Accurate Statistical Analysis of High-Speed Links with PAM-4 Modulation

Size: px
Start display at page:

Download "Accurate Statistical Analysis of High-Speed Links with PAM-4 Modulation"

Transcription

1 EPEPS IBIS Summit San Jose, California October 8, 05 Accurate Statistical Analsis of High-Speed Links with PAM-4 Modulation Vladimir Dmitriev-Zdorov Mentor Graphics Corp.,

2 Wh statistical analsis of SERDES links? Unlike bit-b-bit analsis, statistical simulation can evaluate ver low BER (e- to e-5 and beond) in a reasonable time First statistical/worst case techniques appeared decades ago in Communication Electronics, however, the do not meet the requirements of the modern technolog Among other modern approaches, [,] described the framework that allows accurate statistical analsis of LTI channels with transmit and receive jitter and edge asmmetr. In [3], it was shown that the method can also consider data-dependent jitter, a set of datadependent edge transitions, and correlated input patterns. All that was applied to PAM- (NRZ) modulation. In this work, we generalize these results on PAM-4 modulation [] M. Tsuk, D. Dvorscsak, C.S. Ong, and J. White, An electrical-level superimposed-edge approach to statistical serial link simulation, IEEE/ACM International Conf. on Computer-aided Design Digest of Technical Papers, pp , 009. [] V. Stojanovic, M. Horiwitz, Modeling and analsis of high-speed links, Proc. IEEE Custom Integrated Circuit Conf., pp , Sept 003 [3] V. Dmitriev-Zdorov, Accurate statistical analsis of SERDES links considering correlated input patterns, data-dependent edge transitions, and transmit jitter, DesignCon 05. e-7 e- Bit-b-bit simulation Confidence worsens with fewer samples available at lower probabilit Statistical analsis

3 Major elements of statistical analsis (general formulation), The signal at the output of a linear channel can be represented as n ( t RX ) ( bk bk ) S( t kt TX, k k ) Where T - smbol interval, b k, b k- are smbol values which are {-,} for NRZ and {-, - /3, /3, } for PAM4; S(t) is the channels step response, and TX, RX are transmit and receive jitter. If statistical properties of the input pattern (i.e. distribution of smbol coefficients) and jitter doesn t change in time, (t) is a random variable whose distribution is T-periodic in time. Hence, it can be characterized b a collection of M> PDF or CDF functions. Each one should be computed for t=nt m, m [0,T]. For ever m, the problem reduces to finding na single distribution of the variable ) ( b b ) S ( ), n( m k k n k TXk, k with S S[( n kt ) x] n k m 3

4 In absence of transmit jitter, the samples of the step response are discrete values. The set of samples is defined b the timing offset m within unit interval. S(t) Major elements of statistical analsis (samples of the step response) With random transmit jitter, the samples become random values themselves, with their individual distributions (PDFs shown in green). P(t)=S(t)-S(t-T bit ) 0 T bit In presence of deterministic Tx jitter, the samples or PDFs should be taken at unequal distances: Sine jitter: Dut-ccle distortion: S(t) S(t) 0 0 4

5 Basic computation flow for PAM- For the selected set of samples or vertical PDFs, the cross-section of an ee can be built b a series of shifts (or convolutions) and summations. The samples, k= Q, of the edge/step response are taken in reverse S order. Q-k (-S ) A A No random Tx jitter A Q A 0.5 k A0 k 0.5 A k A0 k (S ) A0 A0 A0 Q A k A k Ee densit plot With random Tx jitter A0 k A0 k k= k=3 k=5 k=0 k=30 5

6 Basic computation flow for PAM-4 The same samples of the step response or same vertical PDFs are used in a 4-level structure (-S ) A3 (/ a )V Q-k (/a) A3 Without random Tx jitter, the shifts of PDFs between the logical states happen in both directions, with increments equal (/3)S Q-k. (-S /3) (S /3) (S ) A A A0 A A A0 With random Tx jitter, PDFs are modified b wa of convolution with scaled/normalized vertical PDFs V Q-k (). Such scaling/normalization is made b appling the factor a, so that V Q-k () becomes (/ a )V Q-k (/a). Negative a means verticall flipped PDF, larger a means expanding along -axis. As in the discrete case, depending on the direction and the magnitude of the transition, a can be /3, 4/3, and. 6

