f(r) s an exponental or Gaussan radal functon. The electrostatc Hamltonan H es was expanded at the reference structure of the T g normal coordnates Q ǫ, Q θ, Q ξ, Q η and Q ζ for each JT actve mode up to second order ncludng all possble couplng between e g S1

2 and t g H es = =1 H (1) Q ǫ Q θ +H () Q +H () Q Q ǫ Q θ ] +H ǫ (1) 1 ǫ Q ǫ1 Q ǫ θ 1 θ Q θ1 Q θ ǫ θ 1 Q ǫ Q θ1 θ ǫ 1 Q θ Q ǫ1 + H (1) Q ξ +H η (1) Q η ζ Q ζ +H () Q +H η () Q η +H () ζ Q ζ =1 + H (1) ζ Q ξ Q ζ η Q ξ Q η η ζ Q η Q ζ ] Q ξ1 Q ξ Q η1 Q η Q ζ1 Q ζ ξ 1 ζ Q ξ1 Q ζ ξ ζ 1 Q ξ Q ζ1 ξ 1 η Q ξ1 Q η ξ η 1 Q ξ Q η1 η 1 ζ Q η1 Q ζ η ζ 1 Q ζ1 Q η, ( H es Q τ )0 ( ( where H τ (1) H = es Q τ, H τ )0 () = 1 and H (1) H τ τ j = es that the superscrpt τ,j {,j,,j,,j,η,j,ζ,j }, where and j are 1 and. (S) Q τ Q τj )0. Note NextstepstocalculatethematrxelementsofoperatorsoftypesH τ (1) Q τ, H τ () Q τ and H τ (1) τ j Q τ Q τj usng electronc bass set of T g of Eq. (S1). These matrx elements transform as do the components of the rreducble representaton T g of the symmetry pont group O h, namely, ξ, η and ζ. Snce Q τ, Q τ and Q τ Q τj do not operate on the electronc bass sets, t s requred to calculate matrx elements of H τ (1) τ j, H τ () and H τ (1) τ j. Q τ, Q τ Q τj and Q τ are consdered as multplyng factors. For the evaluaton of matrx elements, we have used the method descrbed n Ref. ]. Snce operators H τ (1) τ j, H τ (1) τ j have the same transformaton propertes as Q τ, Q τ and Q τ Q τj, we and H () τ should fnd rreps and ther components accordng to whch the operators Q τ and Q τ Q τj transform. Ths can be understood easly by usng the formula of the rreducble products of operators Q τ and Q τj ] M c γ := (Q a Q b ) c γ = λ(c) 1/ αβ V a b c Q a α β γ αq b β, (S) where := means equal by defnton. Note that operators Q a α and Q b β transformasdocomponentsαandβ ofrreducblerepresentatonsaandb, respectvely, V coeffcents correspondng to the the octahedral group a b c α β γ O h can be found n Ref. ]. λ(c) s the dmenson of rreducble representatons c and the sum s over all possble components of a and b. For example, S

3 n the case of trgonal coordnates Q ξ, Q η and Q ζ, the sum s over the components trply degenerate rrep T g of symmetry group O h. Note that f c a b, Eq. (S) spans the rrep c, otherwse s zero. By employng the method descrbed above, we proceed to derve the T g (t g +t g ) part of JT problem. For other parts, the same method s applcable. To handle ths problem, we frst consder the lnear terms of the t g components of Eq. (S). In ths case, H τ (1) s transform as T g. Snce operators H τ (1) s have the same transformaton propertes as Q τ and the coordnate Q τ s transforms accordng to the components of ξ, η and ζ, thus non-zero matrx elements of lnear JT Hamltonan read ψ µ Q τ ψ ν = κ T ǫ αµν Q τ, (S4) where κ T s constant and ǫ τµν s the Lev-Cvta symbol, and µ, ν and τ {ξ, η, ζ}. Therefore, the non-zero matrx elements are ψ ξ Q ζ ψ η = κ T Q ζ (S5) In the next stage, we should consder blnear terms such as H (1) α β Q α Q β. We need to know the transformaton propertes of Q τ Q τ. Ths can be understood by usng Eq. (S). Therefore, we have M T g = Tg T V g T g Q T g η η ζ Q T g ζ = ] Q T g η Q T g ζ M T g η = Tg T V g T g Q T g ζ η Q T g ζ = ] Q T g ζ Q T g M T g ζ = Tg T V g T g Q T g η ζ Q T g η = ] Q T g Q T g η (S) Tg T Coeffcents lke V g T g n Eq. (S) can be found n Ref. ]. ζ η For operators such as H (1) α β j Q α Q βj, we have smlar stuatons. Eq. (S) tells that the correspondng matrx elements of operators Q T g η Q T g ζ, Q T g Q T g ζ and Q T g Q T g η n the dabatc electronc bass ξ, η and ζ are proportonal to M T g, M T g η and M T g ζ, respectvely. Usng ths knowledge and the electronc bass S

