# MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11

Size: px
Start display at page:

Transcription

1 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY Examples I did some examples and explained the theory at the same time roots of unity. Let L = Q(ζ) where ζ = e 2πi/5 is a primitive 5th root of unity. Theorem 3.1. For any prime p, is irreducible over Q. f(x) = X p 1 + X p X + 1 Proof. When you plug in X = Y + 1 you get f(y +1) = (Y + 1)p 1 Y which is irreducible by Eisenstein. = Y p 1 +py p 2 + ( ) p 2 Y p ( ) p Y +p 2 As I pointed out earlier, Q(ζ) is the splitting field of the polynomial f(x) for p = 5 since it contains all of the roots (conjugates of ζ): ζ, ζ 2, ζ 3, ζ 4. Since the Galois group G = Gal(Q(ζ)/Q) is a finite group of order equal to the degree of the extension, it has order 4. So, it is either Z/4 or Z/2 Z/2. We also know by Lemma 2.3 (and Lemma 2.9 in more general cases where we need to adjoin more than one root to get the splitting field) that the Galois group acts transitively on the roots. So, there is an element σ G so that σ(ζ) = ζ 2. But, σ is an automorphism of the field. So, σ(ζ 2 ) = σ(ζ) 2 = ζ 4, σ(ζ 3 ) = (ζ 2 ) 3 = ζ and σ(ζ 4 ) = ζ 3. As a permutation, σ = (1243) is a 4-cycle. So, the Galois group is cyclic of order 4. The group Z/4 has exactly one nonzero proper subgroup 2Z/4 which has 2 elements. These elements are 1, σ 2. The automorphism σ 2 is complex conjugation. It switches ζ, ζ 4 and ζ 2, ζ 3. According to the Galois correspondence, this subgroup corresponds to the subfield fixed by complex conjugation, namely the real subfield. So the unique intermediate fields is Q(ζ) R = Q(ζ + ζ 4 ) Galois correspondence. Using the theorems that we already proved, the Galois correspondence is easy to derive. The first step is to show that intermediate fields give Galois extensions. Lemma 3.2. If L is a separable extension of K and E is an intermediate field, i.e., K E L, then L is separable over E.

2 12 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY Proof. Let a L, a / E, f(x) = irr(a, E). We need to show that f(x) has no multiple roots. Let g(x) = irr(a, K). Then g(x) K[X] E[X] with g(a) = 0. Therefore, g(x) (f(x)) since this is the ideal of all polynomials in E[X] of which a is a root. Therefore, g(x) = f(x)h(x) for some h(x) E[X]. The assumption that L/K is separable implies that g has distinct roots. But the roots of f are roots of g. So, they are also distinct. Theorem 3.3. If L is a Galois extension of K and E is an intermediate field then L is Galois over E. Proof. We just showed that L/E is separable. So, we just need to show that any embedding φ : L E = K has image φ(l) = L. But, φ being the identity on E implies that it is the identity on K E. So, L being Galois over K implies that φ(l) = L. Lemma 3.4. If K E L then L : K = L : E E : K. Proof. Suppose that L : E = n. Then L has a basis x 1,, x n over E. This means that, for any a L, there are unique elements e i E so that a = e i x i. If E : K = m, then E has a basis y 1,, y m over K. This implies that every element of E, for example e i, is a K-linear combination of the elements y j. So e i = a ij y j for some a ij K. Claim: {x i y j } is a basis for L over K. We already know that this set spans L since a = e i x i = a ij x i y j. This set is also linearly independent since aij x i y j = 0 ( j) a ij x i = 0 ( ij)a ij = 0. So, L : K = nm = L : E E : K. Theorem 3.5 (Galois correspondence). Suppose L is a Galois extension of K with Galois group G. Then there is a 1-1 correspondence between the intermediate fields K E L and subgroups H G. The correspondence maps E to H = Gal(L/E) and it maps H G to the fixed field L H = {a L σ(a) = a σ H}.

