Signal Processing for Digital Data Storage (11)

Size: px
Start display at page:

Download "Signal Processing for Digital Data Storage (11)"

Transcription

1 Outline Signal Processing for Digital Data Storage (11) Assist.Prof. Piya Kovintavewat, Ph.D. Data Storage Technology Research Unit Nahon Pathom Rajabhat University Partial-Response Maximum-Lielihood (PRML) Equalization Target Design Viterbi Algorithm -Predictive Maximum-Lielihood (NPML) Motivation NPML Detector Simulation Results Dr. Piya Kovintavewat 1 Dr. Piya Kovintavewat PRML Equivalent Discrete-Time Channel Model a { ±1} Channels Receiver filter Equalizer Detector â A ˆ( D ) Target response PRML is a technique of using a partial response (PR) equalizer in conjunction with the Viterbi detector to detect the signal, which is done in two steps: Equalize to a PR target whose response is as close to a channel response as possible. Perform maximum-lielihood (ML) equalization on the resulting PR trellis. Advantage Low noise enhancement with low complexity. Received signal P ( A( + N( Generally, can be represented by an FIR filter with an infinite number of taps (resulting in long ISI). Drawbac Lead to a complex detector Solution Use an equalizer to suppress the ISI enhancement will remain small even when amplitude distortion is severe [Bergmans, 1996]. Dr. Piya Kovintavewat 3 Dr. Piya Kovintavewat 4

2 Full Response Equalization Partial Response (PR) Equalization Full response equalizer 1 F ( Partial response (PR) equalizer where H( is the target response. H ( F ( { A( C ( N ( } F ( ) Y ( + D N ( A ( + Advantage Simple detector (e.g., a multi-level slicer) Disadvantage Lead to noise enhancement if has a spectral null { A( C ( N ( } F ( ) Y ( + D H ( A ( H ( + N ( Wanted signal Key: A controlled amount of ISI will be suppressed by the detector. This is why we want the target response to match as close to the channel response as possible to reduce the effect of the noise. A proper match of the target response to the channel permits noise enhancement to remain small even with amplitude distortion is severe. Dr. Piya Kovintavewat 5 Dr. Piya Kovintavewat 6 PR Target GPR Target Generally accepted PR target: Longitudinal Perpendicular H ( (1 (1 + H ( (1 + n n where n is an integer By using a generalized partial response (GPR) target, the performance gain can be substantially improved, especially at high NDs. Design criteria: The higher the ND, the larger the n. Matching the time or frequency domain of a dibit or transition response. Minimizing the mean-squared error (MSE) between signals at the equalizer output and the desired signals. Minimizing the noise power at the equalizer output. Maximizing the effective SNR. It has been shown that the MMSE approach is more practical to be employed in the system. Dr. Piya Kovintavewat 7 Dr. Piya Kovintavewat 8

3 MMSE Target Design Frequency Response Comparison - Longitudinal a {±1} b t T s y â r w The target, H(, and its corresponding equalizer, F(, can be obtained simultaneously by minimizing E[ w ] E[{( s h )} ] based on a monic constraint (i.e., h 0 1) [Moon and Zeng, 1995] f ) ( a Dr. Piya Kovintavewat 9 Dr. Piya Kovintavewat 10 Frequency Response Comparison - Perpendicular Performance Comparison (Perp.) Parameter: 1 SNR 10 log 10 σ (db) σ j /T 0% Dr. Piya Kovintavewat 11 Dr. Piya Kovintavewat 1

4 Performance Comparison (Perp.) Parameter: 1 SNR 10 log 10 σ (db) Correlation (Perp.) Parameters: ND.5 σ j /T 0% SNR db ND.5 Dr. Piya Kovintavewat 13 Dr. Piya Kovintavewat 14 -Predictive Maximum-Lielihood (NPML) Motivation NPML Detector Simulation Results Motivation: NPML Recall: A( C D where H( is the target response Let n(t) ~ N (0, σ ) white noise The input to the Viterbi detector: N( PR equalizer F( H ( Y( Viterbi detector A ˆ( D ) { A( C ( N ( } F ( ) Y ( + D H ( A ( H ( + N ( C ( Wanted signal It is impractical to mae this term equal to one. Thus, when this term is not unity, it will mae the white noise to be the colored noise. Dr. Piya Kovintavewat 15 Dr. Piya Kovintavewat 16