7 What effects can we simulate statisticall? Random transmit (directl) and receive jitter (added b convolution), with different PDFs Deterministic transmit jitter (b uneven sampling of the step response) and receive jitter (b convolution of resulting ee/ber) Different shape of the edges (rising/falling asmmetr for PAM-, or 6 PAM-4 transition edges with different shapes) Can we consider the effects that are data-dependent, such as correlation of the input bit values, data-dependent jitter and edge transitions)? 7

8 Simulation flow as a multistep Markov chain: consider dependenc on more preceding bits, and data-dependent edge transitions. Example of PAM- modulation, N=3. (/)v Q-k (/) (/)v Q-k (-/) A,k z 0 A,k z 7 A 0,k z A 0,k z 6 A 0,k z 5 z A 0,k A 00,k z 4 z 3 A 00,k A 0,k z 3 z 4 A 0,k A 00,k z z 5 A 00,k A 00,k z z 6 A 00,k A 000,k z 0 z 7 A 000,k 8

9 Same with PAM-4 modulation, N= A 33,k A 3,k A 3,k A 30,k A 3,k A,k A,k A 0,k A 3,k A,k A,k A 0,k A 03,k A 0,k A 0,k A 00,k z 4 z 5 z 8 z 6 z 9 z z 7 z 0 z 6 z3 z z 4 5 z z 5 z 4 z 3 z z9 0 z 8 z 7 z 6 z 5 z 4 z 3 z z z 0 (/ a )V Q-k (/a) z 0 z z z 3 A 33,k A 3,k A 3,k A 30,k A 3,k A,k A,k A 0,k A 3,k A,k A,k A 0,k A 03,k A 0,k A 0,k A 00,k In this structure, we can consider identical or individual transition edges. In the last case, all transitions should be evaluated, assuming dependence on the current bit b n and a number of previous bits b n-, b n-. Convolution should be performed with the vertical PDF v a Q k b n ( / ) b a n, bn There are 64 transition probabilit factors z i total. With statistical smmetr, their number is halved. Among those 3, onl 4 are independent (considering 8 normalization conditions). With 4 independent correlation factors measured, we build a sstem of equations and solve it for unknown transition probabilities. 9

10 Statistical Ee Diagrams, PAM-4 modulation, N= PRBS5->Gra->PAM-4, Identical transitions N= Vertical cross-sections of all three PRBS5->Gra->PAM-4, Different transition edges, N= Uncorrelated binar input ->Gra->PAM-4, Different edges, N= 0

11 Sampling thresholds for PAM-4: we can find them from peak distortion Assume:. Identical transition edges. Uncorrelated input pattern (or correlated with statistical smmetr) 3. No jitter, noise, crosstalk and no non-linear equalization. Then the vertical PDFs at different levels can be described in terms of the pulse response samples: 3 pk bk pk k K pk bk pk 3 k K pk bk pk 3 k K 0 pk bk pk k K Here, b k ={, /3} are discrete random variables x sampling position within UI p k (x) cursors of the pulse response for a given offset

12 Sampling thresholds for PAM-4: PAM4_UpperThreshold First, we find the threshold between levels 3 and (PAM4_UpperThreshold). Let s find the worst margins for the distributions at these levels. These are: 3 _ wrst( x) pk pk k K pk _ wrst () x pk () x () x 3 kk Median 3 [ 3_ wrst( x) _ wrst( x)] pk 3 VertEeSiz e 3 [ 3_ wrst( x) _ wrst( x)] pk pk 3 k K As we see, the optimal sampling threshold is a function of the horizontal offset. Its dependence is proportional to the shape of the pulse response (near its peak)