3 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 13 Proof. It follows from the definitions (and Theorem 3.3) that H = Gal(L/E) is a subgroup of G = Gal(L/K). And it is straightforward to show that L H is an intermediate field. The key point is to show that E = L H. Since H = Gal(L/E) fixes E by its definition, E L H. So, it suffices to show that the degree of this extension is 1, i.e., L H : E = 1. But, L H is an intermediate field. So, L/L H is a Galois extension. The degree of this extension is the size of the Galois group which I claim is Gal(L/L H ) = H = Gal(L/E). The reason is that the elements of H = Gal(L/E) fix L H by definition of L H. So, H Gal(L/L H ) And any element of Gal(L/L H ) will also fix E L H. So, Gal(L/L H ) H. So, they are equal and their degrees are the same. So, the formula L : E = L : L H L H : E implies that L H : E = 1. So L H = E. The other part of the proof I did not say in class: We should take an arbitrary subgroup H of G = Gal(L/K) and show that Gal(L/L H ) = H. Let S = Gal(L/L H ). Then S contains H and S = L : L H = n. So, all we need to do is to show that H contains at least n elements, i.e., L : L H H. For this I need to use the primitive element theorem which I mentioned earlier. It says that L is generated by one element: L = L H (a). Let C = {σ(a) σ H}. Then C is a subset of L having H number of elements which is invariant under the action of H. This implies that f(x) = c C(X c) is invariant under the action of H, i.e., f(x) L H [X]. Since f(a) = 0, f(x) is a multiple of irr(a, L H ). So, L : L H = deg(irr(a, L H )) deg(f) = C H which is what we needed to prove. Theorem 3.6. If L is a finite separable extension of K then L = K(a) for some a L. Proof. First we can exclude the case where K is finite because, in that case, the units of L form a cyclic group generated by one element. So, assume K =. Let a L be an element of maximal degree, say n. Then I claim that L = K(a). Otherwise there is an element b L, b / K(a). Then

4 14 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY K(a, b) : K = m > n. Let φ 1, φ 2,, φ m : K(a, b) K be the distinct embeddings of K(a, b) into K over K. Then I claim that there is an element x K so that φ i (a)x + φ i (b) = φ i (xa + b) are all distinct. The reason is that the polynomial p(x) = i<j ([φ i (a)x + φ i (b)] [φ j (a)x + φ j (b)]) is nonzero (each factor being nonzero) and therefore there is an x K so that p(x) 0 (since p(x) has only a finite number of roots and K is infinite). But then, ax + b L has degree at least m > n which is a contradiction quadratic extensions. Suppose that L is a degree 2 extension of K. Then L = K(a) and the irreducible polynomial of a is f(x) = X 2 + bx + c. Suppose that char(k) 2. Then the roots of this polynomial are b ± b 2 4c 2 and a is one of these roots. Since b, 1/2 K, the extension K(a) is equal to K(2a + b) = K( b 2 4c) = K( ). Definition 3.7. The discriminant of a polynomial f(x) is equal to the sum of squares of differences between the roots: = δ 2 where δ = i<j(α i α j ). Note that δ is only well defined up to sign. Theorem 3.8. If char(k) 2, every quadratic extension of K has the form L = K( D) for some D K, D / K 2. The irreducible polynomial of D is X 2 D which has two distinct roots ± D both of which lie in K( D). Therefore, K( D) is a Galois extension of K with Galois group Z/2.

5 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY cubic extensions. Now suppose that L is a cubic (degree 3) extension of K and char(k) 2, 3. Then L = K(α). Suppose that f(x) = irr(α, K). Then there are two possibilities: (1) L is the splitting field of f(x). (2) f(x) factors as f(x) = (X α)g(x) where g(x) is irreducible over L. In the first case, L is a Galois extension of K and the Galois group is Z/3. In the second case, the splitting field of f(x) is L(β) = K(α, β) where β is a root of g(x). Since g(x) is quadratic, K(α, β) : K(α) = 2 and K(α, β) : K = K(α, β) : K(α) K(α) : K = 2 3 = 6. The Galois group Gal(K(α, β)/k) is the symmetric group on 3 letters. This follows from the following observation. Theorem 3.9. The Galois group of the splitting field of a polynomial f(x) is a subgroup of the group of permutations of the roots of f(x). Proof. I said in class that this is obvious. That is because the splitting field L of f(x) is generated by the roots of f(x) by definition: L = K(α 1,, α n ) and any automorphism φ of L over K is determined by its effect on the these generators. Furthermore, φ must take roots to roots since it is a homomorphism which fixes the coefficients of f(x). So, φ permutes the roots of f(x) and is determined by this permutation. In terms of permutation groups the two cases are (1) G = A 3 = (123) the alternating group since this is the only subgroup of S 3 with 3 elements. (2) G = S 3. We discussed the role of the discriminant: = δ 2 and the fact that δ is alternating in the sense that it changes sign if you switch two of the roots. Lemma δ = i<j (α j α i ) has the property that it changes sign if two of the roots are switched. In fact, for any permutation σ S n we have: (α σ(j) α σ(i) ) = sgn(σ)δ. i<j

