Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Size: px
Start display at page:

Download "Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory."

Transcription

1 Fields and Galois Theory Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. This should be a reasonably logical ordering, so that a result here should depend only on previous lemmas, propositions, and/or theorems together with facts from ring theory covered earlier. Relevant definitions are also given here. You should be able to provide proofs of all these results (with the exception of Zorn s Lemma) from your class notes, homework, and towering intellect. The labeling of these results is perhaps somewhat arbitrary. Generally speaking, lemmas are little results, propositions are bigger (depending on one or several previous lemmas), and theorems are the really big/important results which you should carry with you to your grave, or at least to the qualifying exam. Definition: A partial order on a non-empty set S is a binary relation on S which is reflexive, anti-symmetric, and transitive. Typically, one uses the notation for a partial order. A partial order in which any two elements are related is called a linear order. A chain in a partially ordered set is a linearly ordered subset. A maximal element of a partially ordered set S is an element a S such that, whenever b S is related to a, then b a. Zorn s Lemma: Let S be a partially ordered set. Suppose for all chains C in S, there is a b S with c b for all c C. Then S has a maximal element. Corollary 1: Every vector space has a basis. Corollary 2: Every non-trivial proper ideal in a commutative ring is contained in a maximal ideal. Result (I don t know what to call this): Let F be a field and suppose P (X) F [X] is irreducible. Then the quotient ring F [X]/ ( P (X) ) is a field which contains (an isomorphic image of) F and a root of P. Lemma 0: Let F K be fields. Then K is a vector space over F. Lemma 1: Let R be a commutative ring with identity containing a field K. Let a R. Then there is a unique ring homomorphism φ: K[X] R with φ(x) = a and φ(u) = u for all u K. Lemma 2: Let F K be fields and regard F [X] as a subring of K[X]. If f, g F [X] are relatively prime in F [X], then they are relatively prime in K[X]. Lemma 3: Let F K be fields. Let P, Q F [X] be irreducible and suppose α K is a root of both P and Q. Then Q = ap for some a F. Definition: Let F K be fields. An element α K is called algebraic over F if {1, α, α 2,..., α n } is a linearly dependent set for some n > 0, considered as a subset of the vector space K over F. The field K is called an algebraic extension of F if every element of K is algebraic over F. An element α K which is not 1

2 algebraic over F is called transcendental over F. Lemma 4: An element α is algebraic over F iff α is a root of some irreducible P F [X]. Proposition 1: Let K be a field. The following are equivalent: i) if α is algebraic over K, then α K; ii) if P K[X] is irreducible, then the degree of P is 1; iii) if f K[X], then f has a root in K. Definition: A field satisfying the three equivalent statements in the proposition above is called algebraically closed. Theorem 1a: If F is a field, there is some algebraically closed field K containing (an isomorphic copy of) F. Definition: Let F K be fields with K algebraically closed. An algebraic closure of F in K is a field F K that is algebraically closed and algebraic over F. Proposition 2: Let α be algebraic over F. Let F [α] = {a 0 + a 1 α + + a m α m : a i F for all i, and m 0}. Then F [α] is a field containing F and α. It is the smallest such field and its dimension over F is finite. Lemma 5: If α is algebraic over F and β is algebraic over F [α], then β is algebraic over F. Proposition 3: If K an algebraic extension of F and α is algebraic over K, then K[α] is an algebraic extension of F. Theorem 2b: If F K are fields and K is algebraically closed, then there is an algebraic closure of F in K. Proposition 4: Let L and K be fields with K algebraically closed. Suppose there is a monomorphism φ: L K. If α is algebraic over L, then φ lifts to a homomorphism φ: L[α] K with φ = φ on L. Further, if P L[X] is irreducible with α as a root and β K is any root of φ(p ) in K, then such a φ is given by φ(α) = β. Proposition 5: Let F and K be fields with K algebraically closed. Suppose L is an algebraic extension of F and φ: F K is a monomorphism. Then φ lifts to a monomorphism φ L : L K with φ L = φ on F. Theorem 1c: Any two algebraic closures of a field F are isomorphic via an isomorphism that fixes the elements of F. Definition: Let F be a field. An extension of F is any field K which contains (an isomorphic image of) F. The degree of K over F, also called the index of F in K, is the cardinality of any basis for K as a vector space over F. This will be written [K : F ]. 2