13 The mutuall-worst margins for levels and are: Sampling thresholds for PAM-4: PAM4_CenterThreshold pk _ wrst () x pk () x () x 3 kk pk _ wrst () x pk () x () x 3 kk Median [ _ wrst () x _ wrst ()] x 0 (As expected) VertEeSiz exxx px p kx ()[ _ wrst () _ wrstk ()] () ( ) 3 kk (Same as before) 3

14 The mutuall-worst margins for levels and 0 are: Sampling thresholds for PAM-4: PAM4_LowerThreshold pk _ wrst () x pk () x () x 3 kk pk ( _0 wrst () x pk () x x ) kk Median 0 [ _ wrst () x _0 wrst ()] x pk () x 3 (Opposite to upper threshold) VertEeSiz exxx px p kx 0 ()[ _ wrst () _0 wrstk ()] () ( ) 3 kk (Same as before) 4

15 Sampling thresholds for PAM-4: Can be found from the pulse response of the channel. Ee median (and the optimal sampling threshold) is a function of the sampling position x 0. It can be found as 3 p K ( x 0 ). Under assumed conditions, the vertical openings for all 3 ees are identical. 3. For LTI smmetrical channels and no impairments, the optimal threshold values can be determined from the single bit response (can be found from equalized impulse response of the channel). 5

16 Sampling thresholds for PAM-4: Can be found from the pulse response of the channel, but Uncorrelated crosstalk and noise will not change the relationships found for the ee median and margins (medians still repeat the shape of the pulse response, vertical ee openings are same in the vertical cross-section But, Tx and Rx jitter ma invalidate them (the top and bottom ees are most affected) Even for the balanced ee opening, we ma decide to modif upper or lower sampling threshold, if the timing margin is tighter than the voltage allowance. For example, in the case below we trade some of the vertical space for improved horizontal margin (green versus red sampling) 6

17 Sampling thresholds for PAM-4: For non-lti channels, we can build vertical histogram For non-lti channels, we use bit-b-bit analsis and call GetWave function. If each call processes sufficient number of bits (e.g. -4 thousand), Rx AMI DLL (or EDA tool) can build a vertical histogram from the waveform sampled at the selected location - e.g. dictated b clock times - and find the best threshold values b analzing this histogram. Or, it can find thresholds and offsets from other considerations, based on specific knowledge about device/slicers When simulation advances, the thresholds are updated from the modified waveform etc. 7

18 Finding SER and BER from statistical analsis In statistical analsis, accurate SER and BER evaluation is possible if we store/keep the branches of the ee densit plot separatel. Then, for a given sample position we can find the source and effect of the error and convert SER into BER SER = P(3)[P( 3)P( 3)P(0 3)] P()[P(3 )P( )P(0 )] P()[P(3 )P( )P(0 )] P(0)[P(3 0)P( 0)P( 0)]. We can convert SER into BER if we know the mapping (e.g. Gra code): 0 <=> 00 <=> 0 <=> 3 <=> 0 BER = P(0)[P( 0)*P(0 0)*P(00 0)*] P()[P(0 )*P(0 )*P(00 )*] P(0)[P(0 0)*P( 0)*P(00 0)*] P(00)[P(0 00)*P( 00)*P(0 00)*] Each of the four summands in SER and BER can be found from considering one branch of the ee densit

19 The effects we can consider in statistical simulation with PAM-4 modulation Accurate consideration of ISI and crosstalk Transmit jitter, random and deterministic, and receive jitter Edge asmmetr, or dependence of the edge shapes on a number of preceding bits Correlated input pattern The effect of data-dependent jitter and noise Simulation is fast: tpicall takes a minute or less The branches of ee densit are formed separatel, this allows accurate BER evaluation PAM-4 thresholds are new for IBIS-AMI in IBIS Version 6. 9

Predicting BER to Very Low Probabilities

Predicting BER to Very Low Probabilities Predicting BER to Very Low Probabilities IBIS Summit, DAC, Anaheim, CA June 15, 2010 0.25 0.2 0.15 0.1 0.05 0-0.05-0.1 Arpad Muranyi arpad_muranyi@mentor.com Vladimir Dmitriev-Zdorov -0.15-0.2-0.25-0.5-0.4-0.3-0.2-0.1