5 Practically, noise seen at the input of the Viterbi detector is colored (i.e., the noise samples are correlated). To obtain a good performance, we need to whiten the colored noise so that it loos lie white noise, before sending it to the Viterbi detector. This noise prediction/whitening process can be directly embedded in the Viterbi detector, resulting in the NPML detector. NPML Detector Embed a noise prediction/whitening process into the branch metric computation of the Viterbi algorithm. Reliable operation of the prediction/whitening process is achieved by using decisions from the path memory of the Viterbi detector. It has been shown to outperform the PRML detector. Dr. Piya Kovintavewat 17 Dr. Piya Kovintavewat 18 The noise predictor: Traditionally, the predictor is a finite impulse response (FIR) filter, whose prediction error decreases monotonically with increasing number of filter taps. It is well nown that an infinite impulse response (IIR) filter can perform as good as the FIR filter, but with a smaller number of filter taps at the expense of stability concern. By carefully designing the IIR filter, it has been shown in longitudinal recording that the IIR predictor with at most two zeros and two poles yields the best possible performance [Coer et al, 1998] in the range of 0.5 < ND < 3.5. Complexity of NPML The NPML detector requires trellis expansion, i.e., Number of trellis states ( target memory + predictor taps ) states Reduced-complexity of the NPML detector has also been proposed in the literature [Altear 1997]. Dr. Piya Kovintavewat 19 Dr. Piya Kovintavewat 0

6 BER Performance ND ) BER Performance (@ ND.5) Dr. Piya Kovintavewat 1 Dr. Piya Kovintavewat

Decision-Point Signal to Noise Ratio (SNR)

Decision-Point Signal to Noise Ratio (SNR) Decision-Point Signal to Noise Ratio (SNR) Receiver Decision ^ SNR E E e y z Matched Filter Bound error signal at input to decision device Performance upper-bound on ISI channels Achieved on memoryless

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Maximum Likelihood Sequence Detection

Maximum Likelihood Sequence Detection 1 The Channel... 1.1 Delay Spread... 1. Channel Model... 1.3 Matched Filter as Receiver Front End... 4 Detection... 5.1 Terms... 5. Maximum Lielihood Detection of a Single Symbol... 6.3 Maximum Lielihood

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

the target and equalizer design for highdensity Bit-Patterned Media Recording

the target and equalizer design for highdensity Bit-Patterned Media Recording 128 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012 Target and Equalizer Design for High-Density Bit-Patterned Media Recording Santi Koonkarnkhai 1, Phongsak Keeratiwintakorn

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE ADAPTIVE FILTER ALGORITHMS Prepared by Deepa.T, Asst.Prof. /TCE Equalization Techniques Fig.3 Classification of equalizers Equalizer Techniques Linear transversal equalizer (LTE, made up of tapped delay

More information

Performance evaluation for ML sequence detection in ISI channels with Gauss Markov Noise

Performance evaluation for ML sequence detection in ISI channels with Gauss Markov Noise arxiv:0065036v [csit] 25 Jun 200 Performance evaluation for ML sequence detection in ISI channels with Gauss Marov Noise Naveen Kumar, Aditya Ramamoorthy and Murti Salapaa Dept of Electrical and Computer

More information

Information Theoretic Imaging

Information Theoretic Imaging Information Theoretic Imaging WU Faculty: J. A. O Sullivan WU Doctoral Student: Naveen Singla Boeing Engineer: James Meany First Year Focus: Imaging for Data Storage Image Reconstruction Data Retrieval