3 Note: As it stands, we have only shown that this definition makes sense for extensions of finite degree. That will suffice for what we need here, though it is true that this definition always makes sense; specifically, any two bases of a vector space have the same cardinality. Lemma 6: Let F L K be fields. Then [K : F ] = [K : L][L: F ]. Definition: Let K be an extension of F and α K. Then F (α) is the smallest subfield of K that contains F and α. If α is algebraic over F, the degree of α over F is the degree of F (α) over F. Lemma 7: If α is algebraic over F, then F (α) = F [α] and the degree of α over F is finite; α is a root of a unique monic irreducible P F [X] of degree equal to the degree of α. Definition: Let K be an algebraically closed extension of F and let f F [X]. The splitting field of f in K is the smallest subfield of K containing F and all the roots of f in K, in other words, the smallest subfield L of K containing F for which f L[X] factors into a product of linear polynomials (we say f splits in L[X]). Proposition 6: Let F be a field and f F [X]. Let F 1 and F 2 be algebraic closures of F. If φ: F1 F 2 is an isomorphism fixing the elements of F, then φ takes the splitting field of f in F 1 isomorphically to the splitting field of f in F 2. Lemma 8: Let F be a field and f F [X]. If the degree of f is n, then the degree over F of any splitting field of f is no larger than n!. Definition: If α is algebraic over F, α is called separable over F if α is a root of a polynomial f F [X] with distinct roots in a splitting field (i.e., the number of distinct roots equals the degree of f). An extension K of F is called separable over F if every element of K is separable over F. A field is called perfect if every algebraic extension is separable. Definition: The formal derivative, f, of f(x) = a 0 + a 1 X + + a n X n F [X] is given by f (X) = a F a 2 X n F a n X n 1 F [X], where i F F is the sum of the multiplicative identity 1 F with itself i times: i F = 1 F }{{ F. } i times Lemma 9: The formal derivative satisfies the usual constant multiple, sum, and product rules for derivatives. Proposition 7: Let P F [X] be irreducible and suppose char(f ) = 0. If the degree of P is n, then P has n distinct roots in any splitting field of P over F. In particular, any field of characteristic 0 is perfect. Theorem 2a: If F is a finite field, then F = p n for some n > 0 and some prime p. The non-zero elements of F form a cyclic group of order p n 1 and F is a splitting field for X pn X over Z/pZ. Theorem 2b: If p is a prime and n > 0, then there is exactly one field (up to isomorphism) with p n elements. 3

4 Theorem 2c: Any finite field is perfect. Definition: An extension K of F is called simple if K = F (α) for some α K. If K is a simple extension of F, a primitive element of K is an element α K with K = F (α). Primitive Element Theorem: If K is a finite separable extension of F, then it is a simple extension of F. Lemma 10: Let K be a splitting field over F and let P F [X] be irreducible. If K contains a root of P, then P splits in K[X]. Definition: Let K be an extension of F. The Galois group of K over F is the set of automorphisms of K that leave F fixed. We write G(K, F ) for this set. If f F [X], the Galois group of f is G(K, F ), where K is any splitting field of f over F. Note: The Galois group really is a group under composition of functions. The Galois group is well-defined (up to isomorphism) for any f F by Proposition 5. If α, β K are roots of an irreducible P F [X], then there is a σ G(K, F ) with σ(α) = β by Proposition 3 and Proposition 4, provided that K is a finite extension of F. Further, if α K is a root of f F [X] and σ G(K, F ), then σ(α) is a root of f. Lemma 11: If K is a finite simple extension of F, then G(K, F ) [K : F ]. Note: Lemma 11 is true for arbitrary finite extensions. Proposition 8: If K is a finite separable extension of F, then G(K, F ) = [K : F ] iff K is a splitting field for some f F [X] over F. Definition: If K is an extension of F and H < G(K, F ), the fixed field of H is the subfield of K consisting of all α K which are fixed by all elements of H. We will write K H for this fixed field. Proposition 9: Let K be a finite separable extension of F and let H < G(K, F ). Then H = [K : K H ] and H = G(K, K H ). Definition: An extension K of F is a Galois extension if K G(K,F ) = F. An algebraic extension K is a normal extension if whenever f F [X] and K contains a root of f, then f splits in K[X]. Theorem 3: Let K be a finite separable extension of F. Then the following are equivalent: i) K is a Galois extension of F ; ii) K is a normal extension of F ; iii) K is a splitting field of some f F [X]; iv) [K : F ] = G(K, F ) ; v) if L is any extension of K and σ G(L, F ), then σ(k) = K. Lemma 12: If K is an algebraic Galois extension of F, then K is a separable extension of F. The Fundamental Theorem of Galois Theory: Let K be a finite Galois extension of F. i) For any H < G(K, F ), H = G(K, K H ). 4

