Method for analytically calculating BER (bit error rate) in presence of non-linearity. Gaurav Malhotra Xilinx

Size: px
Start display at page:

Download "Method for analytically calculating BER (bit error rate) in presence of non-linearity. Gaurav Malhotra Xilinx"

Transcription

1 Method for analytically calculating BER (bit error rate) in presence of non-linearity Gaurav Malhotra Xilinx

2 Outline Review existing methodology for calculating BER based on linear system analysis. Link model with ISI, Crosstalk, Jitter, Noise. Model of nonlinearity based on power series. Modification of PDF in presence of nonlinearity. BER results for a typical high speed link. Link model with multiple linear & NL blocks.

3 Linear system : Link Model Crosstalk AFE (CTLE + DFE) d d [+1-1] Tx Channel Rx - RJ - DCD - PSIJ - SJ - Jitter enhancement - ISI / reflections AWGN - RJ - DCD - PSIJ - SJ [+1-1] Equivalent linear model: Signal and impairments can be referred to the slicer input. d d [+1-1] h(n) Tx + Channel + RxAFE Signal(t) Joint pdf (per sampling phase): pdf(signal) pdf(awgn ) pdf(xtalk ) pdf(isi) Crosstalk Crosstalk(t) AWGN n(t) x(t) - RJ - DCD - PSIJ - SJ [+1-1] Objective is to determine joint PDF F X x of signal + impairments [ x(t) ] at the decision point. BER k = P error = k P error d k P(d k ), where P error 1 = F X x 1 SS S Taking timing jitter into account : BER = BER k F k k

4 LTI Systems: Link BER methodology Joint pdf for Each phase Voltage noise Bath Tub curve Timing noise Joint pdf (per sampling phase): pdf(awgn) pdf(xtalk) pdf(isi) Joint pdf : pdf(rj) pdf(sj).. Conditional pdf BER = BER k F k k

5 Recap goal If we can accurately determine the probability distribution at the decision point, we can calculate BER. BER k = P error = k P error d k P(d k ), where SS P error 1 = F X x 1 S Taking timing jitter into account: BER = BER k F k k GOAL: to determine PDF (overall/joint including all impairments AND nonlinearity) at the decision point.

6 Modeling of nonlinearity Common model of NL: Y = n X n n Observed to be very close to real circuits. I N P U T Actual Circuit / System LTI system Model LTI system Model Volterra series Model X Power series polynomial Y = O U T P U T n n X n

7 Modeling of nonlinearity Input Circuit model (Known ) Actual Circuit / System Y M = [X 1 X 2 X n ] Linear Model H(f) Design specification (Known ) X NL (?) Y = n n X n 1 n No NL modeling = M 1 Y Error = Y Y y 2 / error 2 (db) Up to 3 rd order Up to 5 th order Up to 7 th order Design specification (say pole-zero model) is known. Input, X, Y, Y are time domain signals. Only NL terms { n } are unknown. Matrix inversion (zero forcing) though not optimum, but gives a good estimate of NL terms.

8 Modeling of nonlinearity No NL modeling Up to 3 rd order Up to 5 th order No NL modeling Up to 3 rd order Up to 5 th order Up to 7 th order Adding higher order terms in estimation reduces error in modeling due to NL. Up to 7 th order

9 Modification of PDF in presence of NL Let y = g(x) represent the output of a non-linear function whose input is x. The PDF of Y, F Y (y) can be determined in terms of PDF of X as: [Probability, Random variables and Stochastic Processes: Athanasios Papoulis, Section 5-2] x g(x) y y g(x 1 ) g(x 2 ) g(x 3 ) pdf of x = F X x x g(x) x 1 x 2 x 3 pdf of y = F Y y = F X x 1 g x 1 + F X x 2 g x 2 + F X x n g x n Simplification for monotonic functions: F Y y = dx dy F X x

10 Modification of PDF : AWGN Example Y= X + X 3 F Y y = dx dy F X x d d [+k -k] NL [+1-1] AWGN X= Signal +AWGN F X x = pdf(signal) pdf(awgn) Note the warping of PDF in accordance with dx dy

11 AWGN Example : Simulation VS Analysis Y = X + X 3 F Y y = dx F dy X x 1 = 1+3 X 2 F X x d [ ] NL d [ ] AWGN X= Signal +AWGN F X x = pdf(signal) pdf(awgn) PDF can be obtained analytically or by running a bit-by-bit simulation. Both methods give the same result. Analytically computing BER is much faster. This is the method we will adopt for this presentation.