6 16 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY Proof. It suffices to take the case where σ is a transposition of consecutive integers: σ = (i, i + 1). In that case, the factor α i+1 α i changes sign and all other factors remain the same. Corollary δ L An. Theorem Let f(x) be an irreducible cubic polynomial over K with discriminant K. Assume char(k) 2, 3. Then the splitting field of f(x) has degree 3 over K if and only if δ = K. Proof. In class we figured out that one direction is clear: If the degree of splitting field is 3 then the Galois group is A 3 and δ L A 3 = K. As Roger pointed out after class, the converse is also easy: If the splitting field has degree 6 and the Galois group is S 3 then δ is not an element of K = L S 3 since it is not fixed by the action of S 3! 3.5. Vandermonde. This product δ is also the sign of the Vandermonde determinant: α 1 α 2 α 3 α n δ = det α1 2 α2 2 α3 2 αn α1 n 1 α2 n 1 α3 n 1 αn n 1 The proof is by induction on n. Let X = α n. Then, the Vandermonde determinant, call it V n, is a polynomial in X of degree n 1. If α n = α i for some i < n then the determinant of the matrix is zero. So, α 1, α 2,, α n 1 are the roots of the polynomial. So: n 1 V n = C (X α i ) i=1 where C must be the leading coefficient, i.e., C = V n 1 is the smaller Vandermonde which we know by induction: V n 1 = (α j α i ). Multiplying these we get n 1 j>i 1 n 1 V n = V n 1 (X α i ) i=1 which gives the formula we wanted when X = α n.

7 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY α = We computed the irreducible polynomial of this element by squaring it twice: So, α 2 = x(α 2 5) 2 = α 4 10α = 4 6 = 24 f(x) = irr(α, Q) = X 4 10X This polynomial is irreducible over Q because it is irreducible over Z. This in turn follows from that observation that, if f(x) factors over Z, it must be as a product of two quadratic terms. This would imply that two of the roots ± 2 ± 3 have both product and sum equal to an integer. But that is not so. I pointed out that sums of these roots give: ( 2 + 3) + ( 2 3) = 2 2 ( 2 + 3) + ( 2 + 3) = 2 3 This means that the splitting field of f(x) contains 2 and 3. And conversely, ± 2 ± 3 L = Q( 2, 3). So, L must the splitting field of f(x). Questions (1) What is the Galois group Gal(L/Q)? (2) Find all subgroups of G. (3) What are the corresponding subfields of L? (1) Gal(L/Q) We know that the Galois group has 4 elements. So, it must be abelian (any group of order p 2 is abelian). So, it is either Z/4 or Z/2 Z/2. The group Z/4 has only one nontrivial proper subgroup, 2Z/4. By the Galois correspondence this would mean there is only one intermediate field. But we have at least three intermediate fields: So, Gal(L/Q) = Z/2 Z/2. Q( 2), Q( 3), Q( 6). (2) Subgroups of Gal(L/Q). This group has three subgroups of order 2. These must correspond to the three obvious intermediate fields list above. The question is: What is the correspondence?

8 18 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY The elements of the Galois group are: σ, τ, στ, 1 where σ, τ are defined by: σ( 2) = 2, σ( 3) = 3, τ( 3) = 3, τ( 2) = 2, στ( 2) = 2, στ( 3) = 3. To prove this, use the fact that the Galois group acts transitively on the set of roots of f(x). Then σ, τ, στ are the elements Gal(Q(α)/Q) which send α = to σ(α) = 2 + 3, τ(α) = 2 3, στ(α) = α. (3) Corresponding intermediate fields. Since σ, τ, στ fix 3, 2, 6, resp., we have: Gal(Q(α)/Q( 2)) = τ Gal(Q(α)/Q( 3)) = σ Gal(Q(α)/Q( 6)) = στ.

### Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

Galois Theory TCU Graduate Student Seminar George Gilbert October 201 The coefficients of a polynomial are symmetric functions of the roots {α i }: fx) = x n s 1 x n 1 + s 2 x n 2 + + 1) n s n, where s

### but no smaller power is equal to one. polynomial is defined to be

13. Radical and Cyclic Extensions The main purpose of this section is to look at the Galois groups of x n a. The first case to consider is a = 1. Definition 13.1. Let K be a field. An element ω K is said

### GALOIS THEORY AT WORK

GALOIS THEORY AT WORK KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are determined by their

### Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

### Math 121 Homework 6 Solutions

Math 11 Homework 6 Solutions Problem 14. # 17. Let K/F be any finite extension and let α K. Let L be a Galois extension of F containing K and let H Gal(L/F ) be the subgroup corresponding to K. Define

### Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13

Extension fields II Sergei Silvestrov Spring term 2011, Lecture 13 Abstract Contents of the lecture. Algebraic extensions. Finite fields. Automorphisms of fields. The isomorphism extension theorem. Splitting

### The following results are from the review sheet for the midterm.

A. Miller M542 Galois Theory Spring 2000 For the material on Galois theory we will be assuming that the fields all have characteristic zero. When we get to solvability by radicals we will assume that all

### Chapter V. Solvability by Radicals

Matematisk Institut Mat 3AL 5.1 Chapter V. Solvability by Radicals One of the oldest problems in algebra was to find roots of an equation. Already in the antiquity solutions of quadratic equations were

### 22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points.

22M: 121 Final Exam This is 2 hour exam. Begin each question on a new sheet of paper. All notations are standard and the ones used in class. Please write clearly and provide all details of your work. Good

### Galois Theory. This material is review from Linear Algebra but we include it for completeness.

Galois Theory Galois Theory has its origins in the study of polynomial equations and their solutions. What is has revealed is a deep connection between the theory of fields and that of groups. We first

### Keywords and phrases: Fundamental theorem of algebra, constructible

Lecture 16 : Applications and Illustrations of the FTGT Objectives (1) Fundamental theorem of algebra via FTGT. (2) Gauss criterion for constructible regular polygons. (3) Symmetric rational functions.

### Course 311: Abstract Algebra Academic year

Course 311: Abstract Algebra Academic year 2007-08 D. R. Wilkins Copyright c David R. Wilkins 1997 2007 Contents 3 Introduction to Galois Theory 41 3.1 Field Extensions and the Tower Law..............

### Math 414 Answers for Homework 7

Math 414 Answers for Homework 7 1. Suppose that K is a field of characteristic zero, and p(x) K[x] an irreducible polynomial of degree d over K. Let α 1, α,..., α d be the roots of p(x), and L = K(α 1,...,α

### GALOIS THEORY. Contents

GALOIS THEORY MARIUS VAN DER PUT & JAAP TOP Contents 1. Basic definitions 1 1.1. Exercises 2 2. Solving polynomial equations 2 2.1. Exercises 4 3. Galois extensions and examples 4 3.1. Exercises. 6 4.

### FIELD THEORY. Contents

FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions

### Solutions of exercise sheet 6

D-MATH Algebra I HS 14 Prof. Emmanuel Kowalski Solutions of exercise sheet 6 1. (Irreducibility of the cyclotomic polynomial) Let n be a positive integer, and P Z[X] a monic irreducible factor of X n 1

### Notes on graduate algebra. Robert Harron

Notes on graduate algebra Robert Harron Department of Mathematics, Keller Hall, University of Hawai i at Mānoa, Honolulu, HI 96822, USA E-mail address: rharron@math.hawaii.edu Abstract. Graduate algebra

### Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Bryan Félix Abril 12, 2017 Section 14.2 Exercise 3. Determine the Galois group of (x 2 2)(x 2 3)(x 2 5). Determine all the subfields

### GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) KEITH CONRAD We will describe a procedure for figuring out the Galois groups of separable irreducible polynomials in degrees 3 and 4 over

### Homework 4 Algebra. Joshua Ruiter. February 21, 2018

Homework 4 Algebra Joshua Ruiter February 21, 2018 Chapter V Proposition 0.1 (Exercise 20a). Let F L be a field extension and let x L be transcendental over F. Let K F be an intermediate field satisfying

### 55 Separable Extensions

55 Separable Extensions In 54, we established the foundations of Galois theory, but we have no handy criterion for determining whether a given field extension is Galois or not. Even in the quite simple

### 1 The Galois Group of a Quadratic

Algebra Prelim Notes The Galois Group of a Polynomial Jason B. Hill University of Colorado at Boulder Throughout this set of notes, K will be the desired base field (usually Q or a finite field) and F

### Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Math 429/581 (Advanced) Group Theory Summary of Definitions, Examples, and Theorems by Stefan Gille 1 2 0. Group Operations 0.1. Definition. Let G be a group and X a set. A (left) operation of G on X is

### 1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

### The Kummer Pairing. Alexander J. Barrios Purdue University. 12 September 2013

The Kummer Pairing Alexander J. Barrios Purdue University 12 September 2013 Preliminaries Theorem 1 (Artin. Let ψ 1, ψ 2,..., ψ n be distinct group homomorphisms from a group G into K, where K is a field.