5 ii) For any intermediate field L, L = K G(K,L). iii) The correspondence H K H is a one-to-one correspondence between the subgroups of G(K, F ) and the subfields between K and F. iv) Under this correspondence, the normal subgroups of G(K, F ) correspond to the normal extensions of F contained in K, and if L is such an extension, then G(L, F ) = G(K, F )/G(K, L). Eisenstein s Criterion: Let P (X) = a 0 + a 1 X +... a n X n Z[X] and suppose there is a prime p with p a i for i = 0,..., n 1, p a n, and p 2 a 0. Then P Q[X] is irreducible. 5

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

Galois Theory, summary

Galois Theory, summary Chapter 11 11.1. UFD, definition. Any two elements have gcd 11.2 PID. Every PID is a UFD. There are UFD s which are not PID s (example F [x, y]). 11.3 ED. Every ED is a PID (and

Section V.6. Separability

V.6. Separability 1 Section V.6. Separability Note. Recall that in Definition V.3.10, an extension field F is a separable extension of K if every element of F is algebraic over K and every root of the

Notes on graduate algebra. Robert Harron

Notes on graduate algebra Robert Harron Department of Mathematics, Keller Hall, University of Hawai i at Mānoa, Honolulu, HI 96822, USA E-mail address: rharron@math.hawaii.edu Abstract. Graduate algebra

List of topics for the preliminary exam in algebra

List of topics for the preliminary exam in algebra 1 Basic concepts 1. Binary relations. Reflexive, symmetric/antisymmetryc, and transitive relations. Order and equivalence relations. Equivalence classes.

Page Points Possible Points. Total 200

Instructions: 1. The point value of each exercise occurs adjacent to the problem. 2. No books or notes or calculators are allowed. Page Points Possible Points 2 20 3 20 4 18 5 18 6 24 7 18 8 24 9 20 10

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Finite Fields [Parts from Chapter 16. Also applications of FTGT] Lemma [Ch 16, 4.6] Assume F is a finite field. Then the multiplicative group F := F \ {0} is cyclic. Proof Recall from basic group theory

GALOIS THEORY. Contents

GALOIS THEORY MARIUS VAN DER PUT & JAAP TOP Contents 1. Basic definitions 1 1.1. Exercises 2 2. Solving polynomial equations 2 2.1. Exercises 4 3. Galois extensions and examples 4 3.1. Exercises. 6 4.

Fields and Galois Theory

Fields and Galois Theory Rachel Epstein September 12, 2006 All proofs are omitted here. They may be found in Fraleigh s A First Course in Abstract Algebra as well as many other algebra and Galois theory

RUDIMENTARY GALOIS THEORY

RUDIMENTARY GALOIS THEORY JACK LIANG Abstract. This paper introduces basic Galois Theory, primarily over fields with characteristic 0, beginning with polynomials and fields and ultimately relating the

Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

5. Fields 5.1. Field extensions. Let F E be a subfield of the field E. We also describe this situation by saying that E is an extension field of F, and we write E/F to express this fact. If E/F is a field

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information

MRQ 2017 School of Mathematics and Statistics MT5836 Galois Theory Handout 0: Course Information Lecturer: Martyn Quick, Room 326. Prerequisite: MT3505 (or MT4517) Rings & Fields Lectures: Tutorials: Mon

9. Finite fields. 1. Uniqueness

9. Finite fields 9.1 Uniqueness 9.2 Frobenius automorphisms 9.3 Counting irreducibles 1. Uniqueness Among other things, the following result justifies speaking of the field with p n elements (for prime

1. Group Theory Permutations.

1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13

Extension fields II Sergei Silvestrov Spring term 2011, Lecture 13 Abstract Contents of the lecture. Algebraic extensions. Finite fields. Automorphisms of fields. The isomorphism extension theorem. Splitting

The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K.

The third exam will be on Monday, April 9, 013. The syllabus for Exam III is sections 1 3 of Chapter 10. Some of the main examples and facts from this material are listed below. If F is an extension field

FIELD THEORY. Contents

FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory D. R. Wilkins Copyright c David R. Wilkins 1997 2006 Contents 4 Introduction to Galois Theory 2 4.1 Polynomial Rings.........................

