Square Root Raised Cosine Filter

Size: px
Start display at page:

Download "Square Root Raised Cosine Filter"

Transcription

1 Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University

2 Introduction We consider the problem of signal design when the channel is band-limited to some specified bandwidth of W Hz. The channel may be modeled as a linear filter having an equivalent low-pass frequency response C( f ) that is zero for f >W. Our purpose is to design a signal pulse g(t) in a linearly modulated signal, represented as v t = I g t nt ( ) ( ) n that efficiently utilizes the total available channel bandwidth W. When the channel is ideal for f W, a signal pulse can be designed that allows us to transmit at symbol rates comparable to or exceeding the channel bandwidth W. When the channel is not ideal, signal transmission at a symbol rate equal to or exceeding W results in inter-symbol interference (ISI) among a number of adjacent symbols. 2 n

3 Characterization of Band-Limited Channels For our purposes, a band-limited channel such as a telephone channel will be characterized as a linear filter having an equivalent low-pass frequency-response characteristic C( f ), and its equivalent low-pass impulse response c(t). Then, if a signal of the form ( ) ( ) j 2 ft c s t = Re v t e π is transmitted over a band-pass telephone channel, the equivalent low-pass received signal is () t = v( τ )( c t τ ) dτ + z() t = v() t c() t z() t r l + where z(t) denotes the additive noise. 3

4 Characterization of Band-Limited Channels Alternatively, the signal term can be represented in the frequency domain as V( f )C( f ), where V( f ) = F[v(t)]. If the channel is band-limited to W Hz, then C( f ) = 0 for f > W. As a consequence, any frequency components in V( f ) above f = W will not be passed by the channel, so we limit the bandwidth of the transmitted signal to W Hz. Within the bandwidth of the channel, we may express C( f ) as jθ f C f = C f e ( ) ( ) ( ) where C( f ) : amplitude response. θ( f ): phase response. The envelope delay characteristic: τ ( f ) = 1 2 dθ π ( f ) df 4

5 Characterization of Band-Limited Channels A channel is said to be nondistorting or ideal if the amplitude response C( f ) is constant for all f W and θ( f ) is a linear function of frequency, i.e., τ( f ) is a constant for all f W. If C( f ) is not constant for all f W, we say that the channel distorts the transmitted signal V( f ) in amplitude. If τ( f ) is not constant for all f W, we say that the channel distorts the signal V( f ) in delay. As a result of the amplitude and delay distortion caused by the nonideal channel frequency-response C( f ), a succession of pulses transmitted through the channel at rates comparable to the bandwidth W are smeared to the point that they are no longer distinguishable as well-defined pulses at the receiving terminal. Instead, they overlap, and thus, we have inter-symbol interference (ISI). 5

6 Characterization of Band-Limited Channels Fig. (a) is a band-limited pulse having zeros periodically spaced in time at ±T, ±2T, etc. If information is conveyed by the pulse amplitude, as in PAM, for example, then one can transmit a sequence of pulses, each of which has a peak at the periodic zeros of the other pulses. 6

7 Characterization of Band-Limited Channels However, transmission of the pulse through a channel modeled as having a linear envelope delay τ( f ) [quadratic phase θ( f )] results in the received pulse shown in Fig. (b), where the zerocrossings that are no longer periodically spaced. 7

8 Characterization of Band-Limited Channels A sequence of successive pulses would no longer be distinguishable. Thus, the channel delay distortion results in ISI. It is possible to compensate for the nonideal frequency-response of the channel by use of a filter or equalizer at the demodulator. Fig. (c) illustrates the output of a linear equalizer that compensates for the linear distortion in the channel. 8

9 Signal Design for Band-Limited Channels The equivalent low-pass transmitted signal for several different types of digital modulation techniques has the common form v () t = I g( t nt ) n= 0 where {I n }: discrete information-bearing sequence of symbols. g(t): a pulse with band-limited frequencyresponse G( f ), i.e., G( f ) = 0 for f > W. This signal is transmitted over a channel having a frequency response C( f ), also limited to f W. The received signal can be represented as () ( ) () rl t = I nh t nt + z t n=0 where h() t = g( τ )( c t τ ) dτ and z(t) is the AWGN. 9 n