### Math 121. Fundamental Theorem and an example

Math 121. Fundamental Theorem and an example Let K/k be a finite Galois extension and G = Gal(K/k), so #G = [K : k] by the counting criterion for separability discussed in class. In this handout we will

### Galois theory (Part II)( ) Example Sheet 1

Galois theory (Part II)(2015 2016) Example Sheet 1 c.birkar@dpmms.cam.ac.uk (1) Find the minimal polynomial of 2 + 3 over Q. (2) Let K L be a finite field extension such that [L : K] is prime. Show that

### disc f R 3 (X) in K[X] G f in K irreducible S 4 = in K irreducible A 4 in K reducible D 4 or Z/4Z = in K reducible V Table 1

GALOIS GROUPS OF CUBICS AND QUARTICS IN ALL CHARACTERISTICS KEITH CONRAD 1. Introduction Treatments of Galois groups of cubic and quartic polynomials usually avoid fields of characteristic 2. Here we will

### MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions Basic Questions 1. Give an example of a prime ideal which is not maximal. In the ring Z Z, the ideal {(0,

### MAT 535 Problem Set 5 Solutions

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 MAT 535 Problem Set 5 Solutions Selected Problems (1) Exercise 9, p 617 Determine the Galois group of the splitting field E over F = Q of the polynomial f(x)

### 22. Galois theory. G = Gal(L/k) = Aut(L/k) [L : K] = H. Gal(K/k) G/H

22. Galois theory 22.1 Field extensions, imbeddings, automorphisms 22.2 Separable field extensions 22.3 Primitive elements 22.4 Normal field extensions 22.5 The main theorem 22.6 Conjugates, trace, norm

### arxiv: v1 [math.gr] 3 Feb 2019

Galois groups of symmetric sextic trinomials arxiv:1902.00965v1 [math.gr] Feb 2019 Alberto Cavallo Max Planck Institute for Mathematics, Bonn 5111, Germany cavallo@mpim-bonn.mpg.de Abstract We compute

### Chapter 4. Fields and Galois Theory

Chapter 4 Fields and Galois Theory 63 64 CHAPTER 4. FIELDS AND GALOIS THEORY 4.1 Field Extensions 4.1.1 K[u] and K(u) Def. A field F is an extension field of a field K if F K. Obviously, F K = 1 F = 1

### Galois Theory and the Insolvability of the Quintic Equation

Galois Theory and the Insolvability of the Quintic Equation Daniel Franz 1. Introduction Polynomial equations and their solutions have long fascinated mathematicians. The solution to the general quadratic

### Notes on Galois Theory

Notes on Galois Theory CONTENTS 2 Contents 7 Splitting fields and Galois groups 2 7.1 Splitting fields............................................... 2 7.2 The Galois group.............................................

### 1 Spring 2002 Galois Theory

1 Spring 2002 Galois Theory Problem 1.1. Let F 7 be the field with 7 elements and let L be the splitting field of the polynomial X 171 1 = 0 over F 7. Determine the degree of L over F 7, explaining carefully

### Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G.

1. Galois Theory 1.1. A homomorphism of fields F F is simply a homomorphism of rings. Such a homomorphism is always injective, because its kernel is a proper ideal (it doesnt contain 1), which must therefore

### Part II Galois Theory

Part II Galois Theory Theorems Based on lectures by C. Birkar Notes taken by Dexter Chua Michaelmas 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

### Chapter 11: Galois theory

Chapter 11: Galois theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 410, Spring 014 M. Macauley (Clemson) Chapter 11: Galois theory

### GALOIS THEORY AT WORK: CONCRETE EXAMPLES

GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are

### Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications

1 Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair Corrections and clarifications Note: Some corrections were made after the first printing of the text. page 9, line 8 For of the