More information

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2 EE29C Spring 2 Lecture 6: Link Performance Analysis Elad Alon Dept. of EECS Motivation V in, ampl Voff BER = 2 erfc 2σ noise Does eqn. above predict everything? EE29C Lecture 5 2 Traditional Approach Borrowed

More information

SerDes_Channel_Impulse_Modeling_with_Rambus

SerDes_Channel_Impulse_Modeling_with_Rambus SerDes_Channel_Impulse_Modeling_with_Rambus Author: John Baprawski; John Baprawski Inc. (JB) Email: John.baprawski@gmail.com Web sites: https://www.johnbaprawski.com; https://www.serdesdesign.com Date:

More information

Method for analytically calculating BER (bit error rate) in presence of non-linearity. Gaurav Malhotra Xilinx

Method for analytically calculating BER (bit error rate) in presence of non-linearity. Gaurav Malhotra Xilinx Method for analytically calculating BER (bit error rate) in presence of non-linearity Gaurav Malhotra Xilinx Outline Review existing methodology for calculating BER based on linear system analysis. Link

More information

Presenters. Time Domain and Statistical Model Development, Simulation and Correlation Methods for High Speed SerDes

Presenters. Time Domain and Statistical Model Development, Simulation and Correlation Methods for High Speed SerDes JANUARY 28-31, 2013 SANTA CLARA CONVENTION CENTER Time Domain and Statistical Model Development, Simulation and Correlation Methods or High Speed SerDes Presenters Xingdong Dai Fangyi Rao Shiva Prasad

More information

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013 Issues with sampling time and jitter in Annex 93A Adam Healey IEEE P802.3bj Task Force May 2013 Part 1: Jitter (comment #157) 2 Treatment of jitter in COM Draft 2.0 h (0) (t s ) slope h(0) (t s ) 1 UI

More information

ECE 546 Lecture 23 Jitter Basics

ECE 546 Lecture 23 Jitter Basics ECE 546 Lecture 23 Jitter Basics Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Probe Further D. Derickson and M.

More information

Accurate GHz channel simulation and statistical analysis for SSE(Solution Space Exploration)

Accurate GHz channel simulation and statistical analysis for SSE(Solution Space Exploration) Accurate GHz channel simulation and statistical analysis for SSE(Solution Space Exploration) Asian IBIS Summit Shanghai China Nov11, 2008 Baolong Li, Ansoft Corp. Baolong.li@ansoft.com.cn; Hou Weiping,

More information

3.0 PROBABILITY, RANDOM VARIABLES AND RANDOM PROCESSES

3.0 PROBABILITY, RANDOM VARIABLES AND RANDOM PROCESSES 3.0 PROBABILITY, RANDOM VARIABLES AND RANDOM PROCESSES 3.1 Introduction In this chapter we will review the concepts of probabilit, rom variables rom processes. We begin b reviewing some of the definitions

More information

IBIS-AMI Concern for PAM4 Simulation

IBIS-AMI Concern for PAM4 Simulation IBIS-AMI Concern for PAM4 Simulation Asian IBIS Summit Tokyo, Japan November 16, 2015 Shinichi Maeda E-mail: KEI-Systems@jcom.home.ne.jp 56 Gbps coming soon How to realize 56 Gbps What is PAM4 How to simulate

More information

Anisotropic Substrates Variance for IBIS-AMI Simulation

Anisotropic Substrates Variance for IBIS-AMI Simulation Anisotropic Substrates Variance for IBIS-AMI Simulation Naijen Hsuan naijen.hsuan@ansys.com Asian IBIS Summit Shanghai, China November 15, 2013 1 High speed Challenges Today (1) High Speed Data Rate Issue

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope

Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope Application Note: HFAN-4.5.0 Rev1; 04/08 Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope [A version of this application note has been published in the July, 2002 issue of Communications

More information

The Accuracy of Jitter Measurements

The Accuracy of Jitter Measurements The Accuracy of Jitter Measurements Jitter is a variation in a waveform s timing. The timing variation of the period, duty cycle, frequency, etc. can be measured and compared to an average of multiple