4 set of Eq. (S1) help to evaluate of the matrx elements as follows, Tg T ψ µ H α β Q α Q β ψ ν = T g H α β T g V g T g Q γ α β α Q β = T g H α β T g ( 1 ) Q α Q β }{{} B = B Q α Q β (S7) We have used the followng relaton n the evaluaton of Eq. (S7) ]: Tg T V g T g = 1 ǫ γ α β γαβ (S8) If we employ Eq. (S7), the matrx elements n the dabatc electronc bass ψ ξ, ψ η and ψ ζ read, ψ ξ H (1) η Q ξ Q η ψ η = B Q ξ Q η ψ ξ H (1) ζ Q ξ Q ζ ψ ζ = B Q ξ Q ζ ψ η H (1) η ζ Q η Q ζ ψ ζ = B Q η Q ζ (S9) Usng Eq. (S9) leads to the followng results: ψ ξ H ξ1 η Q ξ1 Q η +H ξ η 1 Q ξ Q η1 ψ η = b T (Q ξ1 Q η +Q ξ Q η1 ) ψ ξ H ξ1 ζ Q ξ1 Q ζ +H ξ ζ 1 Q ξ Q ζ1 ψ ζ = b T (Q ξ1 Q ζ +Q ξ Q ζ1 ) ψ η H η1 ζ Q η1 Q ζ +H ζ1 η Q ζ1 Q η ψ ζ = b T (Q η1 Q ζ +Q ζ1 Q η ), (S10) where coeffcent b T s proportonal to T g H α β T g. Fnally, we should evaluate the correspondng matrx elements of the quadratc terms n Eq.(S). Strctlyspeakng,wearenterestedntermssuchasH α () Q α andh α (1) α j Q α Q αj. For the quadratc terms, we should fnd rreducble representatons of O h pont group of the operators H α () and H α (1) α j. Let consder the rreps E g and A 1g and ther components and use Eq. (S). Thus, we have = 1 Qζ Q ξ Q η ] = 1 Qξ Q η ] M A 1g = 1 Qξ +Q η +Q ζ ] (S11) S4

5 Solvng Eq. (S11) n terms of, Mǫ Eg and M A 1g yelds Q ξ = 1 M A 1g Q η = 1 M A 1g 1 1 Q ζ = + 1 M A 1g. (S1) We can repeat ths calculaton for term such as H α (1) α j and summarze the results as follows, Q ξ1 Q ξ = MA 1g 1 MEg + 1 MEg Q η1 Q η = Q ζ1 Q ζ = MA 1g MA 1g + 1 MEg MEg 1 MEg (S1) where can be chosen 1 or. Eqs. (S1) and (S1) ndcate that the correspondng matrx elements of the operators H α () Q α and H α (1) α j Q α Q αj are proportonal to,mǫ Eg and M A1g. Thus, non-zero matrx elements of the quadratc terms of Eq. (S) reads ψ ξ H () Q ξ +H () η Q η +H () ζ Q ζ ψ ξ = A (Q ξ Q η Q ζ )+ ω T (Q ξ +Q η +Q ζ ) ψ η H () Q ξ +H () η Q η +H () ζ Q ζ ψ η = A (Q η Q ξ Q ζ )+ ω T (Q ξ +Q η +Q ζ ) ψ ζ H () Q ξ +H η () Q η +H () ζ Q ζ ψ ζ = A (Q ζ Q ξ Q η )+ ω T (Q ξ +Q η +Q ζ ) (S14a) ψ ξ H (1) Q ξ1 Q ξ Q η1 Q η Q ζ1 Q ζ ψ ξ = a T 1 (Q ξ1 Q ξ +Q η1 Q η +Q ζ1 Q ζ )+ +a T (Q ξ1 Q ξ Q η1 Q η Q ζ1 Q ζ ) ψ η H (1) Q ξ1 Q ξ Q η1 Q η Q ζ1 Q ζ ψ η = a T 1 (Q ξ1 Q ξ +Q η1 Q η +Q ζ1 Q ζ )+ +a T (Q η1 Q η Q ξ1 Q ξ Q ζ1 Q ζ ) ψ ζ H (1) Q ξ1 Q ξ Q η1 Q η Q ζ1 Q ζ ψ ζ = a T 1 (Q ξ1 Q ξ +Q η1 Q η +Q ζ1 Q ζ )+ S5 +a T (Q ζ1 Q ζ Q ξ1 Q ξ Q η1 Q η ) (S14b)