10 Suppose that the received signal is passed first through a filter and then sampled at a rate 1/T samples/s, the optimum filter from the point of view of signal detection is one matched to the received pulse. That is, the frequency response of the receiving filter is H*( f ). We denote the output of the receiving filter as where Signal Design for Band-Limited Channels y () t = I x( t nt ) + v() t n= 0 n x(t): the pulse representing the response of the receiving filter to the input pulse h(t). v(t): response of the receiving filter to the noise z(t). 10

11 If y(t) is sampled at times t = kt +τ 0, k = 0, 1,, we have y ( kt τ ) y = I x( kt nt + τ ) + v( kt + ) or, equivalently, Signal Design for Band-Limited Channels + = 0 k n 0 τ 0 n 0 y = I x + v, k = 0,1,... k n k n k n= 0 where τ 0 : transmission delay through the channel. The sample values can be expressed as 1 yk = x 0 Ik + Inx k n + vk, k = 0,1,... x 0 n= 0 n k 11

12 We regard x 0 as an arbitrary scale factor, which we arbitrarily set equal to unity for convenience, then where n= 0 n k I n x k Signal Design for Band-Limited Channels y = I + I x + k k n= 0 n k n k n I k : the desired information symbol at the k-th sampling instant. n: ISI v k : additive Gaussian noise variable at the k-th sampling instant. v k 12

13 Signal Design for Band-Limited Channels The amount of ISI and noise in a digital communication system can be viewed on an oscilloscope. For PAM signals, we can display the received signal y(t) on the vertical input with the horizontal sweep rate set at 1/T. The resulting oscilloscope display is called an eye pattern. Eye patterns for binary and quaternary amplitude-shift keying (or PAM): The effect of ISI is to cause the eye to close. Thereby, reducing the margin for additive noise to cause errors. 13

14 Signal Design for Band-Limited Channels Effect of ISI on eye opening: ISI distorts the position of the zero-crossings and causes a reduction in the eye opening. Thus, it causes the system to be more sensitive to a synchronization error. 14

15 Signal Design for Band-Limited Channels For PSK and QAM, it is customary to display the eye pattern" as a two-dimensional scatter diagram illustrating the sampled values {y k } that represent the decision variables at the sampling instants. Two-dimensional digital eye patterns." 15

16 Design of Band-Limited Signals for No ISI The Nyquist Criterion Assuming that the band-limited channel has ideal frequencyresponse, i.e., C( f ) = 1 for f W, then the pulse x(t) has a spectral characteristic X( f ) = G( f ) 2, where x () t X ( f ) We are interested in determining the spectral properties of the pulse x(t), that results in no inter-symbol interference. Since y = I + I x + v k = W W k n= 0 n k 16 n j 2πft k n the condition for no ISI is 1 0 x( t = kt) xk = 0 0 e df k ( k = ) ( k ) (*)

17 Design of Band-Limited Signals for No ISI The Nyquist Criterion Nyquist pulse-shaping criterion (Nyquist condition for zero ISI) The necessary and sufficient condition for x(t) to satisfy ( ) x nt ( n = ) ( n ) 1 0 = 0 0 is that its Fourier transform X(f ) satisfy m= X ( f + m T ) = T 17

18 Proof: Design of Band-Limited Signals for No ISI The Nyquist Criterion In general, x(t) is the inverse Fourier transform of X( f ). Hence, () t X ( f ) At the sampling instant t = nt, x x = j e 2 πft df ( nt ) X ( f ) = j e 2 πfnt df 18

19 Design of Band-Limited Signals for No ISI The Nyquist Criterion Breaking up the integral into integrals covering the finite range of 1/T, thus, we obtain ( 2m+ 1) 2T j2π fnt x( nt) = X ( f ) e df ( 2m 1) 2T m= 12T j2 π f ' nt = ( ' + ) 12T m= 12T = 12T + m= = 12T 12T ( ) where we define B( f ) as X f m T e df ( ) j2π fnt X f m T e df j2π fnt B f e df B ( f ) = X ( f + m T ) m= ' (1) m f = f ' + T 2m 1 2m+ 1 f :, 2T 2T 1 1 f ':, 2T 2T df = df ' 19