Extension theorems for homomorphisms

Algebraic Geometry Fall 2009 Extension theorems for homomorphisms In this note, we prove some extension theorems for homomorphisms from rings to algebraically closed fields. The prototype is the following

38 Irreducibility criteria in rings of polynomials

38 Irreducibility criteria in rings of polynomials 38.1 Theorem. Let p(x), q(x) R[x] be polynomials such that p(x) = a 0 + a 1 x +... + a n x n, q(x) = b 0 + b 1 x +... + b m x m and a n, b m 0. If b m

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Math 429/581 (Advanced) Group Theory Summary of Definitions, Examples, and Theorems by Stefan Gille 1 2 0. Group Operations 0.1. Definition. Let G be a group and X a set. A (left) operation of G on X is

Sample algebra qualifying exam

Sample algebra qualifying exam University of Hawai i at Mānoa Spring 2016 2 Part I 1. Group theory In this section, D n and C n denote, respectively, the symmetry group of the regular n-gon (of order 2n)

1 Finite abelian groups

Last revised: May 16, 2014 A.Miller M542 www.math.wisc.edu/ miller/ Each Problem is due one week from the date it is assigned. Do not hand them in early. Please put them on the desk in front of the room

Course 311: Abstract Algebra Academic year

Course 311: Abstract Algebra Academic year 2007-08 D. R. Wilkins Copyright c David R. Wilkins 1997 2007 Contents 3 Introduction to Galois Theory 41 3.1 Field Extensions and the Tower Law..............

Math Introduction to Modern Algebra

Math 343 - Introduction to Modern Algebra Notes Field Theory Basics Let R be a ring. M is called a maximal ideal of R if M is a proper ideal of R and there is no proper ideal of R that properly contains

Part II Galois Theory

Part II Galois Theory Theorems Based on lectures by C. Birkar Notes taken by Dexter Chua Michaelmas 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

Algebraic Cryptography Exam 2 Review

Algebraic Cryptography Exam 2 Review You should be able to do the problems assigned as homework, as well as problems from Chapter 3 2 and 3. You should also be able to complete the following exercises:

but no smaller power is equal to one. polynomial is defined to be

13. Radical and Cyclic Extensions The main purpose of this section is to look at the Galois groups of x n a. The first case to consider is a = 1. Definition 13.1. Let K be a field. An element ω K is said

Field Theory Qual Review

Field Theory Qual Review Robert Won Prof. Rogalski 1 (Some) qual problems ˆ (Fall 2007, 5) Let F be a field of characteristic p and f F [x] a polynomial f(x) = i f ix i. Give necessary and sufficient conditions

Fields. Victoria Noquez. March 19, 2009

Fields Victoria Noquez March 19, 2009 5.1 Basics Definition 1. A field K is a commutative non-zero ring (0 1) such that any x K, x 0, has a unique inverse x 1 such that xx 1 = x 1 x = 1. Definition 2.

Galois Theory. This material is review from Linear Algebra but we include it for completeness.

Galois Theory Galois Theory has its origins in the study of polynomial equations and their solutions. What is has revealed is a deep connection between the theory of fields and that of groups. We first

Chapter 4. Fields and Galois Theory

Chapter 4 Fields and Galois Theory 63 64 CHAPTER 4. FIELDS AND GALOIS THEORY 4.1 Field Extensions 4.1.1 K[u] and K(u) Def. A field F is an extension field of a field K if F K. Obviously, F K = 1 F = 1

55 Separable Extensions

55 Separable Extensions In 54, we established the foundations of Galois theory, but we have no handy criterion for determining whether a given field extension is Galois or not. Even in the quite simple

Section V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement)

V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement) 1 Section V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement) Note. In this supplement, we consider splitting fields

CSIR - Algebra Problems

CSIR - Algebra Problems N. Annamalai DST - INSPIRE Fellow (SRF) Department of Mathematics Bharathidasan University Tiruchirappalli -620024 E-mail: algebra.annamalai@gmail.com Website: https://annamalaimaths.wordpress.com

Galois Theory of Cyclotomic Extensions

Galois Theory of Cyclotomic Extensions Winter School 2014, IISER Bhopal Romie Banerjee, Prahlad Vaidyanathan I. Introduction 1. Course Description The goal of the course is to provide an introduction to

Module MA3411: Abstract Algebra Galois Theory Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents 1 Basic Principles of Group Theory 1 1.1 Groups...............................