More information

The Viterbi Algorithm and Markov Noise Memory

The Viterbi Algorithm and Markov Noise Memory IEEE RANSACIONS ON INFORMAION HEORY, VOL. 46, NO., JANUARY 2000 29 he Viterbi Algorithm and Marov Noise Memory Alesandar Kavčić, Member, IEEE, and José M. F. Moura, Fellow, IEEE Abstract his wor designs

More information

Introduction to Convolutional Codes, Part 1

Introduction to Convolutional Codes, Part 1 Introduction to Convolutional Codes, Part 1 Frans M.J. Willems, Eindhoven University of Technology September 29, 2009 Elias, Father of Coding Theory Textbook Encoder Encoder Properties Systematic Codes

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

NOVEL TURBO EQUALIZATION METHODS FOR THE MAGNETIC RECORDING CHANNEL

NOVEL TURBO EQUALIZATION METHODS FOR THE MAGNETIC RECORDING CHANNEL NOVEL TURBO EQUALIZATION METHODS FOR THE MAGNETIC RECORDING CHANNEL A Dissertation Presented to The Academic Faculty By Elizabeth Chesnutt In Partial Fulfillment Of the Requirements for the Degree of Doctor

More information

An Adaptive MLSD Receiver Employing Noise Correlation

An Adaptive MLSD Receiver Employing Noise Correlation An Adaptive MLSD Receiver Employing Noise Correlation Ting Liu and Saeed Gazor 1 Abstract A per-survivor processing (PSP) maximum likelihood sequence detection (MLSD) receiver is developed for a fast time-varying

More information

ELEC E7210: Communication Theory. Lecture 4: Equalization

ELEC E7210: Communication Theory. Lecture 4: Equalization ELEC E7210: Communication Theory Lecture 4: Equalization Equalization Delay sprea ISI irreucible error floor if the symbol time is on the same orer as the rms elay sprea. DF: Equalization a receiver signal

More information

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter?

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter? UNIT - III PART A. Mention the important features of the IIR filters? i) The physically realizable IIR filters does not have linear phase. ii) The IIR filter specification includes the desired characteristics

More information

Iterative Timing Recovery

Iterative Timing Recovery Iterative Timing Recovery John R. Barry School of Electrical and Computer Engineering, Georgia Tech Atlanta, Georgia U.S.A. barry@ece.gatech.edu 0 Outline Timing Recovery Tutorial Problem statement TED:

More information

Ralf Koetter, Andrew C. Singer, and Michael Tüchler

Ralf Koetter, Andrew C. Singer, and Michael Tüchler Ralf Koetter, Andrew C. Singer, and Michael Tüchler Capitalizing on the tremendous performance gains of turbo codes and the turbo decoding algorithm, turbo equalization is an iterative equalization and

More information

MMSE DECISION FEEDBACK EQUALIZER FROM CHANNEL ESTIMATE

MMSE DECISION FEEDBACK EQUALIZER FROM CHANNEL ESTIMATE MMSE DECISION FEEDBACK EQUALIZER FROM CHANNEL ESTIMATE M. Magarini, A. Spalvieri, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano (Italy),

More information

WHILE this paper s title says Tutorial on Channel

WHILE this paper s title says Tutorial on Channel 1 Tutorial on Channel Equalization for Mobile Channels Martin Wolkerstorfer, Alexander Leopold Signal Processing and Speech Communication Laboratory, Graz University of Technology Abstract Equalizer design

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold)

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Asymptotic Capacity Bounds for Magnetic Recording Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Outline Problem Statement Signal and Noise Models for Magnetic Recording Capacity

More information

AdaptiveFilters. GJRE-F Classification : FOR Code:

AdaptiveFilters. GJRE-F Classification : FOR Code: Global Journal of Researches in Engineering: F Electrical and Electronics Engineering Volume 14 Issue 7 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Interleave Division Multiple Access. Li Ping, Department of Electronic Engineering City University of Hong Kong

Interleave Division Multiple Access. Li Ping, Department of Electronic Engineering City University of Hong Kong Interleave Division Multiple Access Li Ping, Department of Electronic Engineering City University of Hong Kong 1 Outline! Introduction! IDMA! Chip-by-chip multiuser detection! Analysis and optimization!