20 Design of Band-Limited Signals for No ISI The Nyquist Criterion Obviously B( f ) is a periodic function with period 1/T, and, therefore, it can be expanded in terms of its Fourier series coefficients {b n } as where j 2 ( ) B f = bne π n= ( ) nft 12T 2π nft bn = T B f e df 12T (2) Comparing (1) and (2), we obtain b n = Tx ( nt ) Recall that the conditions for no ISI are (from ): ( k = ) ( k ) 1 0 x( t = kt) xk =

21 Design of Band-Limited Signals for No ISI The Nyquist Criterion Therefore, the necessary and sufficient condition for y = I + I x + v k k n= 0 n k to be satisfied is that T ( n = 0) bn = 0 ( n 0) which, when substituted into B f j nft = b e 2π n, yields n B ( f ) = T k n ( ) = n k or, equivalently m= X ( f + m T ) = T This concludes the proof of the theorem. 21

22 Design of Band-Limited Signals for No ISI The Nyquist Criterion Suppose that the channel has a bandwidth of W. Then C( f ) 0 for f > W and X( f ) = 0 for f > W. When T < 1/2W (or 1/T > 2W) ( ) ( ) + Since B f = X f + n T consists of nonoverlapping replicas of X( f ), separated by 1/T, there is no choice for X( f ) to ensure B( f ) T in this case and there is no way that we can design a system with no ISI. 22

23 Design of Band-Limited Signals for No ISI The Nyquist Criterion When T = 1/2W, or 1/T = 2W (the Nyquist rate), the replications of X( f ), separated by 1/T, are shown below: In this case, there exists only one X( f ) that results in B( f ) = T, namely, T ( f < W) X ( f ) = 0 ( otherwise) which corresponds to the pulse sin ( πtt) πt xt () = sinc πtt T 23

24 Design of Band-Limited Signals for No ISI The Nyquist Criterion The smallest value of T for which transmission with zero ISI is possible is T = 1/2W, and for this value, x(t) has to be a sinc function. The difficulty with this choice of x(t) is that it is noncausal and nonrealizable. A second difficulty with this pulse shape is that its rate of convergence to zero is slow. The tails of x(t) decay as 1/t; consequently, a small mistiming error in sampling the output of the matched filter at the demodulator results in an infinite series of ISI components. Such a series is not absolutely summable because of the 1/t rate of decay of the pulse, and, hence, the sum of the resulting ISI does not converge. 24

25 Design of Band-Limited Signals for No ISI The Nyquist Criterion When T > 1/2W, B( f ) consists of overlapping replications of X(f) separated by 1/T: In this case, there exist numerous choices for X( f ) such that X( f ) such that B( f ) T. 25

26 Design of Band-Limited Signals for No ISI The Nyquist Criterion A particular pulse spectrum, for the T > 1/2W case, that has desirable spectral properties and has been widely used in practice is the raised cosine spectrum. Raised cosine spectrum: 1 β T 0 f 2T T πt 1 β 1-β 1+ β Xrc ( f ) = 1+ cos f f 2 β 2T 2T 2T 1+ β 0 f > 2T β: roll-off factor. (0 β 1) 26

27 Design of Band-Limited Signals for No ISI The Nyquist Criterion The bandwidth occupied by the signal beyond the Nyquist frequency 1/2T is called the excess bandwidth and is usually expressed as a percentage of the Nyquist frequency. β= 1/2 => excess bandwidth = 50 %. β= 1 => excess bandwidth = 100%. The pulse x(t), having the raised cosine spectrum, is x () t = = sin πt sin ( πt T ) cos( πβt T ) 1 ( πt T ) 2 4β t cos 1 4β x(t) is normalized so that x(0) = 1. c T ( πβt T ) 2 2 t 2 T 2 T 2 27

28 Design of Band-Limited Signals for No ISI The Nyquist Criterion Pulses having a raised cosine spectrum: Forβ= 0, the pulse reduces to x(t) = sinc(πt/t), and the symbol rate 1/T = 2W. When β= 1, the symbol rate is 1/T = W. 28

29 Design of Band-Limited Signals for No ISI The Nyquist Criterion In general, the tails of x(t) decay as 1/t 3 for β> 0. Consequently, a mistiming error in sampling leads to a series of ISI components that converges to a finite value. Because of the smooth characteristics of the raised cosine spectrum, it is possible to design practical filters for the transmitter and the receiver that approximate the overall desired frequency response. In the special case where the channel is ideal, i.e., C( f ) = 1, f W, we have X f G f G f ( ) ( ) ( ) rc = where G T ( f ) and G R ( f ) are the frequency responses of the two filters. T R 29