6 Here,coeffcentsA areproportonalto T g H () Ω T g. Notethatcoeffcents a T T g H (1) Ω Ω j T g where Ω {,η,ζ } and Ω j {ξ j,η j,ζ j } wth,j = 1,. We used followng relatons ] Eg T V g T g Eg T = V g T g = 1 θ ξ ξ θ η η V Eg T g T g = 1 θ ζ ζ A1g b b V = λ(b) 1/ δ β γ βγ (S15) where λ(b) s the dmenson of rreducble representaton b and δ refers to the Kronecker delta. So far, we dscussed how to calculate the matrx elements for the the T g (t g + t g ) part of the JT Hamltonan; Eq. (S4) refers to the matrx elements for lnear JT Hamltonan, Eqs. (S9), (S10) and (S14b) refer to the matrx elements of the blnear terms. Fnally, Eq. (S14a) are the matrx elements for the quadratc terms of the JT Hamltonan. If one follows the same computatonal method for the T g e g part of JT Hamltonan, the correspondng matrx Hamltonans for ths part JT Hamltonan wll be obtaned. For ths part of JT Hamltonan, we dd not present the detals of calculatons and restrct ourselves to the fnal results for matrx elements. In ths way, the electrostatc Hamltonan H es can be obtaned by the aforementoned matrx elements. The fnal form of H es was wrtten down n Appendx A. S Potental energy surfaces References 1] F. A. Cotton, Chemcal Applcatons of Group Theory, ( Wley- Interscence, New York 1971). ] J. S. Grffth, The Irreducble Tensor Method for Molecular Symmetry Groups (PRENTICE-HALL, INC, New Jersy, 19). S

7 Fgure S1: Adabatc PESs of the T g electronc state of W(CO) +. the both components of e g modes and components of t g modes. The computed DFT data and the correspondng ftted lnes are represented by crcles and sold lnes, respectvely. S7

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

CIVL 8/7117 Chapter 10 - Isoparametric Formulation 42/56

CIVL 8/7117 Chapter 10 - Isoparametric Formulation 42/56 CIVL 8/77 Chapter 0 - Isoparametrc Formulaton 4/56 Newton-Cotes Example Usng the Newton-Cotes method wth = ntervals (n = 3 samplng ponts), evaluate the ntegrals: x x cos dx 3 x x dx 3 x x dx 4.3333333

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

The exponential map of GL(N)

The exponential map of GL(N) The exponental map of GLN arxv:hep-th/9604049v 9 Apr 996 Alexander Laufer Department of physcs Unversty of Konstanz P.O. 5560 M 678 78434 KONSTANZ Aprl 9, 996 Abstract A fnte expanson of the exponental

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

SINGLE OUTPUT DEPENDENT QUADRATIC OBSERVABILITY NORMAL FORM

SINGLE OUTPUT DEPENDENT QUADRATIC OBSERVABILITY NORMAL FORM SINGLE OUTPUT DEPENDENT QUADRATIC OBSERVABILITY NORMAL FORM G Zheng D Boutat JP Barbot INRIA Rhône-Alpes, Inovallée, 655 avenue de l Europe, Montbonnot Sant Martn, 38334 St Ismer Cedex, France LVR/ENSI,

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Errata to Invariant Theory with Applications January 28, 2017

Errata to Invariant Theory with Applications January 28, 2017 Invarant Theory wth Applcatons Jan Drasma and Don Gjswjt http: //www.wn.tue.nl/~jdrasma/teachng/nvtheory0910/lecturenotes12.pdf verson of 7 December 2009 Errata and addenda by Darj Grnberg The followng

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim Causal Damonds M. Aghl, L. Bombell, B. Plgrm Introducton The correcton to volume of a causal nterval due to curvature of spacetme has been done by Myrhem [] and recently by Gbbons & Solodukhn [] and later

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS Unversty of Oulu Student Laboratory n Physcs Laboratory Exercses n Physcs 1 1 APPEDIX FITTIG A STRAIGHT LIE TO OBSERVATIOS In the physcal measurements we often make a seres of measurements of the dependent

More information

Least squares cubic splines without B-splines S.K. Lucas

Least squares cubic splines without B-splines S.K. Lucas Least squares cubc splnes wthout B-splnes S.K. Lucas School of Mathematcs and Statstcs, Unversty of South Australa, Mawson Lakes SA 595 e-mal: stephen.lucas@unsa.edu.au Submtted to the Gazette of the Australan

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter J. Basc. Appl. Sc. Res., (3541-546, 01 01, TextRoad Publcaton ISSN 090-4304 Journal of Basc and Appled Scentfc Research www.textroad.com The Quadratc Trgonometrc Bézer Curve wth Sngle Shape Parameter Uzma