More information

Code design: Computer search

Code design: Computer search Code design: Computer search Low rate codes Represent the code by its generator matrix Find one representative for each equivalence class of codes Permutation equivalences? Do NOT try several generator

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

The Sorted-QR Chase Detector for Multiple-Input Multiple-Output Channels

The Sorted-QR Chase Detector for Multiple-Input Multiple-Output Channels The Sorted-QR Chase Detector for Multiple-Input Multiple-Output Channels Deric W. Waters and John R. Barry School of ECE Georgia Institute of Technology Atlanta, GA 30332-0250 USA {deric, barry}@ece.gatech.edu

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

Lecture 9 Infinite Impulse Response Filters

Lecture 9 Infinite Impulse Response Filters Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 First-Order Low-Pass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9

More information

Chapter 7: Filter Design 7.1 Practical Filter Terminology

Chapter 7: Filter Design 7.1 Practical Filter Terminology hapter 7: Filter Design 7. Practical Filter Terminology Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing and communication systems. This is due

More information

2D Coding and Iterative Detection Schemes

2D Coding and Iterative Detection Schemes 2D Coding and Iterative Detection Schemes J. A. O Sullivan, N. Singla, Y. Wu, and R. S. Indeck Washington University Magnetics and Information Science Center Nanoimprinting and Switching of Patterned Media

More information

Efficient Equalization for Wireless Communications in Hostile Environments

Efficient Equalization for Wireless Communications in Hostile Environments Efficient Equalization for Wireless Communications in Hostile Environments Thomas Strohmer Department of Mathematics University of California, Davis, USA strohmer@math.ucdavis.edu http://math.ucdavis.edu/

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

Multi User Detection I

Multi User Detection I January 12, 2005 Outline Overview Multiple Access Communication Motivation: What is MU Detection? Overview of DS/CDMA systems Concept and Codes used in CDMA CDMA Channels Models Synchronous and Asynchronous

More information

On the Shamai-Laroia Approximation for the Information Rate of the ISI Channel

On the Shamai-Laroia Approximation for the Information Rate of the ISI Channel On the Shamai-Laroia Approximation for the Information Rate of the ISI Channel Yair Carmon and Shlomo Shamai (Shitz) Department of Electrical Engineering, Technion - Israel Institute of Technology 2014

More information

An Efficient Low-Complexity Technique for MLSE Equalizers for Linear and Nonlinear Channels

An Efficient Low-Complexity Technique for MLSE Equalizers for Linear and Nonlinear Channels 3236 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003 An Efficient Low-Complexity Technique for MLSE Equalizers for Linear and Nonlinear Channels Yannis Kopsinis and Sergios Theodoridis,

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Chapter 7: Channel coding:convolutional codes

Chapter 7: Channel coding:convolutional codes Chapter 7: : Convolutional codes University of Limoges meghdadi@ensil.unilim.fr Reference : Digital communications by John Proakis; Wireless communication by Andreas Goldsmith Encoder representation Communication

More information

Chapter [4] "Operations on a Single Random Variable"

Chapter [4] Operations on a Single Random Variable Chapter [4] "Operations on a Single Random Variable" 4.1 Introduction In our study of random variables we use the probability density function or the cumulative distribution function to provide a complete

More information

SPEECH ANALYSIS AND SYNTHESIS

SPEECH ANALYSIS AND SYNTHESIS 16 Chapter 2 SPEECH ANALYSIS AND SYNTHESIS 2.1 INTRODUCTION: Speech signal analysis is used to characterize the spectral information of an input speech signal. Speech signal analysis [52-53] techniques

More information

Introduction to the z-transform

Introduction to the z-transform z-transforms and applications Introduction to the z-transform The z-transform is useful for the manipulation of discrete data sequences and has acquired a new significance in the formulation and analysis

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

Gradient-Adaptive Algorithms for Minimum Phase - All Pass Decomposition of an FIR System