12 AWGN Example : PAM2 VS PAM4 In general we expect higher order modulations to suffer more from NL. Outer points in constellation dominate BER. *** Detection rule may be modified to take advantage of (known) nonlinearity. This paper assumes that same detection rule (minimum distance) as is used for linear system analysis is used for calculating BER in presence of non-linearity.

13 Link Model: typical high speed link Equivalent model with NL: Linear components convolve. d [+1-1] TX + package + connector Tx + package + card + connector + CTLE Crosstalk AWGN Crosstalk CTLE Y= X + X 3 F Y y NL = dx dy F X x d d [+1-1] Channel NL [+1-1] AWGN - RJ [UI/64] (rms) - DCD [UI/32] X= Signal +AWGN F X x = pdf(signal) pdf(awgn) pdf(xtalk) pdf(isi) CTLE (Analog front end) is a significant source of NL. = -0.3; Output = Input 0.3 * Input 3 CTLE output referred Xtalk : Xtalk_Out(f) = Xtalk_In(f) * CTLE(f)

14 Link Model: typical high speed link d [+1-1] TX + package + connector Crosstalk AWGN CTLE NL Y = X + X 3 BASELINE: PAM2 VS PAM4 Start with the same BER, compare the effect of NL PAM-4 PAM-2 Bandwidth of insertion loss, crosstalk, AWGN and CTLE for PAM2 are half that of PAM4. Jitter is specified as a fraction of UI, so that automatically adjusts for signaling rate. Since the crosstalk channel is not flat, we had to make small adjustment on gain of crosstalk channel to make the baseline BER (without NL) the same for both PAM2 & PAM4.

15 BER results: typical high speed link Bandwidth (Nyquist) UI BER without NL BER with NL PAM2 F N 1/(2* F N ) 1e-25 1e-23 PAM4 F N / 2 2/(2* F N ) 1e-25 1e-20

16 Link Model: Multiple NL blocks d Tx + package + card + connector + CTLE Crosstalk F Y y = dx dy F X x F A a = F Dfe dfe 1 F Y y 1 Summer F B b (LTI method) F Z z = db dz F B b d [+1-1] LTI1 NL1 LTI3 NL2 [+1-1] AWGN X= Signal +AWGN F X x = pdf(signal) pdf(awgn) pdf(xtalk) pdf(isi) LTI2 d [+1-1] F Dfe dfe DFE F Dfe dfe 1 = {Tap1 x pdf(d) } {Tap2 x pdf(d) } PDF transformation Linear block : Convolution Nonlinear block : F Y y = F X x 1 g x 1 + F X x 2 g x 2 + F X x n g x n

17 Summary Presented methodology for calculating BER of a link in presence of nonlinearity. Modification of PDF. Static nonlinearity model using power series polynomial considered. Work ongoing to model nonlinearity using Volterra series. Higher order modulations are more susceptible to NL. Quantified the loss for a typical NL, typical high speed link.

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2 EE29C Spring 2 Lecture 6: Link Performance Analysis Elad Alon Dept. of EECS Motivation V in, ampl Voff BER = 2 erfc 2σ noise Does eqn. above predict everything? EE29C Lecture 5 2 Traditional Approach Borrowed

More information

Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems

Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems Geoff Zhang September, 2018 Outline 1/(1+D) precoding for PAM4 link systems 1/(1+D)

More information

Discussion on FFE and DFE Coefficients Calculation in COM. Guo-HauGau, Mau-Lin Wu, Pei-Rong Li, Yuan-Hao Tung MediaTek IEEE 802.