### Field Theory Qual Review

Field Theory Qual Review Robert Won Prof. Rogalski 1 (Some) qual problems ˆ (Fall 2007, 5) Let F be a field of characteristic p and f F [x] a polynomial f(x) = i f ix i. Give necessary and sufficient conditions

### Page Points Possible Points. Total 200

Instructions: 1. The point value of each exercise occurs adjacent to the problem. 2. No books or notes or calculators are allowed. Page Points Possible Points 2 20 3 20 4 18 5 18 6 24 7 18 8 24 9 20 10

### A BRIEF INTRODUCTION TO LOCAL FIELDS

A BRIEF INTRODUCTION TO LOCAL FIELDS TOM WESTON The purpose of these notes is to give a survey of the basic Galois theory of local fields and number fields. We cover much of the same material as [2, Chapters

### GALOIS GROUPS AS PERMUTATION GROUPS

GALOIS GROUPS AS PERMUTATION GROUPS KEITH CONRAD 1. Introduction A Galois group is a group of field automorphisms under composition. By looking at the effect of a Galois group on field generators we can

### M3P11/M4P11/M5P11. Galois Theory

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2014 This paper is also taken for the relevant examination for the Associateship of the Royal College of Science. M3P11/M4P11/M5P11 Galois Theory Date:

### Quasi-reducible Polynomials

Quasi-reducible Polynomials Jacques Willekens 06-Dec-2008 Abstract In this article, we investigate polynomials that are irreducible over Q, but are reducible modulo any prime number. 1 Introduction Let

### x by so in other words ( )

Math 210B. Norm and trace An interesting application of Galois theory is to help us understand properties of two special constructions associated to field extensions, the norm and trace. If L/k is a finite

### Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Fields and Galois Theory Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. This should be a reasonably logical ordering, so that a result here should

### Practice problems for first midterm, Spring 98

Practice problems for first midterm, Spring 98 midterm to be held Wednesday, February 25, 1998, in class Dave Bayer, Modern Algebra All rings are assumed to be commutative with identity, as in our text.

### Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory D. R. Wilkins Copyright c David R. Wilkins 1997 2006 Contents 4 Introduction to Galois Theory 2 4.1 Polynomial Rings.........................

### Algebraic Cryptography Exam 2 Review

Algebraic Cryptography Exam 2 Review You should be able to do the problems assigned as homework, as well as problems from Chapter 3 2 and 3. You should also be able to complete the following exercises:

### Notes on Galois Theory

Notes on Galois Theory Math 431 04/28/2009 Radford We outline the foundations of Galois theory. Most proofs are well beyond the scope of the our course and are therefore omitted. The symbols and in the

### Lecture Notes on Fields (Fall 1997)

Lecture Notes on Fields (Fall 1997) By George F. Seelinger Last Revised: December 7, 2001 NOTE: All references here are either made to Hungerford or to Beachy/Blair (2nd Edition). The references to Hungerford

### Algebra SEP Solutions

Algebra SEP Solutions 17 July 2017 1. (January 2017 problem 1) For example: (a) G = Z/4Z, N = Z/2Z. More generally, G = Z/p n Z, N = Z/pZ, p any prime number, n 2. Also G = Z, N = nz for any n 2, since

### RUDIMENTARY GALOIS THEORY

RUDIMENTARY GALOIS THEORY JACK LIANG Abstract. This paper introduces basic Galois Theory, primarily over fields with characteristic 0, beginning with polynomials and fields and ultimately relating the

### The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K.

The third exam will be on Monday, April 9, 013. The syllabus for Exam III is sections 1 3 of Chapter 10. Some of the main examples and facts from this material are listed below. If F is an extension field

### Math 121 Homework 2 Solutions

Math 121 Homework 2 Solutions Problem 13.2 #16. Let K/F be an algebraic extension and let R be a ring contained in K that contains F. Prove that R is a subfield of K containing F. We will give two proofs.