Gradient-Adaptive Algorithms for Minimum Phase - All Pass Decomposition of an FIR System 1 Gradient-Adaptive Algorithms for Minimum Phase - All Pass Decomposition of an FIR System Mar F. Flanagan, Member, IEEE, Michael McLaughlin, and Anthony D. Fagan, Member, IEEE Abstract Adaptive algorithms

More information

DATA receivers for digital transmission and storage systems

DATA receivers for digital transmission and storage systems IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 10, OCTOBER 2005 621 Effect of Loop Delay on Phase Margin of First-Order Second-Order Control Loops Jan W. M. Bergmans, Senior

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #24 Tuesday, November 4, 2003 6.8 IIR Filter Design Properties of IIR Filters: IIR filters may be unstable Causal IIR filters with rational system

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

SIGNAL SPACE CONCEPTS

SIGNAL SPACE CONCEPTS SIGNAL SPACE CONCEPTS TLT-5406/0 In this section we familiarize ourselves with the representation of discrete-time and continuous-time communication signals using the concepts of vector spaces. These concepts

More information

Determining the Optimal Decision Delay Parameter for a Linear Equalizer

Determining the Optimal Decision Delay Parameter for a Linear Equalizer International Journal of Automation and Computing 1 (2005) 20-24 Determining the Optimal Decision Delay Parameter for a Linear Equalizer Eng Siong Chng School of Computer Engineering, Nanyang Technological

More information

EFFECTS OF ILL-CONDITIONED DATA ON LEAST SQUARES ADAPTIVE FILTERS. Gary A. Ybarra and S.T. Alexander

EFFECTS OF ILL-CONDITIONED DATA ON LEAST SQUARES ADAPTIVE FILTERS. Gary A. Ybarra and S.T. Alexander EFFECTS OF ILL-CONDITIONED DATA ON LEAST SQUARES ADAPTIVE FILTERS Gary A. Ybarra and S.T. Alexander Center for Communications and Signal Processing Electrical and Computer Engineering Department North

More information

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 1 Bacground Material 1.1 Organization of the Trellis The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 The Viterbi algorithm (VA) processes the (noisy) output sequence from a state machine

More information

Convolutional Codes. Telecommunications Laboratory. Alex Balatsoukas-Stimming. Technical University of Crete. November 6th, 2008

Convolutional Codes. Telecommunications Laboratory. Alex Balatsoukas-Stimming. Technical University of Crete. November 6th, 2008 Convolutional Codes Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete November 6th, 2008 Telecommunications Laboratory (TUC) Convolutional Codes November 6th, 2008 1

More information

UNBIASED MAXIMUM SINR PREFILTERING FOR REDUCED STATE EQUALIZATION

UNBIASED MAXIMUM SINR PREFILTERING FOR REDUCED STATE EQUALIZATION UNBIASED MAXIMUM SINR PREFILTERING FOR REDUCED STATE EQUALIZATION Uyen Ly Dang 1, Wolfgang H. Gerstacker 1, and Dirk T.M. Slock 1 Chair of Mobile Communications, University of Erlangen-Nürnberg, Cauerstrasse

More information

Channel Probing in Communication Systems: Myopic Policies Are Not Always Optimal

Channel Probing in Communication Systems: Myopic Policies Are Not Always Optimal Channel Probing in Communication Systems: Myopic Policies Are Not Always Optimal Matthew Johnston, Eytan Modiano Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge,

More information

Encoder. Encoder 2. ,...,u N-1. 0,v (0) ,u 1. ] v (0) =[v (0) 0,v (1) v (1) =[v (1) 0,v (2) v (2) =[v (2) (a) u v (0) v (1) v (2) (b) N-1] 1,...