Discussion on FFE and DFE Coefficients Calculation in COM. Guo-HauGau, Mau-Lin Wu, Pei-Rong Li, Yuan-Hao Tung MediaTek IEEE 802. Discussion on FFE and DFE Coefficients Calculation in COM Guo-HauGau, Mau-Lin Wu, Pei-Rong Li, Yuan-Hao Tung MediaTek IEEE 802.3ck Task Force Outline o COM and channels used in this analysis o Non-Monotonic

More information

Presenters. Time Domain and Statistical Model Development, Simulation and Correlation Methods for High Speed SerDes

Presenters. Time Domain and Statistical Model Development, Simulation and Correlation Methods for High Speed SerDes JANUARY 28-31, 2013 SANTA CLARA CONVENTION CENTER Time Domain and Statistical Model Development, Simulation and Correlation Methods or High Speed SerDes Presenters Xingdong Dai Fangyi Rao Shiva Prasad

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Anisotropic Substrates Variance for IBIS-AMI Simulation

Anisotropic Substrates Variance for IBIS-AMI Simulation Anisotropic Substrates Variance for IBIS-AMI Simulation Naijen Hsuan naijen.hsuan@ansys.com Asian IBIS Summit Shanghai, China November 15, 2013 1 High speed Challenges Today (1) High Speed Data Rate Issue

More information

SerDes_Channel_Impulse_Modeling_with_Rambus

SerDes_Channel_Impulse_Modeling_with_Rambus SerDes_Channel_Impulse_Modeling_with_Rambus Author: John Baprawski; John Baprawski Inc. (JB) Email: John.baprawski@gmail.com Web sites: https://www.johnbaprawski.com; https://www.serdesdesign.com Date:

More information

Jitter Decomposition in Ring Oscillators

Jitter Decomposition in Ring Oscillators Jitter Decomposition in Ring Oscillators Qingqi Dou Jacob A. Abraham Computer Engineering Research Center Computer Engineering Research Center The University of Texas at Austin The University of Texas

More information

Accurate Statistical Analysis of High-Speed Links with PAM-4 Modulation

Accurate Statistical Analysis of High-Speed Links with PAM-4 Modulation EPEPS IBIS Summit San Jose, California October 8, 05 Accurate Statistical Analsis of High-Speed Links with PAM-4 Modulation Vladimir Dmitriev-Zdorov Mentor Graphics Corp., vladimir_dmitriev-zdorov@mentor.com

More information

IBIS-AMI Concern for PAM4 Simulation

IBIS-AMI Concern for PAM4 Simulation IBIS-AMI Concern for PAM4 Simulation Asian IBIS Summit Tokyo, Japan November 16, 2015 Shinichi Maeda E-mail: KEI-Systems@jcom.home.ne.jp 56 Gbps coming soon How to realize 56 Gbps What is PAM4 How to simulate

More information

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization John R. Barry, Edward A. Lee, and David. Messerschmitt John R. Barry, School of Electrical Engineering, eorgia Institute of Technology,

More information

Decision-Point Signal to Noise Ratio (SNR)

Decision-Point Signal to Noise Ratio (SNR) Decision-Point Signal to Noise Ratio (SNR) Receiver Decision ^ SNR E E e y z Matched Filter Bound error signal at input to decision device Performance upper-bound on ISI channels Achieved on memoryless

More information

EE4304 C-term 2007: Lecture 17 Supplemental Slides

EE4304 C-term 2007: Lecture 17 Supplemental Slides EE434 C-term 27: Lecture 17 Supplemental Slides D. Richard Brown III Worcester Polytechnic Institute, Department of Electrical and Computer Engineering February 5, 27 Geometric Representation: Optimal

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013 Issues with sampling time and jitter in Annex 93A Adam Healey IEEE P802.3bj Task Force May 2013 Part 1: Jitter (comment #157) 2 Treatment of jitter in COM Draft 2.0 h (0) (t s ) slope h(0) (t s ) 1 UI

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test

Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test Mike Li and Jan Wilstrup Wavecrest Purposes Illustrate the shortfalls of simple parametric

More information

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Proc. Biennial Symp. Commun. (Kingston, Ont.), pp. 3-35, June 99 A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Nader Sheikholeslami Peter Kabal Department of Electrical Engineering