Galois theory of fields

1 Galois theory of fields This first chapter is both a concise introduction to Galois theory and a warmup for the more advanced theories to follow. We begin with a brisk but reasonably complete account

CDM. Finite Fields. Klaus Sutner Carnegie Mellon University. Fall 2018

CDM Finite Fields Klaus Sutner Carnegie Mellon University Fall 2018 1 Ideals The Structure theorem Where Are We? 3 We know that every finite field carries two apparently separate structures: additive and

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely

Homework problems from Chapters IV-VI: answers and solutions

Homework problems from Chapters IV-VI: answers and solutions IV.21.1. In this problem we have to describe the field F of quotients of the domain D. Note that by definition, F is the set of equivalence

Galois theory (Part II)( ) Example Sheet 1

Galois theory (Part II)(2015 2016) Example Sheet 1 c.birkar@dpmms.cam.ac.uk (1) Find the minimal polynomial of 2 + 3 over Q. (2) Let K L be a finite field extension such that [L : K] is prime. Show that

A Harvard Sampler. Evan Chen. February 23, I crashed a few math classes at Harvard on February 21, Here are notes from the classes.

A Harvard Sampler Evan Chen February 23, 2014 I crashed a few math classes at Harvard on February 21, 2014. Here are notes from the classes. 1 MATH 123: Algebra II In this lecture we will make two assumptions.

Algebra Qualifying Exam August 2001 Do all 5 problems. 1. Let G be afinite group of order 504 = 23 32 7. a. Show that G cannot be isomorphic to a subgroup of the alternating group Alt 7. (5 points) b.

Clearly C B, for every C Q. Suppose that we may find v 1, v 2,..., v n

10. Algebraic closure Definition 10.1. Let K be a field. The algebraic closure of K, denoted K, is an algebraic field extension L/K such that every polynomial in K[x] splits in L. We say that K is algebraically

GALOIS THEORY: LECTURE 20

GALOIS THEORY: LECTURE 0 LEO GOLDMAKHER. REVIEW: THE FUNDAMENTAL LEMMA We begin today s lecture by recalling the Fundamental Lemma introduced at the end of Lecture 9. This will come up in several places

Math 121 Homework 2 Solutions

Math 121 Homework 2 Solutions Problem 13.2 #16. Let K/F be an algebraic extension and let R be a ring contained in K that contains F. Prove that R is a subfield of K containing F. We will give two proofs.

Lecture 6.6: The fundamental theorem of Galois theory

Lecture 6.6: The fundamental theorem of Galois theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 410, Modern Algebra M. Macauley

1 Separability and splitting fields

Supplementary field theory notes E/F is a finite field extension throughout. We also fix an algebraic closure F in which all our extensions live, although it will rarely be explicitly mentioned. Further

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11 3. Examples I did some examples and explained the theory at the same time. 3.1. roots of unity. Let L = Q(ζ) where ζ = e 2πi/5 is a primitive 5th root of

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Bryan Félix Abril 12, 2017 Section 14.2 Exercise 3. Determine the Galois group of (x 2 2)(x 2 3)(x 2 5). Determine all the subfields

Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

RINGS: SUMMARY OF MATERIAL

RINGS: SUMMARY OF MATERIAL BRIAN OSSERMAN This is a summary of terms used and main results proved in the subject of rings, from Chapters 11-13 of Artin. Definitions not included here may be considered

QUALIFYING EXAM IN ALGEBRA August 2011

QUALIFYING EXAM IN ALGEBRA August 2011 1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories. I. Linear Algebra 1 problem II. Group Theory 3 problems III. Ring

AN ALTERNATIVE APPROACH TO THE CONCEPT OF SEPARABILITY IN GALOIS THEORY arxiv: v1 [math.ac] 27 Sep 2017

AN ALTERNATIVE APPROACH TO THE CONCEPT OF SEPARABILITY IN GALOIS THEORY arxiv:1709.09640v1 [math.ac] 27 Sep 2017 M. G. MAHMOUDI Abstract. The notion of a separable extension is an important concept in

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G.

1. Galois Theory 1.1. A homomorphism of fields F F is simply a homomorphism of rings. Such a homomorphism is always injective, because its kernel is a proper ideal (it doesnt contain 1), which must therefore

Name: Solutions Final Exam

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. 1. [10 Points] For

Math 547, Exam 2 Information.