30 Design of Band-Limited Signals for No ISI The Nyquist Criterion If the receiver filter is matched of the transmitter filter, we have X rc ( f )= G T ( f ) G R ( f ) = G T ( f ) 2. Ideally, G ( ) T 2 ft0 ( f ) X ( f ) e j π = rc and G R ( f ) = G T f, where t 0 is some nominal delay that is required to ensure physical realizability of the filter. Thus, the overall raised cosine spectral characteristic is split evenly between the transmitting filter and the receiving filter. An additional delay is necessary to ensure the physical realization of the receiving filter. 30

31 Wireless Information Transmission System Lab. Implementation of Square Root Raise Cosine Filter Institute of Communications Engineering National Sun Yat-sen University

32 Simplified System Architecture Transmitter Receiver SRRC-TX DAC LPF DAC SRRC-RX 32

33 Design of SRRC Operation of the SRRC-TX module includes: Over-sampling Over-sampling rate is a system design issue (performance vs. cost). For a over-sampling rate = 4, we pad three zeros between each sample. Finite-impulse-response (FIR) filter The FIR filter acts as a low pass filter. The FIR filter is a square root raised cosine filter with rolloff factor β=

34 Detail of FIR Filter Module Input h(0) h(1) h(2) h(n/2) 0 34

35 Raised Cosine Filter Raised cosine spectrum: 1 β T 0 f 2T T πt 1 β 1-β 1+ β Xrc ( f ) = 1+ cos f f 2 β 2T 2T 2T 1+ β 0 f > 2T The pulse x(t), having the raised cosine spectrum, is ( ) ( ) 35 ( ) sin πtt cos πβtt cos πβtt x() t = = sin c( π t T) πt T 1 4β t T 1 4β t T

36 Square Root Raised Cosine Filter The cosine roll-off transfer function can be achieved by using identical square root raised cosine filter X at the rc ( f ) transmitter and receiver. The pulse SRRC(t), having the square root raised cosine spectrum, is t t t sin π ( 1 β) + 4β cos π ( 1+ β) TC TC TC SRRC () t = 2 t t π 1 4β T C T C where TC is the inverse of chip rate ( µ s) and β =

37 Square Root Raised Cosine Filter Because SRRC(t) is non-causal, it must be truncated, and pulse shaping filter are typically implemented for ±6T C about the t = 0 point for each symbol. For an over-sampling rate of 4, n is equal to

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Digital Baseband Systems. Reference: Digital Communications John G. Proakis Digital Baseband Systems Reference: Digital Communications John G. Proais Baseband Pulse Transmission Baseband digital signals - signals whose spectrum extend down to or near zero frequency. Model of the

More information

Digital Communications

Digital Communications Digital Communications Chapter 9 Digital Communications Through Band-Limited Channels Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications:

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

EE 661: Modulation Theory Solutions to Homework 6

EE 661: Modulation Theory Solutions to Homework 6 EE 66: Modulation Theory Solutions to Homework 6. Solution to problem. a) Binary PAM: Since 2W = 4 KHz and β = 0.5, the minimum T is the solution to (+β)/(2t ) = W = 2 0 3 Hz. Thus, we have the maximum

More information

EE4061 Communication Systems

EE4061 Communication Systems EE4061 Communication Systems Week 11 Intersymbol Interference Nyquist Pulse Shaping 0 c 2015, Georgia Institute of Technology (lect10 1) Intersymbol Interference (ISI) Tx filter channel Rx filter a δ(t-nt)

More information

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Proc. Biennial Symp. Commun. (Kingston, Ont.), pp. 3-35, June 99 A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Nader Sheikholeslami Peter Kabal Department of Electrical Engineering

More information

Example: Bipolar NRZ (non-return-to-zero) signaling

Example: Bipolar NRZ (non-return-to-zero) signaling Baseand Data Transmission Data are sent without using a carrier signal Example: Bipolar NRZ (non-return-to-zero signaling is represented y is represented y T A -A T : it duration is represented y BT. Passand

More information

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. Digital Modulation and Coding Tutorial-1 1. Consider the signal set shown below in Fig.1 a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. b) What is the minimum Euclidean