More information

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold)

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Asymptotic Capacity Bounds for Magnetic Recording Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Outline Problem Statement Signal and Noise Models for Magnetic Recording Capacity

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

Integrated Circuits for Digital Communications

Integrated Circuits for Digital Communications Integrated Circuits for Digital Communications Prof. David Johns (johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns) slide 1 of 72 Basic Baseband PAM Concepts slide 2 of 72 General Data Communication

More information

Summary II: Modulation and Demodulation

Summary II: Modulation and Demodulation Summary II: Modulation and Demodulation Instructor : Jun Chen Department of Electrical and Computer Engineering, McMaster University Room: ITB A1, ext. 0163 Email: junchen@mail.ece.mcmaster.ca Website:

More information

Nonlinearity Equalization Techniques for DML- Transmission Impairments

Nonlinearity Equalization Techniques for DML- Transmission Impairments Nonlinearity Equalization Techniques for DML- Transmission Impairments Johannes von Hoyningen-Huene jhh@tf.uni-kiel.de Christian-Albrechts-Universität zu Kiel Workshop on Optical Communication Systems

More information

The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you.

The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you. The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you. Page Correction Sentence added before Figure 2.3: "R 6 out is typically

More information

Voltage-Controlled Oscillator (VCO)

Voltage-Controlled Oscillator (VCO) Voltage-Controlled Oscillator (VCO) Desirable characteristics: Monotonic f osc vs. V C characteristic with adequate frequency range f max f osc Well-defined K vco f min slope = K vco VC V C in V K F(s)

More information

Similarities of PMD and DMD for 10Gbps Equalization

Similarities of PMD and DMD for 10Gbps Equalization Similarities of PMD and DMD for 10Gbps Equalization Moe Win Jack Winters win/jhw@research.att.com AT&T Labs-Research (Some viewgraphs and results curtesy of Julien Porrier) Outline Polarization Mode Dispersion

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, and Noise Modeling Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Emil Björnson Course Director

More information

Constellation Shaping for Communication Channels with Quantized Outputs

Constellation Shaping for Communication Channels with Quantized Outputs Constellation Shaping for Communication Channels with Quantized Outputs, Dr. Matthew C. Valenti and Xingyu Xiang Lane Department of Computer Science and Electrical Engineering West Virginia University

More information

Dr. Cathy Liu Dr. Michael Steinberger. A Brief Tour of FEC for Serial Link Systems

Dr. Cathy Liu Dr. Michael Steinberger. A Brief Tour of FEC for Serial Link Systems Prof. Shu Lin Dr. Cathy Liu Dr. Michael Steinberger U.C.Davis Avago SiSoft A Brief Tour of FEC for Serial Link Systems Outline Introduction Finite Fields and Vector Spaces Linear Block Codes Cyclic Codes

More information

Physical Layer and Coding

Physical Layer and Coding Physical Layer and Coding Muriel Médard Professor EECS Overview A variety of physical media: copper, free space, optical fiber Unified way of addressing signals at the input and the output of these media:

More information

EVALUATION OF ERROR PROBABILITIES FOR GENERAL SIGNAL CONSTELLATIONS

EVALUATION OF ERROR PROBABILITIES FOR GENERAL SIGNAL CONSTELLATIONS EVALUATION OF ERROR PROBABILITIES FOR GENERAL SIGNAL CONSTELLATIONS Jack W. Stokes, Microsoft Corp., One Microsoft Way, Redmond, WA 98052 jstokes@microsoft.com James A. Ritcey, Dept. of Electrical Engineering,

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties

More information

Digital Transmission Methods S

Digital Transmission Methods S Digital ransmission ethods S-7.5 Second Exercise Session Hypothesis esting Decision aking Gram-Schmidt method Detection.K.K. Communication Laboratory 5//6 Konstantinos.koufos@tkk.fi Exercise We assume

More information

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations TUTORIAL ON DIGITAL MODULATIONS Part 8a: Error probability A [2011-01-07] 07] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello 1 Part 8a: Error