### NOVEMBER 22, 2006 K 2

MATH 37 THE FIELD Q(, 3, i) AND 4TH ROOTS OF UNITY NOVEMBER, 006 This note is about the subject of problems 5-8 in 1., the field E = Q(, 3, i). We will see that it is the same as the field Q(ζ) where (1)

### Math 121 Homework 5 Solutions

Math 2 Homework Solutions Problem 2, Section 4.. Let τ : C C be the complex conjugation, defined by τa + bi = a bi. Prove that τ is an automorphism of C. First Solution. Every element of C may be written

### AN INTRODUCTION TO GALOIS THEORY

AN INTRODUCTION TO GALOIS THEORY STEVEN DALE CUTKOSKY In these notes we consider the problem of constructing the roots of a polynomial. Suppose that F is a subfield of the complex numbers, and f(x) is

### Math 6320 Lecture Notes

Math 6320 Lecture Notes Lectures by Prof. David Zywina, Notes by Vivian Kuperberg Disclaimer: Professor David Zywina is responsible for the lectures behind these notes, but has nothing to do with the writing

### Fundamental Theorem of Galois Theory. The Theorem (Dummit & Foote Version):

Fundamental Theorem of Galois Theory Introduction: Previously we worked through an example illustrating many of the components of Galois Theory including the Fundamental Theorem. Here I will state and

### Math 603, Spring 2003, HW 6, due 4/21/2003

Math 603, Spring 2003, HW 6, due 4/21/2003 Part A AI) If k is a field and f k[t ], suppose f has degree n and has n distinct roots α 1,..., α n in some extension of k. Write Ω = k(α 1,..., α n ) for the

### Galois Theory. Torsten Wedhorn. July 13, These lecture notes contain the final third of my lecture on abstract algebra.

Galois Theory Torsten Wedhorn July 13, 2015 These lecture notes contain the final third of my lecture on abstract algebra. Notation: If not otherwise stressed, all rings and all algebras are commutative.

### Galois Theory and Some Applications

Galois Theory and Some Applications Aparna Ramesh July 19, 2015 Introduction In this project, we study Galois theory and discuss some applications. The theory of equations and the ancient Greek problems

### x by so in other words ( )

Math 154. Norm and trace An interesting application of Galois theory is to help us understand properties of two special constructions associated to field extensions, the norm and trace. If L/k is a finite

### ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely

### A SIMPLE PROOF OF KRONECKER-WEBER THEOREM. 1. Introduction. The main theorem that we are going to prove in this paper is the following: Q ab = Q(ζ n )

A SIMPLE PROOF OF KRONECKER-WEBER THEOREM NIZAMEDDIN H. ORDULU 1. Introduction The main theorem that we are going to prove in this paper is the following: Theorem 1.1. Kronecker-Weber Theorem Let K/Q be

### Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Finite Fields [Parts from Chapter 16. Also applications of FTGT] Lemma [Ch 16, 4.6] Assume F is a finite field. Then the multiplicative group F := F \ {0} is cyclic. Proof Recall from basic group theory

Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

### ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK

ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK 1. Practice exam problems Problem A. Find α C such that Q(i, 3 2) = Q(α). Solution to A. Either one can use the proof of the primitive element

### NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 RAVI VAKIL Hi Dragos The class is in 381-T, 1:15 2:30. This is the very end of Galois theory; you ll also start commutative ring theory. Tell them: midterm

### Fields and Galois Theory

Fields and Galois Theory Rachel Epstein September 12, 2006 All proofs are omitted here. They may be found in Fraleigh s A First Course in Abstract Algebra as well as many other algebra and Galois theory

### Factorization in Integral Domains II

Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

### Lecture 6.6: The fundamental theorem of Galois theory

Lecture 6.6: The fundamental theorem of Galois theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 410, Modern Algebra M. Macauley

### ON GALOIS GROUPS OF ABELIAN EXTENSIONS OVER MAXIMAL CYCLOTOMIC FIELDS. Mamoru Asada. Introduction

ON GALOIS GROUPS OF ABELIAN ETENSIONS OVER MAIMAL CYCLOTOMIC FIELDS Mamoru Asada Introduction Let k 0 be a finite algebraic number field in a fixed algebraic closure Ω and ζ n denote a primitive n-th root

### 1. Group Theory Permutations.

1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

### MAIN THEOREM OF GALOIS THEORY

MAIN THEOREM OF GALOIS THEORY Theorem 1. [Main Theorem] Let L/K be a finite Galois extension. and (1) The group G = Gal(L/K) is a group of order [L : K]. (2) The maps defined by and f : {subgroups of G}!

### Fields. Victoria Noquez. March 19, 2009

Fields Victoria Noquez March 19, 2009 5.1 Basics Definition 1. A field K is a commutative non-zero ring (0 1) such that any x K, x 0, has a unique inverse x 1 such that xx 1 = x 1 x = 1. Definition 2.

