EE303: Communication Systems

Size: px
Start display at page:

Download "EE303: Communication Systems"

Transcription

1 EE303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 1 / 36

2 Table of Contents 1 Introduction Communication Systems - Block Diagrams Simplified Block Diagrams 2 Communication Signals Classification of Signals Some Signal Parameters Signal Bandwidth Redundancy - Autocorrelation Similarity - Cross Correlation 3 Parseval s and Wiener-Khinchin(W-K) Theorems 4 Woodwards s Notation and Fourier Transform Introduction Examples Fourier Transform Tables 5 Comm Systems: Basic Performance Criteria 6 Additive Noise Additive White Gaussian Noise (AWGN) Bandlimited AWGN "I" and "Q" Noise Components 7 Tail function (or Q-function) for Gaussian Signals Probablity and Probability-Density-Function (pdf) Gaussian pdf and Tail function Tail Function Graph Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 2 / 36

3 Introduction Communication Systems - Block Diagrams Block Structure of a Digital Comm System Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 3 / 36

4 Introduction Communication Systems - Block Diagrams Block Structure of a Spread Spectrum Comm System Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 4 / 36

5 Introduction Communication Systems - Block Diagrams Multi-carrier Comm Systems Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 5 / 36

6 Introduction Simplified Block Diagrams Simplified Block Diagrams A simplified and general block structure of a Digital Communication System is shown in the following page. it is common practice its quality to be expressed in terms of the accuracy with which the binary digits delivered at the output of the detector/rx (point B) represent the binary digits that were fed into the digital modulator/tx (point B). It is generally taken that it is the fraction of the binary digits that are delivered back in error that is a measure of the quality of the communication system. This fraction, or rate, is referred to as the probability of a bit in error, or, Bit-Error-Rate BER (point B). Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 6 / 36

7 Introduction Simplified Block Diagrams Digital Communication Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 7 / 36

8 Introduction Simplified Block Diagrams Digital Transmission of Analogue Signals Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 8 / 36

9 Introduction Simplified Block Diagrams cont. N.B.: Quality is measured as the Signal-to-Noise (SNR) at point T - known as input SNR (analogue signals degrade as noise level increases) the SNR at point  - known as output SNR Bit-Error-Rate at point B Note that like Wireline and fiber communications wireless communications are also fully digital. It is clear from the previous discussion that signals (representing bits) propagate through the networks. Therefore the following sections are concerned with the main properties and parameters of communication signals. Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v.17 9 / 36

10 Communication Signals Communication Signals Frequency Domain (spectrum) is very important in Communications Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

11 Communication Signals Classification of Signals Classifications of Signals According to their description Deterministic Signals Random * describable by mathematical functions * these are unpredictable * cannot be expressed as a function * can be expressed probabilistically Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

12 Communication Signals Classification of Signals Classifications of Signals According to their periodicity Periodic Non-Periodic N.B.:according to Fourier Series Theorem any periodic waveform can be represented by a sum of sinusoidals having frequencies F 0 = 1 T 0, 2F 0, 3F 0, etc. Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

13 Communication Signals Classification of Signals Classifications of Signals According to their Energy Energy Signals (Energy< ) Power Signals (Energy= ) N.B.: Energy= g(t)2 dt Signals of finite duration are Energy Signals Periodic Signals are Power Signals Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

14 Communication Signals Classification of Signals Classifications of Signals According to their Spectrum Low Pass Signals Band Pass Signals Other types Bandwidth=W W =max Freq. Bandwidth=B e.g all-pass, high-pass Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

15 Communication Signals Classification of Signals Classifications of Signals (cont.) According to their Spectrum (Power Spectral Density, PSD(f)) Low Pass Signals (Bandwidth=W ) Band Pass Signals Bandwidth=B Fractional Bandwidth= B F c Narrow Band Wide Band Ultra Wide Band 0 < B fr < < B fr < < B fr < 2.00 Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

16 Communication Signals Some Signal Parameters Some Signal Parameters The figures below show the following parameters: peak (Volts) or peak-to-peak Energy (J) (or Power (W)) - over 1Ω resistor rms (Volts) Crest Factor: CF= peak rms (.)2 Power= Energy T Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