More information

Lecture 5b: Line Codes

Lecture 5b: Line Codes Lecture 5b: Line Codes Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE421: Communications I Digitization Sampling (discrete analog signal). Quantization (quantized discrete

More information

Jitter Decomposition in Ring Oscillators

Jitter Decomposition in Ring Oscillators Jitter Decomposition in Ring Oscillators Qingqi Dou Jacob A. Abraham Computer Engineering Research Center Computer Engineering Research Center The University of Texas at Austin The University of Texas

More information

Jitter Test Methods for 200GAUI-4 and 400GAUI-8

Jitter Test Methods for 200GAUI-4 and 400GAUI-8 Jitter Test Methods for 200GAUI-4 and 400GAUI-8 Yasuo Hidaka Fujitsu Laboratories of America, Inc. IEEE P802.3bs Task Force Electrical Ad hoc, October 17, 2016 IEEE P802.3bs 200GbE and 400GbE Task Force

More information

School of Computer and Communication Sciences. Information Theory and Coding Notes on Random Coding December 12, 2003.

School of Computer and Communication Sciences. Information Theory and Coding Notes on Random Coding December 12, 2003. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences Handout 8 Information Theor and Coding Notes on Random Coding December 2, 2003 Random Coding In this note we prove

More information

DDR4 Board Design and Signal Integrity Verification Challenges

DDR4 Board Design and Signal Integrity Verification Challenges DDR4 Board Design and Signal Integrity Verification Challenges Outline Enabling DDR4 Pseudo Open Drain Driver - Benefit POD SI effects VrefDQ Calculation Data Eye Simulating SSN New Drive Standards Difference

More information

ECE 598 JS Lecture 17 Jitter

ECE 598 JS Lecture 17 Jitter ECE 598 JS Lecture 17 Jitter Spring 2009 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 Jitter Definition Jitter is difference in time of when something

More information

Study of DDR Asymmetric Rt/Ft in Existing IBIS-AMI Flow

Study of DDR Asymmetric Rt/Ft in Existing IBIS-AMI Flow Study f DDR Asymmetric Rt/Ft in Existing IBIS-AMI Flw Asian IBIS Summit Tky, Japan Nvember 2th, 28 Wei-kai Shih, SPISim Wei-kai.Shih@spisim.cm Wei-hsing Huang, SPISim Wei-huang.Huang@spisim.cm Agenda:

More information

Pre Silicon to Post Silicon Overview. Adam Norman Intel Corp. PCCG

Pre Silicon to Post Silicon Overview. Adam Norman Intel Corp. PCCG Pre Silicon to Post Silicon Overview Adam Norman Intel Corp. PCCG What is Pre-Silicon? It is the design Phase of a platform, which is done before silicon/packages/boards have been fabricated. It can take

More information

The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you.

The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you. The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you. Page Correction Sentence added before Figure 2.3: "R 6 out is typically

More information

Comment #38, #40: Jitter Test Methods for 200GAUI-4 and 400GAUI-8

Comment #38, #40: Jitter Test Methods for 200GAUI-4 and 400GAUI-8 Comment #38, #40: Jitter Test Methods for 200GAUI-4 and 400GAUI-8 Yasuo Hidaka Fujitsu Laboratories of America, Inc. IEEE P802.3bs 200GbE and 400GbE Task Force San Antonio, November 7-9, 2016 IEEE P802.3bs

More information

IT is well known that square quadrature amplitude modulations

IT is well known that square quadrature amplitude modulations IEEE TRANSACTIONS ON WIRELESS COUNICATIONS, VOL. 4, NO. 6, NOVEBER 005 3039 Exact BER Computation for Cross QA Constellations Pavan Kumar Vitthaladevuni, ember, IEEE, ohamed-slim Alouini, Senior ember,

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch 10.1-10.5 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

An electrical-level superposed-edge approach to statistical serial link simulation

An electrical-level superposed-edge approach to statistical serial link simulation An electrical-level superposed-edge approach to statistical serial lin simulation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Gaussian Random Variables Why we Care