Encoder. Encoder 2. ,...,u N-1. 0,v (0) ,u 1. ] v (0) =[v (0) 0,v (1) v (1) =[v (1) 0,v (2) v (2) =[v (2) (a) u v (0) v (1) v (2) (b) N-1] 1,... Chapter 16 Turbo Coding As noted in Chapter 1, Shannon's noisy channel coding theorem implies that arbitrarily low decoding error probabilities can be achieved at any transmission rate R less than the

More information

NSLMS: a Proportional Weight Algorithm for Sparse Adaptive Filters

NSLMS: a Proportional Weight Algorithm for Sparse Adaptive Filters NSLMS: a Proportional Weight Algorithm for Sparse Adaptive Filters R. K. Martin and C. R. Johnson, Jr. School of Electrical Engineering Cornell University Ithaca, NY 14853 {frodo,johnson}@ece.cornell.edu

More information

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Digital Communication System Introduction Bandlimited channels distort signals the result is smeared pulses intersymol interference

More information

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM ANAYSIS OF A PARTIA DECORREATOR IN A MUTI-CE DS/CDMA SYSTEM Mohammad Saquib ECE Department, SU Baton Rouge, A 70803-590 e-mail: saquib@winlab.rutgers.edu Roy Yates WINAB, Rutgers University Piscataway

More information

Soft-Decision Demodulation Design for COVQ over White, Colored, and ISI Gaussian Channels

Soft-Decision Demodulation Design for COVQ over White, Colored, and ISI Gaussian Channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 48, NO 9, SEPTEMBER 2000 1499 Soft-Decision Demodulation Design for COVQ over White, Colored, and ISI Gaussian Channels Nam Phamdo, Senior Member, IEEE, and Fady

More information

DSP Configurations. responded with: thus the system function for this filter would be

DSP Configurations. responded with: thus the system function for this filter would be DSP Configurations In this lecture we discuss the different physical (or software) configurations that can be used to actually realize or implement DSP functions. Recall that the general form of a DSP

More information

MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION FROM THE LATTICE VIEWPOINT. By Mow Wai Ho

MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION FROM THE LATTICE VIEWPOINT. By Mow Wai Ho MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION FROM THE LATTICE VIEWPOINT By Mow Wai Ho A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Philosophy Department of Information

More information

A Thesis for the Degree of Master. An Improved LLR Computation Algorithm for QRM-MLD in Coded MIMO Systems

A Thesis for the Degree of Master. An Improved LLR Computation Algorithm for QRM-MLD in Coded MIMO Systems A Thesis for the Degree of Master An Improved LLR Computation Algorithm for QRM-MLD in Coded MIMO Systems Wonjae Shin School of Engineering Information and Communications University 2007 An Improved LLR

More information

Rematch and Forward: Joint Source-Channel Coding for Communications

Rematch and Forward: Joint Source-Channel Coding for Communications Background ρ = 1 Colored Problem Extensions Rematch and Forward: Joint Source-Channel Coding for Communications Anatoly Khina Joint work with: Yuval Kochman, Uri Erez, Ram Zamir Dept. EE - Systems, Tel

More information

Approximate Minimum Bit-Error Rate Multiuser Detection

Approximate Minimum Bit-Error Rate Multiuser Detection Approximate Minimum Bit-Error Rate Multiuser Detection Chen-Chu Yeh, Renato R. opes, and John R. Barry School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia 30332-0250

More information

Imperfect Sampling Moments and Average SINR

Imperfect Sampling Moments and Average SINR Engineering Notes Imperfect Sampling Moments and Average SINR Dragan Samardzija Wireless Research Laboratory, Bell Labs, Lucent Technologies, 791 Holmdel-Keyport Road, Holmdel, NJ 07733, USA dragan@lucent.com

More information

Convolutional Codes ddd, Houshou Chen. May 28, 2012

Convolutional Codes ddd, Houshou Chen. May 28, 2012 Representation I, II Representation III, IV trellis of Viterbi decoding Turbo codes Convolutional Codes ddd, Houshou Chen Department of Electrical Engineering National Chung Hsing University Taichung,

More information

Coding on a Trellis: Convolutional Codes

Coding on a Trellis: Convolutional Codes .... Coding on a Trellis: Convolutional Codes Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete November 6th, 2008 Telecommunications Laboratory (TUC) Coding on a Trellis:

More information

Linear Optimum Filtering: Statement

Linear Optimum Filtering: Statement Ch2: Wiener Filters Optimal filters for stationary stochastic models are reviewed and derived in this presentation. Contents: Linear optimal filtering Principle of orthogonality Minimum mean squared error

More information

Turbo Codes. Manjunatha. P. Professor Dept. of ECE. June 29, J.N.N. College of Engineering, Shimoga.