17 Communication Signals Signal Bandwidth Signal Bandwidth Bandwidth of a signal: is the range of the significant frequency components in a signal waveform Examples of message signals (baseband signals) and their bandwidth: television signal bandwidth 5.5MHz speech signal bandwidth 4KHz audio signal bandwidth 8kHz to 20kHz Note that there are various definitions of bandwidth, e.g. 3dB bandwidth, (see B 2 ) or 10dB bandwidth null-to-null bandwidth, (see B 1 = T 2,where T =signal duration). Nyquist (minimum) bandwidth (see B 3 = T 1 ) Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

18 Communication Signals Redundancy - Autocorrelation Redundancy - Autocorrelation The degree of Redundancy in a signal is provided by its autocorrelation function. For instance the autocorrelation function of a signal is R gg (τ) NB: if τ = fixed then R gg (τ) = a number if τ = variable (i.e. τ) then R gg (τ) = a function of τ Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

19 Communication Signals Similarity - Cross Correlation Similarity - Cross Correlation The degree of Similarity between two signals is given by their cross-correlation function. For instance the cross-correlation function between two signals g 1 (t) and g 2 (t) is R g1 g 2 (τ) NB: if τ = fixed then R g1 g 2 (τ) = a number if τ = variable (i.e. τ) then R g1 g 2 (τ) = a function of τ Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

20 Parseval s and Wiener-Khinchin(W-K) Theorems Parseval s and Wiener-Khinchin(W-K) Theorems Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

21 Parseval s and Wiener-Khinchin(W-K) Theorems "Accumulators" and "Averaging" Devices Definitions Accumulators: t2 Averaging: 1 t 2 t 1 t2 t 1 1 M Examples Accumulators corresponding to Energy Averaging corresponding to Power t 1 M i=1 M i=1 R gg (τ) t2 t 1 E{.} g(t).g(t τ)dt ESD g (f ) =FT{R gg (τ)} R gg (τ) 1 t2 =t 1 +τ t 2 t 1 t 1 R gg (τ) E{g(t).g(t τ)} PSD g (f ) =FT{R gg (τ)} g(t).g(t τ)dt Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

22 Woodwards s Notation and Fourier Transform Introduction Woodwards s Notation and FT The evaluation of FT, that is FT{g(t)} = G (f ) FT 1 {G (f )} = g(t) g(t). exp( j2πft).dt (1) G (f ). exp(+j2πft).df (2) involves integrating the product of a function and a complex exponential - which can be diffi cult; so tables of useful transformations are frequently used. However, the use of tables is greatly simplified by employing Woodward s notation for certain commonly occurring situations. Main advantage of using Woodward s notation: allows periodic time/frequency functions to be handled with FT rather than Fourier Series. Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

23 Woodwards s Notation and Fourier Transform Introduction cont. 1. rect{t} { 1 if t < otherwise 2. sinc{t} sin(πt) πt 3. Λ{t} { 1 t if 0 t t if 1 t 0 Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

24 Woodwards s Notation and Fourier Transform Introduction cont. 4. rep T {g(t)} + g(t nt ) n :... 2, 2, 1, 0, 1,... n= 5. comb T {g(t)} + g(nt ).δ(t nt ) n= also known as sampling function Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

25 Woodwards s Notation and Fourier Transform Examples Examples we can generate any desired "rect" function by scaling and shifting - see for instance the following table shifting scaling shifting+scaling { } { } t t τ g(t) =rect{t τ} g(t) =rect g(t) =rect T T 1 2 t τ t T t τ T 1 2 τ 1 2 t τ T 2 t T 2 τ T 2 t τ + T 2 Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

26 Woodwards s Notation and Fourier Transform Examples Effects of Scaling as T FT becomes narrower and amplitude rises δ-function at 0 frequency when T Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