Math 547, Exam 2 Information. 3/19/10, LC 303B, 10:10-11:00. Exam 2 will be based on: Homework and textbook sections covered by lectures 2/3-3/5. (see http://www.math.sc.edu/ boylan/sccourses/547sp10/547.html)

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

Galois Theory TCU Graduate Student Seminar George Gilbert October 201 The coefficients of a polynomial are symmetric functions of the roots {α i }: fx) = x n s 1 x n 1 + s 2 x n 2 + + 1) n s n, where s

MAT 535 Problem Set 5 Solutions

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 MAT 535 Problem Set 5 Solutions Selected Problems (1) Exercise 9, p 617 Determine the Galois group of the splitting field E over F = Q of the polynomial f(x)

Group Theory. 1. Show that Φ maps a conjugacy class of G into a conjugacy class of G.

Group Theory Jan 2012 #6 Prove that if G is a nonabelian group, then G/Z(G) is not cyclic. Aug 2011 #9 (Jan 2010 #5) Prove that any group of order p 2 is an abelian group. Jan 2012 #7 G is nonabelian nite

ALGEBRA QUALIFYING EXAM SPRING 2012

ALGEBRA QUALIFYING EXAM SPRING 2012 Work all of the problems. Justify the statements in your solutions by reference to specific results, as appropriate. Partial credit is awarded for partial solutions.

Rings and Fields Theorems

Rings and Fields Theorems Rajesh Kumar PMATH 334 Intro to Rings and Fields Fall 2009 October 25, 2009 12 Rings and Fields 12.1 Definition Groups and Abelian Groups Let R be a non-empty set. Let + and (multiplication)

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 RAVI VAKIL Hi Dragos The class is in 381-T, 1:15 2:30. This is the very end of Galois theory; you ll also start commutative ring theory. Tell them: midterm

MATH 113 FINAL EXAM December 14, 2012

p.1 MATH 113 FINAL EXAM December 14, 2012 This exam has 9 problems on 18 pages, including this cover sheet. The only thing you may have out during the exam is one or more writing utensils. You have 180

Part II Galois Theory

Part II Galois Theory Definitions Based on lectures by C. Birkar Notes taken by Dexter Chua Michaelmas 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II.

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION 2006 110.402 - ADVANCED ALGEBRA II. Examiner: Professor C. Consani Duration: 3 HOURS (9am-12:00pm), May 15, 2006. No

ALGEBRA HW 9 CLAY SHONKWILER

ALGEBRA HW 9 CLAY SHONKWILER 1 Let F = Z/pZ, let L = F (x, y) and let K = F (x p, y p ). Show that L is a finite field extension of K, but that there are infinitely many fields between K and L. Is L =

ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK

ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK 1. Practice exam problems Problem A. Find α C such that Q(i, 3 2) = Q(α). Solution to A. Either one can use the proof of the primitive element

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

Algebra Exam Fall 2006 Alexander J. Wertheim Last Updated: October 26, 2017 Contents 1 Groups 2 1.1 Problem 1..................................... 2 1.2 Problem 2..................................... 2

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL 1. Suppose that G is a finite group. (a) Prove that if G is nilpotent, and H is any proper subgroup, then H is a proper subgroup of its normalizer. (b) Use (a)

Practice problems for first midterm, Spring 98

Practice problems for first midterm, Spring 98 midterm to be held Wednesday, February 25, 1998, in class Dave Bayer, Modern Algebra All rings are assumed to be commutative with identity, as in our text.

Fields and Galois Theory Fall 2004 Professor Yu-Ru Liu

Fields and Galois Theory Fall 2004 Professor Yu-Ru Liu CHRIS ALMOST Contents 1 Introduction 3 1.1 Motivation....................................................... 3 1.2 Brief Review of Ring Theory............................................

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

Module MA3411: Galois Theory Michaelmas Term 2009

Module MA3411: Galois Theory Michaelmas Term 2009 D. R. Wilkins Copyright c David R. Wilkins 1997 2009 Contents 1 Basic Concepts and Results of Group Theory 1 1.1 Groups...............................