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

Gaussian Random Variables Why we Care

Gaussian Random Variables Why we Care Gaussian Random Variables Why we Care I Gaussian random variables play a critical role in modeling many random phenomena. I By central limit theorem, Gaussian random variables arise from the superposition

More information

Revision of Lecture Eight

Revision of Lecture Eight Revision of Lectue Eight Baseband equivalent system and equiements of optimal tansmit and eceive filteing: (1) achieve zeo ISI, and () maximise the eceive SNR Thee detection schemes: Theshold detection

More information

ECE 546 Lecture 23 Jitter Basics

ECE 546 Lecture 23 Jitter Basics ECE 546 Lecture 23 Jitter Basics Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Probe Further D. Derickson and M.

More information

10GBASE-KR Transmitter Compliance Methodology Proposal. Robert Brink Agere Systems May 13, 2005

10GBASE-KR Transmitter Compliance Methodology Proposal. Robert Brink Agere Systems May 13, 2005 0GBASE-KR Transmitter Compliance Methodology Proposal Robert Brink Agere Systems May 3, 2005 Scope and Purpose Deficiencies of existing transmit template compliance methods are discussed. A proposal for

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Example: Bipolar NRZ (non-return-to-zero) signaling

Example: Bipolar NRZ (non-return-to-zero) signaling Baseand Data Transmission Data are sent without using a carrier signal Example: Bipolar NRZ (non-return-to-zero signaling is represented y is represented y T A -A T : it duration is represented y BT. Passand

More information

Predicting BER to Very Low Probabilities

Predicting BER to Very Low Probabilities Predicting BER to Very Low Probabilities IBIS Summit, DAC, Anaheim, CA June 15, 2010 0.25 0.2 0.15 0.1 0.05 0-0.05-0.1 Arpad Muranyi arpad_muranyi@mentor.com Vladimir Dmitriev-Zdorov -0.15-0.2-0.25-0.5-0.4-0.3-0.2-0.1

More information

THE IMPACT POLARIZATION MODE DISPERSION OPTICAL DUOBINARY TRANSMISSION

THE IMPACT POLARIZATION MODE DISPERSION OPTICAL DUOBINARY TRANSMISSION THE IMPACT of POLARIZATION MODE DISPERSION on OPTICAL DUOBINARY TRANSMISSION A. Carena, V. Curri, R. Gaudino, P. Poggiolini Optical Communications Group - Politecnico di Torino Torino - ITALY OptCom@polito.it

More information

Pre Silicon to Post Silicon Overview. Adam Norman Intel Corp. PCCG

Pre Silicon to Post Silicon Overview. Adam Norman Intel Corp. PCCG Pre Silicon to Post Silicon Overview Adam Norman Intel Corp. PCCG What is Pre-Silicon? It is the design Phase of a platform, which is done before silicon/packages/boards have been fabricated. It can take

More information

Signal Processing for Digital Data Storage (11)

Signal Processing for Digital Data Storage (11) Outline Signal Processing for Digital Data Storage (11) Assist.Prof. Piya Kovintavewat, Ph.D. Data Storage Technology Research Unit Nahon Pathom Rajabhat University Partial-Response Maximum-Lielihood (PRML)

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

Non-linearities characterization and modeling for system level simulations

Non-linearities characterization and modeling for system level simulations Non-linearities characterization and modeling for system level simulations Giovanni Ghione Daniel Bustos Vittorio Camarchia Simona Donati Marco Pirola Dipartimento di Elettronica Politecnico di Torino

More information

SGM7227 High Speed USB 2.0 (480Mbps) DPDT Analog Switch

SGM7227 High Speed USB 2.0 (480Mbps) DPDT Analog Switch GENERAL DECRIPTION The GM7227 is a high-speed, low-power double-pole/ double-throw (DPDT) analog switch that operates from a single 1.8V to 4.3V power supply. GM7227 is designed for the switching of high-speed

More information

On VDSL Performance and Hardware Implications for Single Carrier Modulation Transceivers

On VDSL Performance and Hardware Implications for Single Carrier Modulation Transceivers On VDSL Performance and ardware Implications for Single Carrier Modulation Transceivers S. AAR, R.ZUKUNFT, T.MAGESACER Institute for Integrated Circuits - BRIDGELAB Munich University of Technology Arcisstr.