27 Woodwards s Notation and Fourier Transform Fourier Transform Tables Fourier Transform Tables Description Function Transformation 1 Definition g(t) G (f ) = g(t).e j2πft dt 2 Scaling g ( ) t T T.G (ft ) 3 Time shift g(t T ) G (f ).e j2πft 4 Frequency shift g(t).e j2πft G (f F ) 5 Complex conjugate g (t) G ( f ) 6 Temporal derivative d n dt g(t) n (j2πf )n.g (f ) 7 Spectral derivative ( j2πt) n.g(t) d n df G (f ) n 8 Reciprocity G (t) g( f ) 9 Linearity A.g(t) + B.h(t) A.G (f ) + B.H(f ) 10 Multiplication g(t).h(t) G (f ) H(f ) 11 Convolution g(t) h(t) G (f ).H(f ) 12 Delta function δ(t) 1 13 Constant 1 δ(f ) { 1 if t < 1 14 Rectangular function rect{t} 2 sinc{f } sin(πf ) 0 otherwise πf 15 Sinc function sinc(t) rect{f } { 1 t > 0 16 Unit step function u(t) 0 t < 0 17 Signum function sgn(t) 18 decaying exp (two-sided) 19 decaying exp (one-sided) { 1 t > 0 1 t < δ(f ) j 2πf j πf e t 2 1+(2πf ) 2 e t.u(t) 1 j2πf 1+(2πf ) 2 20 Gaussian function e πt2 e πf 2 { 1 t if 0 t 1 21 Lambda function Λ{t} sinc 1 + t if 1 t 0 2 {f } 22 Repeated function rept {g(t)} = g(t) rept {δ(t)} 1 T comb 1T {G (f )} 23 Sampled function combt {g(t)} = g(t).rept {δ(t)} 1 T rep 1 {G (f )} T Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

28 Comm Systems: Basic Performance Criteria Basic Performance Criteria SNR in = Power of signal at T {(βs(t)) Power of noise at T = E 2} E {n(t) 2 } = β2 P s N 0 B }{{} P n p e = BER at point B (4) SNR out = (3) Power of signal at  Power of noise at  = f{p }{{ e} (5) } denotes: a function of p e Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

29 Additive Noise Additive Noise types of channel signals s(t), r(t), n(t): bandpass n i (t) = AWGN: allpass Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

30 Additive Noise Additive White Gaussian Noise (AWGN) n i (t) it is a random all-pass signal its Power Spectral Density is "White" i.e. "flat". That is, PSD ni (f ) = N 0 2 (6) its amplitude probability density ( function is Gaussian ) its Autocorrelation function i.e. FT 1 {PSD(f )} is: R ni n i (τ) = N 0 2 δ(τ) (7) Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

31 Additive Noise Bandlimited AWGN Bandlimited AWGN n(t) it is a random Band-Pass signal of bandwidth B (equal to the channel bandwidth) its Power Spectral Density is "bandmimited White". That is, PSD ni (f ) = N 0 2 Its power is: ( { } { }) f + Fc f Fc rect + rect B B P n = σ 2 n = PSD ni (f ).df = N 0 2 B 2 P n = N 0 B (9) (8) Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

32 Additive Noise Bandlimited AWGN more on n(t): its amplitude probability density function is Gaussian It is also known as bandlimited-awgn It can be written as follows: where pdf n = N(0, σ 2 n = N 0 B) (10) n(t) = n c (t) cos(2πf c t) n s (t) sin(2πf c t) (11) = } nc 2 (t) + ns 2 (t) cos(2πf c t + φ n (t)) {{} (12) r n (t) n c (t) and n s (t) are random signals - with pdf=gaussian distribution r n (t) is a random signal - with pdf=rayleigh distribution φ n (t) is a random signal - with pdf=uniform distribution: [0, 2π]) N.B.: all the above are low pass signals & appear at Rx s o/p Equ. 11 is known as Quadrature Noise Representation. Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

33 Additive Noise "I" and "Q" Noise Components "I" and "Q" Noise Components n c (t) (i.e. "I") and n s (t) (i.e. "Q") their Power Spectral Densities are: their power are: { } f PSD nc (f ) = PSD ns (f ) = N 0 rect B P nc = σ 2 n c = PSD nc (f ).df = N 0 B (13) P nc = P ns = P n = N 0 B (14) Amplitude probability density functions: Gaussian, are uncorrelated i.e. E {n c (t).n s (t)} = 0 pdf nc = pdf ns = N(0, N 0 B) (15) Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

34 Tail function (or Q-function) for Gaussian Signals Probablity and Probability-Density-Function (pdf) Tail function (or Q-function) for Gaussian Signals Probablity and Probability-Density-Function (pdf) Consider a random signal x(t) with a known amplitude probability density function pdf x (x) - not necessarily Gaussian. Then the probability that the amplitude of x(t) is greater than A Volts (say) is given as follows: Pr(x(t) > A) = A pdf x (x).dx (16) e.g. if A = 3V Pr(x(t) > 3V ) = 3 pdf x (x).dx = highlighted area Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