More information

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch 10.1-10.5 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered

More information

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters UORIAL ON DIGIAL MODULAIONS Part 7: Intersymbol interference [last modified: 200--23] Roberto Garello, Politecnico di orino Free download at: www.tlc.polito.it/garello (personal use only) Part 7: Intersymbol

More information

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Digital Communication System Introduction Bandlimited channels distort signals the result is smeared pulses intersymol interference

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

Summary II: Modulation and Demodulation

Summary II: Modulation and Demodulation Summary II: Modulation and Demodulation Instructor : Jun Chen Department of Electrical and Computer Engineering, McMaster University Room: ITB A1, ext. 0163 Email: junchen@mail.ece.mcmaster.ca Website:

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Chapter 12 Variable Phase Interpolation

Chapter 12 Variable Phase Interpolation Chapter 12 Variable Phase Interpolation Contents Slide 1 Reason for Variable Phase Interpolation Slide 2 Another Need for Interpolation Slide 3 Ideal Impulse Sampling Slide 4 The Sampling Theorem Slide

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Digital Communications

Digital Communications Digital Communications Chapter 5 Carrier and Symbol Synchronization Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications Ver 218.7.26

More information

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components TUTORIAL ON DIGITAL MODULATIONS Part 3: 4-PSK [2--26] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello Quadrature modulation Consider a 2-D constellation,

More information

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Carrier frequency estimation. ELEC-E5410 Signal processing for communications Carrier frequency estimation ELEC-E54 Signal processing for communications Contents. Basic system assumptions. Data-aided DA: Maximum-lielihood ML estimation of carrier frequency 3. Data-aided: Practical

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

References Ideal Nyquist Channel and Raised Cosine Spectrum Chapter 4.5, 4.11, S. Haykin, Communication Systems, Wiley.

References Ideal Nyquist Channel and Raised Cosine Spectrum Chapter 4.5, 4.11, S. Haykin, Communication Systems, Wiley. Baseand Data Transmission III Reerences Ideal yquist Channel and Raised Cosine Spectrum Chapter 4.5, 4., S. Haykin, Communication Systems, iley. Equalization Chapter 9., F. G. Stremler, Communication Systems,

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, and Noise Modeling Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Emil Björnson Course Director

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Imperfect Sampling Moments and Average SINR

Imperfect Sampling Moments and Average SINR Engineering Notes Imperfect Sampling Moments and Average SINR Dragan Samardzija Wireless Research Laboratory, Bell Labs, Lucent Technologies, 791 Holmdel-Keyport Road, Holmdel, NJ 07733, USA dragan@lucent.com

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin, PhD Shanghai Jiao Tong University Chapter 4: Analog-to-Digital Conversion Textbook: 7.1 7.4 2010/2011 Meixia Tao @ SJTU 1 Outline Analog signal Sampling Quantization

More information

ρ = sin(2π ft) 2π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero.

ρ = sin(2π ft) 2π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero. Problem 5.1 : The correlation of the two signals in binary FSK is: ρ = sin(π ft) π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero. Thus: ϑρ

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

Communication Theory Summary of Important Definitions and Results

Communication Theory Summary of Important Definitions and Results Signal and system theory Convolution of signals x(t) h(t) = y(t): Fourier Transform: Communication Theory Summary of Important Definitions and Results X(ω) = X(ω) = y(t) = X(ω) = j x(t) e jωt dt, 0 Properties

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

3.9 Diversity Equalization Multiple Received Signals and the RAKE Infinite-length MMSE Equalization Structures

3.9 Diversity Equalization Multiple Received Signals and the RAKE Infinite-length MMSE Equalization Structures Contents 3 Equalization 57 3. Intersymbol Interference and Receivers for Successive Message ransmission........ 59 3.. ransmission of Successive Messages.......................... 59 3.. Bandlimited Channels..................................