More information

Chap 4. State-Space Solutions and

Chap 4. State-Space Solutions and Chap 4. State-Space Solutions and Realizations Outlines 1. Introduction 2. Solution of LTI State Equation 3. Equivalent State Equations 4. Realizations 5. Solution of Linear Time-Varying (LTV) Equations

More information

ULTRASCALE FPGA DDR MT/S SYSTEM LEVEL DESIGN OPTIMIZATION AND VALIDATION

ULTRASCALE FPGA DDR MT/S SYSTEM LEVEL DESIGN OPTIMIZATION AND VALIDATION ULTRASCALE FPGA DDR4 2400 MT/S SYSTEM LEVEL DESIGN OPTIMIZATION AND VALIDATION Authors Thomas To, Xilinx Inc. Penglin Niu, Xilinx Inc. Juan Wang, Xilinx Inc. Changyi Su, Xilinx Inc. Chong Ling Khoo, Xilinx

More information

Digital Communications

Digital Communications Digital Communications Chapter 5 Carrier and Symbol Synchronization Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications Ver 218.7.26

More information

UTA EE5362 PhD Diagnosis Exam (Spring 2011)

UTA EE5362 PhD Diagnosis Exam (Spring 2011) EE5362 Spring 2 PhD Diagnosis Exam ID: UTA EE5362 PhD Diagnosis Exam (Spring 2) Instructions: Verify that your exam contains pages (including the cover shee. Some space is provided for you to show your

More information

Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope

Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope Application Note: HFAN-4.5.0 Rev1; 04/08 Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope [A version of this application note has been published in the July, 2002 issue of Communications

More information

AdaptiveFilters. GJRE-F Classification : FOR Code:

AdaptiveFilters. GJRE-F Classification : FOR Code: Global Journal of Researches in Engineering: F Electrical and Electronics Engineering Volume 14 Issue 7 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

ECE 630: Statistical Communication Theory

ECE 630: Statistical Communication Theory ECE 630: Statistical Communication Theory Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University Last updated: April 6, 2017 2017, B.-P. Paris ECE 630: Statistical Communication

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

Lecture 4 Capacity of Wireless Channels

Lecture 4 Capacity of Wireless Channels Lecture 4 Capacity of Wireless Channels I-Hsiang Wang ihwang@ntu.edu.tw 3/0, 014 What we have learned So far: looked at specific schemes and techniques Lecture : point-to-point wireless channel - Diversity:

More information

Mapper & De-Mapper System Document

Mapper & De-Mapper System Document Mapper & De-Mapper System Document Mapper / De-Mapper Table of Contents. High Level System and Function Block. Mapper description 2. Demodulator Function block 2. Decoder block 2.. De-Mapper 2..2 Implementation

More information

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques EE6604 Personal & Mobile Communications Week 13 Multi-antenna Techniques 1 Diversity Methods Diversity combats fading by providing the receiver with multiple uncorrelated replicas of the same information

More information

EE303: Communication Systems

EE303: Communication Systems EE303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE303: Introductory Concepts

More information

IEEE 802.3ap Task Force Ottawa Sept 27-29, 2004

IEEE 802.3ap Task Force Ottawa Sept 27-29, 2004 Edge-Equalized NRZ and Duobinary IEEE 82.3ap Task Force Ottawa Sept 27-29, 24 Brian Brunn, Xilinx Intro It appears the equalization algorithm for EE-NRZ and Duobinary are the same. Both want to zero-force

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

Analysis of Receiver Quantization in Wireless Communication Systems

Analysis of Receiver Quantization in Wireless Communication Systems Analysis of Receiver Quantization in Wireless Communication Systems Theory and Implementation Gareth B. Middleton Committee: Dr. Behnaam Aazhang Dr. Ashutosh Sabharwal Dr. Joseph Cavallaro 18 April 2007

More information

Leistungsfähigkeit von elektronischen Entzerrer in hochbitratigen optischen Übertragungsystemen. S. Otte, W. Rosenkranz. chair for communications,

Leistungsfähigkeit von elektronischen Entzerrer in hochbitratigen optischen Übertragungsystemen. S. Otte, W. Rosenkranz. chair for communications, Leistungsfähigkeit von elektronischen Entzerrer in hochbitratigen optischen Übertragungsystemen S. Otte, W. Rosenkranz chair for communications, Sven Otte, DFG-Kolloquium, 6. 11. 001, 1 Outline 1. Motivation.