35 Tail function (or Q-function) for Gaussian Signals Gaussian pdf and Tail function Gaussian pdf and Tail function If pdf x (x) = Gaussian of mean µ x and standard deviation σ x (notation used: pdf x (x) = N(µ x, σ 2 x ), then the above area is defined as the Tail-function (or Q-function) e.g. Pr(x(t) > A) = A pdf x (x).dx T{ A µ x σ x } (17) if pdf x (x) = N(1, 4) - i.e. µ x = 0, σ x = 2 - and A = 3V then Pr(x(t) > 3V ) = 3 pdf x (x).dx T{ 3 1 if pdf x (x) = N(0, 1) and A = 3V then Pr(x(t) > 3V ) = 3 pdf x (x).dx T{3} The Tail function graph is given in the next page 2 }=T{1} Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

36 Tail function (or Q-function) for Gaussian Signals Tail Function Graph Prof. A. Manikas (Imperial College) EE303: Introductory Concepts v / 36

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE.401: Introductory

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Information Sources. Professor A. Manikas. Imperial College London. EE303 - Communication Systems An Overview of Fundamentals

Information Sources. Professor A. Manikas. Imperial College London. EE303 - Communication Systems An Overview of Fundamentals Information Sources Professor A. Manikas Imperial College London EE303 - Communication Systems An Overview of Fundamentals Prof. A. Manikas (Imperial College) EE303: Information Sources 24 Oct. 2011 1

More information

Signals and Systems: Part 2

Signals and Systems: Part 2 Signals and Systems: Part 2 The Fourier transform in 2πf Some important Fourier transforms Some important Fourier transform theorems Convolution and Modulation Ideal filters Fourier transform definitions

More information

E303: Communication Systems

E303: Communication Systems E303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Principles of PCM Prof. A. Manikas (Imperial College) E303: Principles of PCM v.17

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

E303: Communication Systems

E303: Communication Systems E303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London An Overview of Fundamentals: PN-codes/signals & Spread Spectrum (Part B) Prof. A. Manikas

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, Prof. Young-Chai Ko

Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, Prof. Young-Chai Ko Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, 20 Prof. Young-Chai Ko koyc@korea.ac.kr Summary Fourier transform Properties Fourier transform of special function Fourier

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

5 Analog carrier modulation with noise

5 Analog carrier modulation with noise 5 Analog carrier modulation with noise 5. Noisy receiver model Assume that the modulated signal x(t) is passed through an additive White Gaussian noise channel. A noisy receiver model is illustrated in

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example Introduction to Fourier ransforms Lecture 7 ELE 3: Signals and Systems Fourier transform as a limit of the Fourier series Inverse Fourier transform: he Fourier integral theorem Prof. Paul Cuff Princeton

More information

Fundamentals of Noise

Fundamentals of Noise Fundamentals of Noise V.Vasudevan, Department of Electrical Engineering, Indian Institute of Technology Madras Noise in resistors Random voltage fluctuations across a resistor Mean square value in a frequency

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

2.1 Introduction 2.22 The Fourier Transform 2.3 Properties of The Fourier Transform 2.4 The Inverse Relationship between Time and Frequency 2.

2.1 Introduction 2.22 The Fourier Transform 2.3 Properties of The Fourier Transform 2.4 The Inverse Relationship between Time and Frequency 2. Chapter2 Fourier Theory and Communication Signals Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Contents 2.1 Introduction 2.22

More information

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS ch03.qxd 1/9/03 09:14 AM Page 35 CHAPTER 3 MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS 3.1 INTRODUCTION The study of digital wireless transmission is in large measure the study of (a) the conversion

More information

EE4061 Communication Systems

EE4061 Communication Systems EE4061 Communication Systems Week 11 Intersymbol Interference Nyquist Pulse Shaping 0 c 2015, Georgia Institute of Technology (lect10 1) Intersymbol Interference (ISI) Tx filter channel Rx filter a δ(t-nt)