More information

Modulation & Coding for the Gaussian Channel

Modulation & Coding for the Gaussian Channel Modulation & Coding for the Gaussian Channel Trivandrum School on Communication, Coding & Networking January 27 30, 2017 Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology

More information

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness Digital Communications: A Discrete-Time Approach M. Rice Errata Foreword Page xiii, first paragraph, bare witness should be bear witness Page xxi, last paragraph, You know who you. should be You know who

More information

Lecture 3 - Design of Digital Filters

Lecture 3 - Design of Digital Filters Lecture 3 - Design of Digital Filters 3.1 Simple filters In the previous lecture we considered the polynomial fit as a case example of designing a smoothing filter. The approximation to an ideal LPF can

More information

SIGNAL SPACE CONCEPTS

SIGNAL SPACE CONCEPTS SIGNAL SPACE CONCEPTS TLT-5406/0 In this section we familiarize ourselves with the representation of discrete-time and continuous-time communication signals using the concepts of vector spaces. These concepts

More information

II - Baseband pulse transmission

II - Baseband pulse transmission II - Baseband pulse transmission 1 Introduction We discuss how to transmit digital data symbols, which have to be converted into material form before they are sent or stored. In the sequel, we associate

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES Department of Electrical Engineering Indian Institute of Technology, Madras 1st February 2007 Outline Introduction. Approaches to electronic mitigation - ADC

More information

2.1 Introduction 2.22 The Fourier Transform 2.3 Properties of The Fourier Transform 2.4 The Inverse Relationship between Time and Frequency 2.

2.1 Introduction 2.22 The Fourier Transform 2.3 Properties of The Fourier Transform 2.4 The Inverse Relationship between Time and Frequency 2. Chapter2 Fourier Theory and Communication Signals Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Contents 2.1 Introduction 2.22

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Performance Analysis of Spread Spectrum CDMA systems

Performance Analysis of Spread Spectrum CDMA systems 1 Performance Analysis of Spread Spectrum CDMA systems 16:33:546 Wireless Communication Technologies Spring 5 Instructor: Dr. Narayan Mandayam Summary by Liang Xiao lxiao@winlab.rutgers.edu WINLAB, Department

More information

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS ch03.qxd 1/9/03 09:14 AM Page 35 CHAPTER 3 MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS 3.1 INTRODUCTION The study of digital wireless transmission is in large measure the study of (a) the conversion

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

Time Series Analysis: 4. Linear filters. P. F. Góra

Time Series Analysis: 4. Linear filters. P. F. Góra Time Series Analysis: 4. Linear filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Linear filters in the Fourier domain Filtering: Multiplying the transform by a transfer function. g n DFT G

More information

Contents Equalization 148

Contents Equalization 148 Contents 3 Equalization 48 3. Intersymbol Interference and Receivers for Successive Message ransmission........ 50 3.. ransmission of Successive Messages.......................... 50 3.. Bandlimited Channels..................................

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

Power Spectral Density of Digital Modulation Schemes

Power Spectral Density of Digital Modulation Schemes Digital Communication, Continuation Course Power Spectral Density of Digital Modulation Schemes Mikael Olofsson Emil Björnson Department of Electrical Engineering ISY) Linköping University, SE-581 83 Linköping,

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7 ECS 332: Principles of Communications 2012/1 HW 4 Due: Sep 7 Lecturer: Prapun Suksompong, Ph.D. Instructions (a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Solutions to Selected Problems

Solutions to Selected Problems Solutions to Selected Problems from Madhow: Fundamentals of Digital Communication and from Johannesson & Zigangirov: Fundamentals of Convolutional Coding Saif K. Mohammed Department of Electrical Engineering

More information

Systems & Signals 315

Systems & Signals 315 1 / 15 Systems & Signals 315 Lecture 13: Signals and Linear Systems Dr. Herman A. Engelbrecht Stellenbosch University Dept. E & E Engineering 2 Maart 2009 Outline 2 / 15 1 Signal Transmission through a

More information

Bridge between continuous time and discrete time signals

Bridge between continuous time and discrete time signals 6 Sampling Bridge between continuous time and discrete time signals Sampling theorem complete representation of a continuous time signal by its samples Samplingandreconstruction implementcontinuous timesystems

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

Chapter 10. Timing Recovery. March 12, 2008

Chapter 10. Timing Recovery. March 12, 2008 Chapter 10 Timing Recovery March 12, 2008 b[n] coder bit/ symbol transmit filter, pt(t) Modulator Channel, c(t) noise interference form other users LNA/ AGC Demodulator receive/matched filter, p R(t) sampler