More information

DSP Dimensioning of a 1000Base-T Gigabit Ethernet PHY ASIC

DSP Dimensioning of a 1000Base-T Gigabit Ethernet PHY ASIC DSP Dimensioning of a 1Base-T Gigabit Ethernet PHY ASIC Pedro Reviriego, Carl Murray Pedro.Reviriego@massana.com Massana Technologies, Arturo Soria 336, Madrid, Spain. Abstract This paper describes the

More information

10GBASE-T T PAM Scheme: Fixed Precoder for all Cable Types and Lengths

10GBASE-T T PAM Scheme: Fixed Precoder for all Cable Types and Lengths 10GBASE- PAM Scheme: Fixed Precoder or all Cable ypes and Lengths IEEE P80.3an ask Force Portland, July 1-16, 004 Gottried Ungerboeck 1 Key points One ixed precoding response, h (D), suices or all cable

More information

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Department of Electrical Engineering, College of Engineering, Basrah University Basrah Iraq,

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Fundamentals of PLLs (III)

Fundamentals of PLLs (III) Phase-Locked Loops Fundamentals of PLLs (III) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Phase transfer function in linear model i (s) Kd e (s) Open-loop transfer

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

Solutions to Selected Problems

Solutions to Selected Problems Solutions to Selected Problems from Madhow: Fundamentals of Digital Communication and from Johannesson & Zigangirov: Fundamentals of Convolutional Coding Saif K. Mohammed Department of Electrical Engineering

More information

LECTURE 3 CMOS PHASE LOCKED LOOPS

LECTURE 3 CMOS PHASE LOCKED LOOPS Lecture 03 (8/9/18) Page 3-1 LECTURE 3 CMOS PHASE LOCKED LOOPS Topics The acquisition process unlocked state Noise in linear PLLs Organization: Systems Perspective Types of PLLs and PLL Measurements PLL

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Roundoff Noise in Digital Feedback Control Systems

Roundoff Noise in Digital Feedback Control Systems Chapter 7 Roundoff Noise in Digital Feedback Control Systems Digital control systems are generally feedback systems. Within their feedback loops are parts that are analog and parts that are digital. At

More information

Accurate GHz channel simulation and statistical analysis for SSE(Solution Space Exploration)

Accurate GHz channel simulation and statistical analysis for SSE(Solution Space Exploration) Accurate GHz channel simulation and statistical analysis for SSE(Solution Space Exploration) Asian IBIS Summit Shanghai China Nov11, 2008 Baolong Li, Ansoft Corp. Baolong.li@ansoft.com.cn; Hou Weiping,

More information

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. Digital Modulation and Coding Tutorial-1 1. Consider the signal set shown below in Fig.1 a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. b) What is the minimum Euclidean

More information

Residual Versus Suppressed-Carrier Coherent Communications

Residual Versus Suppressed-Carrier Coherent Communications TDA Progress Report -7 November 5, 996 Residual Versus Suppressed-Carrier Coherent Communications M. K. Simon and S. Million Communications and Systems Research Section This article addresses the issue

More information

FSUSB31 Low-Power 1-Port Hi-Speed USB 2.0 (480Mbps) Switch

FSUSB31 Low-Power 1-Port Hi-Speed USB 2.0 (480Mbps) Switch Low-Power 1-Port Hi-Speed USB 2.0 (480Mbps) Switch Features Low On capacitance, 3.7pF (typical) Low On resistance, 6.5Ω (typical) Low power consumption (1µA maximum) 10µA maximum I CCT over and expanded