More information

2.1 Basic Concepts Basic operations on signals Classication of signals

2.1 Basic Concepts Basic operations on signals Classication of signals Haberle³me Sistemlerine Giri³ (ELE 361) 9 Eylül 2017 TOBB Ekonomi ve Teknoloji Üniversitesi, Güz 2017-18 Dr. A. Melda Yüksel Turgut & Tolga Girici Lecture Notes Chapter 2 Signals and Linear Systems 2.1

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module Signal Representation and Baseband Processing Version ECE II, Kharagpur Lesson 8 Response of Linear System to Random Processes Version ECE II, Kharagpur After reading this lesson, you will learn

More information

Summary of Fourier Transform Properties

Summary of Fourier Transform Properties Summary of Fourier ransform Properties Frank R. Kschischang he Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of oronto January 7, 207 Definition and Some echnicalities

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Fourier Analysis and Power Spectral Density

Fourier Analysis and Power Spectral Density Chapter 4 Fourier Analysis and Power Spectral Density 4. Fourier Series and ransforms Recall Fourier series for periodic functions for x(t + ) = x(t), where x(t) = 2 a + a = 2 a n = 2 b n = 2 n= a n cos

More information

Example: Bipolar NRZ (non-return-to-zero) signaling

Example: Bipolar NRZ (non-return-to-zero) signaling Baseand Data Transmission Data are sent without using a carrier signal Example: Bipolar NRZ (non-return-to-zero signaling is represented y is represented y T A -A T : it duration is represented y BT. Passand

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information

s o (t) = S(f)H(f; t)e j2πft df,

s o (t) = S(f)H(f; t)e j2πft df, Sample Problems for Midterm. The sample problems for the fourth and fifth quizzes as well as Example on Slide 8-37 and Example on Slides 8-39 4) will also be a key part of the second midterm.. For a causal)

More information

Fourier Analysis and Sampling

Fourier Analysis and Sampling Chapter Fourier Analysis and Sampling Fourier analysis refers to a collection of tools that can be applied to express a function in terms of complex sinusoids, called basis elements, of different frequencies.

More information

The Discrete Fourier Transform. Signal Processing PSYCH 711/712 Lecture 3

The Discrete Fourier Transform. Signal Processing PSYCH 711/712 Lecture 3 The Discrete Fourier Transform Signal Processing PSYCH 711/712 Lecture 3 DFT Properties symmetry linearity shifting scaling Symmetry x(n) -1.0-0.5 0.0 0.5 1.0 X(m) -10-5 0 5 10 0 5 10 15 0 5 10 15 n m

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis 2 requency-domain Analysis Electrical engineers live in the two worlds, so to speak, of time and frequency. requency-domain analysis is an extremely valuable tool to the communications engineer, more so

More information

Signal Processing Signal and System Classifications. Chapter 13

Signal Processing Signal and System Classifications. Chapter 13 Chapter 3 Signal Processing 3.. Signal and System Classifications In general, electrical signals can represent either current or voltage, and may be classified into two main categories: energy signals

More information

EE 637 Final April 30, Spring Each problem is worth 20 points for a total score of 100 points

EE 637 Final April 30, Spring Each problem is worth 20 points for a total score of 100 points EE 637 Final April 30, Spring 2018 Name: Instructions: This is a 120 minute exam containing five problems. Each problem is worth 20 points for a total score of 100 points You may only use your brain and

More information

8.1 Circuit Parameters

8.1 Circuit Parameters 8.1 Circuit Parameters definition of decibels using decibels transfer functions impulse response rise time analysis Gaussian amplifier transfer function RC circuit transfer function analog-to-digital conversion

More information

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Digital Baseband Systems. Reference: Digital Communications John G. Proakis Digital Baseband Systems Reference: Digital Communications John G. Proais Baseband Pulse Transmission Baseband digital signals - signals whose spectrum extend down to or near zero frequency. Model of the

More information

Representation of Signals and Systems. Lecturer: David Shiung

Representation of Signals and Systems. Lecturer: David Shiung Representation of Signals and Systems Lecturer: David Shiung 1 Abstract (1/2) Fourier analysis Properties of the Fourier transform Dirac delta function Fourier transform of periodic signals Fourier-transform

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Digital Communications: An Overview of Fundamentals