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Introduction to Digital Signal Processing 1.1 What is DSP? DSP is a technique of performing the mathematical operations on the signals in digital domain. As real time signals are analog in nature we need

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

2.1 Basic Concepts Basic operations on signals Classication of signals

2.1 Basic Concepts Basic operations on signals Classication of signals Haberle³me Sistemlerine Giri³ (ELE 361) 9 Eylül 2017 TOBB Ekonomi ve Teknoloji Üniversitesi, Güz 2017-18 Dr. A. Melda Yüksel Turgut & Tolga Girici Lecture Notes Chapter 2 Signals and Linear Systems 2.1

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS page 1 of 5 (+ appendix) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

More information

2016 Spring: The Final Exam of Digital Communications

2016 Spring: The Final Exam of Digital Communications 2016 Spring: The Final Exam of Digital Communications The total number of points is 131. 1. Image of Transmitter Transmitter L 1 θ v 1 As shown in the figure above, a car is receiving a signal from a remote

More information

Parameter Estimation

Parameter Estimation 1 / 44 Parameter Estimation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 25, 2012 Motivation System Model used to Derive

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

Signals and Systems: Part 2

Signals and Systems: Part 2 Signals and Systems: Part 2 The Fourier transform in 2πf Some important Fourier transforms Some important Fourier transform theorems Convolution and Modulation Ideal filters Fourier transform definitions

More information

A First Course in Digital Communications

A First Course in Digital Communications A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk February 9 A First Course in Digital Communications 1/46 Introduction There are benefits to be gained when M-ary (M = 4 signaling methods

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform Fundamentals of the Discrete Fourier Transform Mark H. Richardson Hewlett Packard Corporation Santa Clara, California The Fourier transform is a mathematical procedure that was discovered by a French mathematician

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Optimized Impulses for Multicarrier Offset-QAM

Optimized Impulses for Multicarrier Offset-QAM Optimized Impulses for ulticarrier Offset-QA Stephan Pfletschinger, Joachim Speidel Institut für Nachrichtenübertragung Universität Stuttgart, Pfaffenwaldring 47, D-7469 Stuttgart, Germany Abstract The

More information

The Hilbert Transform

The Hilbert Transform The Hilbert Transform David Hilbert 1 ABSTRACT: In this presentation, the basic theoretical background of the Hilbert Transform is introduced. Using this transform, normal real-valued time domain functions

More information

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2 EE29C Spring 2 Lecture 6: Link Performance Analysis Elad Alon Dept. of EECS Motivation V in, ampl Voff BER = 2 erfc 2σ noise Does eqn. above predict everything? EE29C Lecture 5 2 Traditional Approach Borrowed

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

Timbral, Scale, Pitch modifications

Timbral, Scale, Pitch modifications Introduction Timbral, Scale, Pitch modifications M2 Mathématiques / Vision / Apprentissage Audio signal analysis, indexing and transformation Page 1 / 40 Page 2 / 40 Modification of playback speed Modifications

More information

R. Garello. Tutorial on digital modulations - Part 9b m-pam [ ] 2

R. Garello. Tutorial on digital modulations - Part 9b m-pam [ ] 2 TUTORIAL ON DIGITAL MODULATIONS Part 9: m-pam [2010-1-26] 26] Roerto Garello, Politecnico di Torino Free download at: www.tlc.polito.it/garello (personal use only) 1 m-pam constellations: characteristics

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Tracking of Spread Spectrum Signals

Tracking of Spread Spectrum Signals Chapter 7 Tracking of Spread Spectrum Signals 7. Introduction As discussed in the last chapter, there are two parts to the synchronization process. The first stage is often termed acquisition and typically

More information

Solution to Homework 1

Solution to Homework 1 Solution to Homework 1 1. Exercise 2.4 in Tse and Viswanath. 1. a) With the given information we can comopute the Doppler shift of the first and second path f 1 fv c cos θ 1, f 2 fv c cos θ 2 as well as

More information

SIGNALS AND SYSTEMS LABORATORY 14: The Rudiments of Antenna Design

SIGNALS AND SYSTEMS LABORATORY 14: The Rudiments of Antenna Design SIGNALS AND SYSTEMS LABORATORY 4: The Rudiments of Antenna Design INTRODUCTION By and large, in our study of signals and systems we have been concerned with rational functions. These are functions of exponential

More information