Homework 4 Algebra. Joshua Ruiter. February 21, 2018

Homework 4 Algebra Joshua Ruiter February 21, 2018 Chapter V Proposition 0.1 (Exercise 20a). Let F L be a field extension and let x L be transcendental over F. Let K F be an intermediate field satisfying

GALOIS THEORY AT WORK: CONCRETE EXAMPLES

GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are

1 Spring 2002 Galois Theory

1 Spring 2002 Galois Theory Problem 1.1. Let F 7 be the field with 7 elements and let L be the splitting field of the polynomial X 171 1 = 0 over F 7. Determine the degree of L over F 7, explaining carefully

THROUGH THE FIELDS AND FAR AWAY

THROUGH THE FIELDS AND FAR AWAY JONATHAN TAYLOR I d like to thank Prof. Stephen Donkin for helping me come up with the topic of my project and also guiding me through its various complications. Contents

Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications

1 Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair Corrections and clarifications Note: Some corrections were made after the first printing of the text. page 9, line 8 For of the

7 Orders in Dedekind domains, primes in Galois extensions

18.785 Number theory I Lecture #7 Fall 2015 10/01/2015 7 Orders in Dedekind domains, primes in Galois extensions 7.1 Orders in Dedekind domains Let S/R be an extension of rings. The conductor c of R (in

Section 33 Finite fields

Section 33 Finite fields Instructor: Yifan Yang Spring 2007 Review Corollary (23.6) Let G be a finite subgroup of the multiplicative group of nonzero elements in a field F, then G is cyclic. Theorem (27.19)

GALOIS THEORY I (Supplement to Chapter 4)

GALOIS THEORY I (Supplement to Chapter 4) 1 Automorphisms of Fields Lemma 1 Let F be a eld. The set of automorphisms of F; Aut (F ) ; forms a group (under composition of functions). De nition 2 Let F be

There is 2 c automorphisms of complex numbers

University of Silesia, Institute of Mathematics Wisła, February 7, 2011 Some facts from field theory Every field has its algebraic closure. It is unique up to isomorphism; hence one can denote the algebraic

A PROOF OF BURNSIDE S p a q b THEOREM

A PROOF OF BURNSIDE S p a q b THEOREM OBOB Abstract. We prove that if p and q are prime, then any group of order p a q b is solvable. Throughout this note, denote by A the set of algebraic numbers. We

The following results are from the review sheet for the midterm.

A. Miller M542 Galois Theory Spring 2000 For the material on Galois theory we will be assuming that the fields all have characteristic zero. When we get to solvability by radicals we will assume that all

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 31, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Symbolic Adjunction of Roots When dealing with subfields of C it is easy to

Q N id β. 2. Let I and J be ideals in a commutative ring A. Give a simple description of

Additional Problems 1. Let A be a commutative ring and let 0 M α N β P 0 be a short exact sequence of A-modules. Let Q be an A-module. i) Show that the naturally induced sequence is exact, but that 0 Hom(P,

January 2016 Qualifying Examination

January 2016 Qualifying Examination If you have any difficulty with the wording of the following problems please contact the supervisor immediately. All persons responsible for these problems, in principle,

Solutions of exercise sheet 6

D-MATH Algebra I HS 14 Prof. Emmanuel Kowalski Solutions of exercise sheet 6 1. (Irreducibility of the cyclotomic polynomial) Let n be a positive integer, and P Z[X] a monic irreducible factor of X n 1

IUPUI Qualifying Exam Abstract Algebra

IUPUI Qualifying Exam Abstract Algebra January 2017 Daniel Ramras (1) a) Prove that if G is a group of order 2 2 5 2 11, then G contains either a normal subgroup of order 11, or a normal subgroup of order

Solutions for Problem Set 6

Solutions for Problem Set 6 A: Find all subfields of Q(ζ 8 ). SOLUTION. All subfields of K must automatically contain Q. Thus, this problem concerns the intermediate fields for the extension K/Q. In a

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018 Do 6 problems with at least 2 in each section. Group theory problems: (1) Suppose G is a group. The

Algebra Ph.D. Preliminary Exam

RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS! Algebra Ph.D. Preliminary Exam August 18, 2008 INSTRUCTIONS: 1. Answer each question on a separate page. Turn in a page for each problem even if you

arxiv: v1 [math.gr] 3 Feb 2019

Galois groups of symmetric sextic trinomials arxiv:1902.00965v1 [math.gr] Feb 2019 Alberto Cavallo Max Planck Institute for Mathematics, Bonn 5111, Germany cavallo@mpim-bonn.mpg.de Abstract We compute