Digital Communications: An Overview of Fundamentals IMPERIAL COLLEGE of SCIENCE, TECHNOLOGY and MEDICINE, DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING. COMPACT LECTURE NOTES on COMMUNICATION THEORY. Prof Athanassios Manikas, Spring 2001 Digital Communications:

More information

Digital Communications

Digital Communications Digital Communications Chapter 9 Digital Communications Through Band-Limited Channels Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications:

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Department of Electrical Engineering University of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Introduction Fourier Transform Properties of Fourier

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Signals and Systems Lecture 14 DR TAIA STATHAKI READER (ASSOCIATE PROFESSOR) I SIGAL PROCESSIG IMPERIAL COLLEGE LODO Introduction. Time sampling theorem resume. We wish to perform spectral analysis using

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, and Noise Modeling Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Emil Björnson Course Director

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

8 PAM BER/SER Monte Carlo Simulation

8 PAM BER/SER Monte Carlo Simulation xercise.1 8 PAM BR/SR Monte Carlo Simulation - Simulate a 8 level PAM communication system and calculate bit and symbol error ratios (BR/SR). - Plot the calculated and simulated SR and BR curves. - Plot

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

A First Course in Digital Communications

A First Course in Digital Communications A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk February 9 A First Course in Digital Communications 1/46 Introduction There are benefits to be gained when M-ary (M = 4 signaling methods

More information

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2 ECE 341: Probability and Random Processes for Engineers, Spring 2012 Homework 13 - Last homework Name: Assigned: 04.18.2012 Due: 04.25.2012 Problem 1. Let X(t) be the input to a linear time-invariant filter.

More information

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems.

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems. EE 637 Final May 4, Spring 200 Name: Instructions: This is a 20 minute exam containing five problems. Each problem is worth 20 points for a total score of 00 points You may only use your brain and a pencil

More information

Chapter 5 Random Variables and Processes

Chapter 5 Random Variables and Processes Chapter 5 Random Variables and Processes Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University Table of Contents 5.1 Introduction 5. Probability

More information

Sample Problems for the 9th Quiz

Sample Problems for the 9th Quiz Sample Problems for the 9th Quiz. Draw the line coded signal waveform of the below line code for 0000. (a Unipolar nonreturn-to-zero (NRZ signaling (b Polar nonreturn-to-zero (NRZ signaling (c Unipolar

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Random Processes Handout IV

Random Processes Handout IV RP-IV.1 Random Processes Handout IV CALCULATION OF MEAN AND AUTOCORRELATION FUNCTIONS FOR WSS RPS IN LTI SYSTEMS In the last classes, we calculated R Y (τ) using an intermediate function f(τ) (h h)(τ)

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Information and Communications Security: Encryption and Information Hiding

Information and Communications Security: Encryption and Information Hiding Short Course on Information and Communications Security: Encryption and Information Hiding Tuesday, 10 March Friday, 13 March, 2015 Lecture 5: Signal Analysis Contents The complex exponential The complex

More information

Digital Communications

Digital Communications Digital Communications Chapter 5 Carrier and Symbol Synchronization Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications Ver 218.7.26

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

8: Correlation. E1.10 Fourier Series and Transforms ( ) Fourier Transform - Correlation: 8 1 / 11. 8: Correlation

8: Correlation. E1.10 Fourier Series and Transforms ( ) Fourier Transform - Correlation: 8 1 / 11. 8: Correlation E. Fourier Series and Transforms (25-5585) - Correlation: 8 / The cross-correlation between two signals u(t) and v(t) is w(t) = u(t) v(t) u (τ)v(τ +t)dτ = u (τ t)v(τ)dτ [sub: τ τ t] The complex conjugate,

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

7.1 Sampling and Reconstruction

7.1 Sampling and Reconstruction Haberlesme Sistemlerine Giris (ELE 361) 6 Agustos 2017 TOBB Ekonomi ve Teknoloji Universitesi, Guz 2017-18 Dr. A. Melda Yuksel Turgut & Tolga Girici Lecture Notes Chapter 7 Analog to Digital Conversion

More information

Kevin Buckley a i. communication. information source. modulator. encoder. channel. encoder. information. demodulator decoder. C k.