### M345P11 Galois Theory

M345P11 Galois Theory Lectured by Prof Alessio Corti, notes taken by Wanlong Zheng Comments or corrections should be sent to wz3415@ic.ac.uk. Last updated: April 20, 2018 Contents 1 Introduction 2 1.1

### 7 Orders in Dedekind domains, primes in Galois extensions

18.785 Number theory I Lecture #7 Fall 2015 10/01/2015 7 Orders in Dedekind domains, primes in Galois extensions 7.1 Orders in Dedekind domains Let S/R be an extension of rings. The conductor c of R (in

### SOLVING SOLVABLE QUINTICS. D. S. Dummit

D. S. Dummit Abstract. Let f(x) = x 5 + px 3 + qx + rx + s be an irreducible polynomial of degree 5 with rational coefficients. An explicit resolvent sextic is constructed which has a rational root if

### Èvariste Galois and the resolution of equations by radicals

Èvariste Galois and the resolution of equations by radicals A Math Club Event Department of Mathematical Sciences Florida Atlantic University Boca Raton, FL 33431 November 9, 2012 Outline 1 The Problem

### Algebra Qualifying Exam Solutions. Thomas Goller

Algebra Qualifying Exam Solutions Thomas Goller September 4, 2 Contents Spring 2 2 2 Fall 2 8 3 Spring 2 3 4 Fall 29 7 5 Spring 29 2 6 Fall 28 25 Chapter Spring 2. The claim as stated is false. The identity

### Math 210B: Algebra, Homework 6

Math 210B: Algebra, Homework 6 Ian Coley February 19, 2014 Problem 1. Let K/F be a field extension, α, β K. Show that if [F α) : F ] and [F β) : F ] are relatively prime, then [F α, β) : F ] = [F α) :

### GALOIS THEORY I (Supplement to Chapter 4)

GALOIS THEORY I (Supplement to Chapter 4) 1 Automorphisms of Fields Lemma 1 Let F be a eld. The set of automorphisms of F; Aut (F ) ; forms a group (under composition of functions). De nition 2 Let F be

### Fields and Galois Theory Fall 2004 Professor Yu-Ru Liu

Fields and Galois Theory Fall 2004 Professor Yu-Ru Liu CHRIS ALMOST Contents 1 Introduction 3 1.1 Motivation....................................................... 3 1.2 Brief Review of Ring Theory............................................

### Profinite Groups. Hendrik Lenstra. 1. Introduction

Profinite Groups Hendrik Lenstra 1. Introduction We begin informally with a motivation, relating profinite groups to the p-adic numbers. Let p be a prime number, and let Z p denote the ring of p-adic integers,

### Polynomials with nontrivial relations between their roots

ACTA ARITHMETICA LXXXII.3 (1997) Polynomials with nontrivial relations between their roots by John D. Dixon (Ottawa, Ont.) 1. Introduction. Consider an irreducible polynomial f(x) over a field K. We are

Chapter 7 p-adic fields In this chapter, we study completions of number fields, and their ramification (in particular in the Galois case). We then look at extensions of the p-adic numbers Q p and classify

### be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

### THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II.

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION 2006 110.402 - ADVANCED ALGEBRA II. Examiner: Professor C. Consani Duration: 3 HOURS (9am-12:00pm), May 15, 2006. No

### IUPUI Qualifying Exam Abstract Algebra

IUPUI Qualifying Exam Abstract Algebra January 2017 Daniel Ramras (1) a) Prove that if G is a group of order 2 2 5 2 11, then G contains either a normal subgroup of order 11, or a normal subgroup of order

### CYCLOTOMIC EXTENSIONS

CYCLOTOMIC EXTENSIONS KEITH CONRAD 1. Introduction For a positive integer n, an nth root of unity in a field is a solution to z n = 1, or equivalently is a root of T n 1. There are at most n different

### UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY

UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY ISAAC M. DAVIS Abstract. By associating a subfield of R to a set of points P 0 R 2, geometric properties of ruler and compass constructions

### Identify F inside K and K. Then, by the claim, we have an embedding σ : K K such that σ F = id F. Since σ(k)/f and K/F are isomorphic extensions, the

11. splitting field, Algebraic closure 11.1. Definition. Let f(x) F [x]. Say that f(x) splits in F [x] if it can be decomposed into linear factors in F [x]. An extension K/F is called a splitting field

### Section V.6. Separability

V.6. Separability 1 Section V.6. Separability Note. Recall that in Definition V.3.10, an extension field F is a separable extension of K if every element of F is algebraic over K and every root of the