Turbo Codes. Manjunatha. P. Professor Dept. of ECE. June 29, J.N.N. College of Engineering, Shimoga. Turbo Codes Manjunatha. P manjup.jnnce@gmail.com Professor Dept. of ECE J.N.N. College of Engineering, Shimoga June 29, 2013 [1, 2, 3, 4, 5, 6] Note: Slides are prepared to use in class room purpose, may

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Minimum BER Linear Transceivers for Block. Communication Systems. Lecturer: Tom Luo

Minimum BER Linear Transceivers for Block. Communication Systems. Lecturer: Tom Luo Minimum BER Linear Transceivers for Block Communication Systems Lecturer: Tom Luo Outline Block-by-block communication Abstract model Applications Current design techniques Minimum BER precoders for zero-forcing

More information

Soft-Output Trellis Waveform Coding

Soft-Output Trellis Waveform Coding Soft-Output Trellis Waveform Coding Tariq Haddad and Abbas Yongaçoḡlu School of Information Technology and Engineering, University of Ottawa Ottawa, Ontario, K1N 6N5, Canada Fax: +1 (613) 562 5175 thaddad@site.uottawa.ca

More information

A REDUCED COMPLEXITY TWO-DIMENSIONAL BCJR DETECTOR FOR HOLOGRAPHIC DATA STORAGE SYSTEMS WITH PIXEL MISALIGNMENT

A REDUCED COMPLEXITY TWO-DIMENSIONAL BCJR DETECTOR FOR HOLOGRAPHIC DATA STORAGE SYSTEMS WITH PIXEL MISALIGNMENT A REDUCED COMPLEXITY TWO-DIMENSIONAL BCJR DETECTOR FOR HOLOGRAPHIC DATA STORAGE SYSTEMS WITH PIXEL MISALIGNMENT 1 S. Iman Mossavat, 2 J.W.M.Bergmans 1 iman@nus.edu.sg 1 National University of Singapore,

More information

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2 EE29C Spring 2 Lecture 6: Link Performance Analysis Elad Alon Dept. of EECS Motivation V in, ampl Voff BER = 2 erfc 2σ noise Does eqn. above predict everything? EE29C Lecture 5 2 Traditional Approach Borrowed

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 13 Linear Zero Forcing Equalization 0 c 2012, Georgia Institute of Technology (lect13 1) Equalization The cascade of the transmit filter g(t), channel c(t), receiver filter

More information

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS Yngve Selén and Eri G Larsson Dept of Information Technology Uppsala University, PO Box 337 SE-71 Uppsala, Sweden email: yngveselen@ituuse

More information

Sensors. Chapter Signal Conditioning

Sensors. Chapter Signal Conditioning Chapter 2 Sensors his chapter, yet to be written, gives an overview of sensor technology with emphasis on how to model sensors. 2. Signal Conditioning Sensors convert physical measurements into data. Invariably,

More information

Equalization. Contents. John Barry. October 5, 2015

Equalization. Contents. John Barry. October 5, 2015 Equalization John Barry October 5, 205 School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA 30332-0250 barry@ece.gatech.edu Contents Motivation 2 2 Models and Metrics

More information

Theory and Problems of Signals and Systems

Theory and Problems of Signals and Systems SCHAUM'S OUTLINES OF Theory and Problems of Signals and Systems HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University

More information

EE Introduction to Digital Communications Homework 8 Solutions

EE Introduction to Digital Communications Homework 8 Solutions EE 2 - Introduction to Digital Communications Homework 8 Solutions May 7, 2008. (a) he error probability is P e = Q( SNR). 0 0 0 2 0 4 0 6 P e 0 8 0 0 0 2 0 4 0 6 0 5 0 5 20 25 30 35 40 SNR (db) (b) SNR