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

7. Products and matrix elements

7. Products and matrix elements 7. Products and matrx elements 1 7. Products and matrx elements Based on the propertes of group representatons, a number of useful results can be derved. Consder a vector space V wth an nner product ψ

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Programming Project 1: Molecular Geometry and Rotational Constants

Programming Project 1: Molecular Geometry and Rotational Constants Programmng Project 1: Molecular Geometry and Rotatonal Constants Center for Computatonal Chemstry Unversty of Georga Athens, Georga 30602 Summer 2012 1 Introducton Ths programmng project s desgned to provde

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Group Theory in Physics

Group Theory in Physics Group Theory n Physcs Lng-Fong L (Insttute) Representaton Theory / 4 Theory of Group Representaton In physcal applcaton, group representaton s mportant n deducng the consequence of the symmetres of the

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 ISSN: 2277-375 Constructon of Trend Free Run Orders for Orthogonal rrays Usng Codes bstract: Sometmes when the expermental runs are carred out n a tme order sequence, the response can depend on the run

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

2 More examples with details

2 More examples with details Physcs 129b Lecture 3 Caltech, 01/15/19 2 More examples wth detals 2.3 The permutaton group n = 4 S 4 contans 4! = 24 elements. One s the dentty e. Sx of them are exchange of two objects (, j) ( to j and

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory 5.03, Inorganc Chemstry Prof. Danel G. Nocera Lecture May : Lgand Feld Theory The lgand feld problem s defned by the followng Hamltonan, h p Η = wth E n = KE = where = m m x y z h m Ze r hydrogen atom

More information

Homework & Solution. Contributors. Prof. Lee, Hyun Min. Particle Physics Winter School. Park, Ye

Homework & Solution. Contributors. Prof. Lee, Hyun Min. Particle Physics Winter School. Park, Ye Homework & Soluton Prof. Lee, Hyun Mn Contrbutors Park, Ye J(yej.park@yonse.ac.kr) Lee, Sung Mook(smlngsm0919@gmal.com) Cheong, Dhong Yeon(dhongyeoncheong@gmal.com) Ban, Ka Young(ban94gy@yonse.ac.kr) Ro,

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

arxiv:quant-ph/ Jul 2002

arxiv:quant-ph/ Jul 2002 Lnear optcs mplementaton of general two-photon proectve measurement Andrze Grudka* and Anton Wóck** Faculty of Physcs, Adam Mckewcz Unversty, arxv:quant-ph/ 9 Jul PXOWRZVNDR]QDRODQG Abstract We wll present

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Solutions to Problems Fundamentals of Condensed Matter Physics

Solutions to Problems Fundamentals of Condensed Matter Physics Solutons to Problems Fundamentals of Condensed Matter Physcs Marvn L. Cohen Unversty of Calforna, Berkeley Steven G. Loue Unversty of Calforna, Berkeley c Cambrdge Unversty Press 016 1 Acknowledgement

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

R n α. . The funny symbol indicates DISJOINT union. Define an equivalence relation on this disjoint union by declaring v α R n α, and v β R n β

R n α. . The funny symbol indicates DISJOINT union. Define an equivalence relation on this disjoint union by declaring v α R n α, and v β R n β Readng. Ch. 3 of Lee. Warner. M s an abstract manfold. We have defned the tangent space to M va curves. We are gong to gve two other defntons. All three are used n the subject and one freely swtches back

More information

CONDUCTORS AND INSULATORS

CONDUCTORS AND INSULATORS CONDUCTORS AND INSULATORS We defne a conductor as a materal n whch charges are free to move over macroscopc dstances.e., they can leave ther nucle and move around the materal. An nsulator s anythng else.

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Supporting Information Part 1. DFTB3: Extension of the self-consistent-charge. density-functional tight-binding method (SCC-DFTB)

Supporting Information Part 1. DFTB3: Extension of the self-consistent-charge. density-functional tight-binding method (SCC-DFTB) Supportng Informaton Part 1 DFTB3: Extenson of the self-consstent-charge densty-functonal tght-ndng method SCC-DFTB Mchael Gaus, Qang Cu, and Marcus Elstner, Insttute of Physcal Chemstry, Karlsruhe Insttute

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

MAGNUM - A Fortran Library for the Calculation of Magnetic Configurations

MAGNUM - A Fortran Library for the Calculation of Magnetic Configurations CRYO/6/34 September, 3, 6 MAGNUM - A Fortran Lbrary for the Calculaton of Magnetc Confguratons L. Bottura Dstrbuton: Keywords: P. Bruzzone, M. Calv, J. Lster, C. Marnucc (EPFL/CRPP), A. Portone (EFDA-

More information