More information

Constellation Shaping for Communication Channels with Quantized Outputs

Constellation Shaping for Communication Channels with Quantized Outputs Constellation Shaping for Communication Channels with Quantized Outputs Chandana Nannapaneni, Matthew C. Valenti, and Xingyu Xiang Lane Department of Computer Science and Electrical Engineering West Virginia

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 19: Random Processes Jie Liang School of Engineering Science Simon Fraser University 1 Outline Random processes Stationary random processes Autocorrelation of random processes

More information

Performance Analysis of BPSK over Joint Fading and Two-Path Shadowing Channels

Performance Analysis of BPSK over Joint Fading and Two-Path Shadowing Channels IEEE VTC-Fall 2014, Vancouver, Sept. 14-17, 2014 IqIq Performance of BPSK over Joint Fading and Two-Path Shadowing Channels I. Dey and G. G. Messier Electrical and Computer Engineering University of Calgary,

More information

Interleave Division Multiple Access. Li Ping, Department of Electronic Engineering City University of Hong Kong

Interleave Division Multiple Access. Li Ping, Department of Electronic Engineering City University of Hong Kong Interleave Division Multiple Access Li Ping, Department of Electronic Engineering City University of Hong Kong 1 Outline! Introduction! IDMA! Chip-by-chip multiuser detection! Analysis and optimization!

More information

One Lesson of Information Theory

One Lesson of Information Theory Institut für One Lesson of Information Theory Prof. Dr.-Ing. Volker Kühn Institute of Communications Engineering University of Rostock, Germany Email: volker.kuehn@uni-rostock.de http://www.int.uni-rostock.de/

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

Optimum Soft Decision Decoding of Linear Block Codes

Optimum Soft Decision Decoding of Linear Block Codes Optimum Soft Decision Decoding of Linear Block Codes {m i } Channel encoder C=(C n-1,,c 0 ) BPSK S(t) (n,k,d) linear modulator block code Optimal receiver AWGN Assume that [n,k,d] linear block code C is

More information

Receivers for Digital Communication in. Symmetric Alpha Stable Noise

Receivers for Digital Communication in. Symmetric Alpha Stable Noise Receivers for Digital Communication in 1 Symmetric Alpha Stable Noise Marcel Nassar and Marcus DeYoung Wireless Communication Lab Final Project Prof. Robert W. Heath December 7, 2007 Abstract Wireless

More information

CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME

CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME Shri Mata Vaishno Devi University, (SMVDU), 2013 Page 13 CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME When characterizing or modeling a random variable, estimates

More information

Interference and SINR in Dense Terahertz Networks

Interference and SINR in Dense Terahertz Networks Interference and SINR in Dense Terahertz Networks V. Petrov, D. Moltchanov, Y. Koucheryavy Nano Communications Center Tampere University of Technology Outline 1. Introduction to THz communications 2. Problem

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE.401: Introductory

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

MODULATION AND CODING FOR QUANTIZED CHANNELS. Xiaoying Shao and Harm S. Cronie

MODULATION AND CODING FOR QUANTIZED CHANNELS. Xiaoying Shao and Harm S. Cronie MODULATION AND CODING FOR QUANTIZED CHANNELS Xiaoying Shao and Harm S. Cronie x.shao@ewi.utwente.nl, h.s.cronie@ewi.utwente.nl University of Twente, Faculty of EEMCS, Signals and Systems Group P.O. box

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

ECE 598 JS Lecture 17 Jitter

ECE 598 JS Lecture 17 Jitter ECE 598 JS Lecture 17 Jitter Spring 2009 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 Jitter Definition Jitter is difference in time of when something

More information

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE ADAPTIVE FILTER ALGORITHMS Prepared by Deepa.T, Asst.Prof. /TCE Equalization Techniques Fig.3 Classification of equalizers Equalizer Techniques Linear transversal equalizer (LTE, made up of tapped delay

More information

Digital Modulation 1

Digital Modulation 1 Digital Modulation 1 Lecture Notes Ingmar Land and Bernard H. Fleury Navigation and Communications () Department of Electronic Systems Aalborg University, DK Version: February 5, 27 i Contents I Basic

More information