More information

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems 홀로그램저장재료 Holographic materials Material Reusable Processing Type of Exposure Spectral Resol. Max. diff. hologram (J/m2) sensitivity (lim./mm) efficiency Photographic emulsion Dichromated gelatin Photoresists

More information

ELEG 5173L Digital Signal Processing Ch. 5 Digital Filters

ELEG 5173L Digital Signal Processing Ch. 5 Digital Filters Department of Electrical Engineering University of Aransas ELEG 573L Digital Signal Processing Ch. 5 Digital Filters Dr. Jingxian Wu wuj@uar.edu OUTLINE 2 FIR and IIR Filters Filter Structures Analog Filters

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

1 1 0, g Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g

1 1 0, g Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g Exercise Generator polynomials of a convolutional code, given in binary form, are g 0, g 2 0 ja g 3. a) Sketch the encoding circuit. b) Sketch the state diagram. c) Find the transfer function TD. d) What

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Statistical and Adaptive Signal Processing

Statistical and Adaptive Signal Processing r Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing Dimitris G. Manolakis Massachusetts Institute of Technology Lincoln Laboratory

More information

Time Series Analysis: 4. Linear filters. P. F. Góra

Time Series Analysis: 4. Linear filters. P. F. Góra Time Series Analysis: 4. Linear filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Linear filters in the Fourier domain Filtering: Multiplying the transform by a transfer function. g n DFT G

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Linear Prediction Theory

Linear Prediction Theory Linear Prediction Theory Joseph A. O Sullivan ESE 524 Spring 29 March 3, 29 Overview The problem of estimating a value of a random process given other values of the random process is pervasive. Many problems

More information

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Matched Filter Generalized Matched Filter Signal

More information

Method for analytically calculating BER (bit error rate) in presence of non-linearity. Gaurav Malhotra Xilinx

Method for analytically calculating BER (bit error rate) in presence of non-linearity. Gaurav Malhotra Xilinx Method for analytically calculating BER (bit error rate) in presence of non-linearity Gaurav Malhotra Xilinx Outline Review existing methodology for calculating BER based on linear system analysis. Link

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

Slide Set Data Converters. Digital Enhancement Techniques

Slide Set Data Converters. Digital Enhancement Techniques 0 Slide Set Data Converters Digital Enhancement Techniques Introduction Summary Error Measurement Trimming of Elements Foreground Calibration Background Calibration Dynamic Matching Decimation and Interpolation

More information

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie WIENER FILTERING Presented by N.Srikanth(Y8104060), M.Manikanta PhaniKumar(Y8104031). INDIAN INSTITUTE OF TECHNOLOGY KANPUR Electrical Engineering dept. INTRODUCTION Noise is present in many situations

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO 10, OCTOBER 2003 1 Algebraic Properties of Space Time Block Codes in Intersymbol Interference Multiple-Access Channels Suhas N Diggavi, Member,, Naofal Al-Dhahir,

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

Optimal Time Domain Equalization Design for Maximizing Data Rate of Discrete Multi-Tone Systems

Optimal Time Domain Equalization Design for Maximizing Data Rate of Discrete Multi-Tone Systems IEEE TRANSACTIONS ON SIGNAL PROCESSING 1 Optimal Time Domain Equalization Design for Maximizing Data Rate of Discrete Multi-Tone Systems Milo s Milo sević, Student Member, IEEE, Lúcio F C Pessoa, Senior

More information

Bounds on the Information Rate for Sparse Channels with Long Memory and i.u.d. Inputs

Bounds on the Information Rate for Sparse Channels with Long Memory and i.u.d. Inputs IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 2, DECEMBER 2 3343 Bounds on the Information Rate for Sparse Channels with Long Memory and i.u.d. Inputs Andreja Radosevic, Student Member, IEEE, Dario

More information