Kevin Buckley a i. communication. information source. modulator. encoder. channel. encoder. information. demodulator decoder. C k. Kevin Buckley - -4 ECE877 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set Review of Digital Communications, Introduction to

More information

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch 10.1-10.5 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered

More information

Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test

Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test Mike Li and Jan Wilstrup Wavecrest Purposes Illustrate the shortfalls of simple parametric

More information

EE 574 Detection and Estimation Theory Lecture Presentation 8

EE 574 Detection and Estimation Theory Lecture Presentation 8 Lecture Presentation 8 Aykut HOCANIN Dept. of Electrical and Electronic Engineering 1/14 Chapter 3: Representation of Random Processes 3.2 Deterministic Functions:Orthogonal Representations For a finite-energy

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 4. Envelope Correlation Space-time Correlation

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 4. Envelope Correlation Space-time Correlation ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 4 Envelope Correlation Space-time Correlation 1 Autocorrelation of a Bandpass Random Process Consider again the received band-pass random process r(t) = g

More information

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Reading: Ch. 5 in Kay-II. (Part of) Ch. III.B in Poor. EE 527, Detection and Estimation Theory, # 5c Detecting Parametric Signals in Noise

More information

1 Signals and systems

1 Signals and systems 978--52-5688-4 - Introduction to Orthogonal Transforms: With Applications in Data Processing and Analysis Signals and systems In the first two chapters we will consider some basic concepts and ideas as

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digital Communications Professor Ha Nguyen September 5 EE456 Digital Communications Block Diagram of Binary Communication Systems m ( t { b k } b k = s( t b = s ( t k m ˆ ( t { bˆ } k r( t Bits in

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

1 Understanding Sampling

1 Understanding Sampling 1 Understanding Sampling Summary. In Part I, we consider the analysis of discrete-time signals. In Chapter 1, we consider how discretizing a signal affects the signal s Fourier transform. We derive the

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

II - Baseband pulse transmission

II - Baseband pulse transmission II - Baseband pulse transmission 1 Introduction We discuss how to transmit digital data symbols, which have to be converted into material form before they are sent or stored. In the sequel, we associate

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

SIGNALS AND SYSTEMS I. RAVI KUMAR

SIGNALS AND SYSTEMS I. RAVI KUMAR Signals and Systems SIGNALS AND SYSTEMS I. RAVI KUMAR Head Department of Electronics and Communication Engineering Sree Visvesvaraya Institute of Technology and Science Mahabubnagar, Andhra Pradesh New

More information

A3. Frequency Representation of Continuous Time and Discrete Time Signals

A3. Frequency Representation of Continuous Time and Discrete Time Signals A3. Frequency Representation of Continuous Time and Discrete Time Signals Objectives Define the magnitude and phase plots of continuous time sinusoidal signals Extend the magnitude and phase plots to discrete

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

Fundamentals of the Discrete Fourier Transform

Fundamentals of the Discrete Fourier Transform Seminar presentation at the Politecnico di Milano, Como, November 12, 2012 Fundamentals of the Discrete Fourier Transform Michael G. Sideris sideris@ucalgary.ca Department of Geomatics Engineering University

More information

Lab 5: Power Spectral Density, Noise, and Symbol Timing Information

Lab 5: Power Spectral Density, Noise, and Symbol Timing Information ECEN 4652/5002 Communications Lab Spring 2017 2-20-17 P. Mathys Lab 5: Power Spectral Density, Noise, and Symbol Timing Information 1 Introduction The two concepts that are most fundamental to the realistic

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS page 1 of 5 (+ appendix) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

More information

A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011

A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 Lecture 6 PDFs for Lecture 1-5 are on the web page Problem set 2 is on the web page Article on web page A Guided

More information

EE Introduction to Digital Communications Homework 8 Solutions

EE Introduction to Digital Communications Homework 8 Solutions EE 2 - Introduction to Digital Communications Homework 8 Solutions May 7, 2008. (a) he error probability is P e = Q( SNR). 0 0 0 2 0 4 0 6 P e 0 8 0 0 0 2 0 4 0 6 0 5 0 5 20 25 30 35 40 SNR (db) (b) SNR

More information

Introduction to Image Processing #5/7

Introduction to Image Processing #5/7 Outline Introduction to Image Processing #5/7 Thierry Géraud EPITA Research and Development Laboratory (LRDE) 2006 Outline Outline 1 Introduction 2 About the Dirac Delta Function Some Useful Functions

More information