Gaussian Random Variables Why we Care Gaussian Random Variables Why we Care I Gaussian random variables play a critical role in modeling many random phenomena. I By central limit theorem, Gaussian random variables arise from the superposition

More information

THE UNIVERSITY OF MICHIGAN. Timing Analysis of Domino Logic

THE UNIVERSITY OF MICHIGAN. Timing Analysis of Domino Logic Timing Analsis of Domino Logic b David Van Campenhout, Trevor Mudge and Karem Sakallah CSE-T-296-96 THE UNIVESITY O MICHIGAN Computer Science and Engineering Division Department of Electrical Engineering

More information

Application Note AN37. Noise Histogram Analysis. by John Lis

Application Note AN37. Noise Histogram Analysis. by John Lis AN37 Application Note Noise Histogram Analysis by John Lis NOISELESS, IDEAL CONVERTER OFFSET ERROR σ RMS NOISE HISTOGRAM OF SAMPLES PROBABILITY DISTRIBUTION FUNCTION X PEAK-TO-PEAK NOISE Crystal Semiconductor

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

CONTINUOUS SPATIAL DATA ANALYSIS

CONTINUOUS SPATIAL DATA ANALYSIS CONTINUOUS SPATIAL DATA ANALSIS 1. Overview of Spatial Stochastic Processes The ke difference between continuous spatial data and point patterns is that there is now assumed to be a meaningful value, s

More information

Motivation for CDR: Deserializer (1)

Motivation for CDR: Deserializer (1) Motivation for CDR: Deserializer (1) Input data 1:2 DMUX 1:2 DMUX channel 1:2 DMUX Input clock 2 2 If input data were accompanied by a well-synchronized clock, deserialization could be done directly. EECS

More information

On the design of Incremental ΣΔ Converters

On the design of Incremental ΣΔ Converters M. Belloni, C. Della Fiore, F. Maloberti, M. Garcia Andrade: "On the design of Incremental ΣΔ Converters"; IEEE Northeast Workshop on Circuits and Sstems, NEWCAS 27, Montreal, 5-8 August 27, pp. 376-379.

More information

Total Jitter Measurement at Low Probability Levels, Using Optimized BERT Scan Method. White Paper

Total Jitter Measurement at Low Probability Levels, Using Optimized BERT Scan Method. White Paper Total Jitter Measurement at Low Probability Levels, Using Optimized BERT Scan Method White Paper DesignCon 25 Marcus Müller, Agilent Technologies [marcus_mueller2@agilent.com, (+49 731) 464-831] Ransom

More information

10GBASE-KR Transmitter Compliance Methodology Proposal. Robert Brink Agere Systems May 13, 2005

10GBASE-KR Transmitter Compliance Methodology Proposal. Robert Brink Agere Systems May 13, 2005 0GBASE-KR Transmitter Compliance Methodology Proposal Robert Brink Agere Systems May 3, 2005 Scope and Purpose Deficiencies of existing transmit template compliance methods are discussed. A proposal for

More information

14 Gb/s AC Coupled Receiver in 90 nm CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

14 Gb/s AC Coupled Receiver in 90 nm CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 14 Gb/s AC Coupled Receiver in 90 nm CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca OUTLINE Chip-to-Chip link overview AC interconnects Link modelling ISI & sensitivity

More information

0.24 adults 2. (c) Prove that, regardless of the possible values of and, the covariance between X and Y is equal to zero. Show all work.

0.24 adults 2. (c) Prove that, regardless of the possible values of and, the covariance between X and Y is equal to zero. Show all work. 1 A socioeconomic stud analzes two discrete random variables in a certain population of households = number of adult residents and = number of child residents It is found that their joint probabilit mass

More information

DesignCon 2008 EDA365. Modeling a Phase Interpolator as a Delta-Sigma Converter. Andy Martwick

DesignCon 2008 EDA365. Modeling a Phase Interpolator as a Delta-Sigma Converter. Andy Martwick DesignCon 28 Modeling a Phase Interpolator as a Delta-Sigma Converter Andy Martwick andy.martwick@intel.com Abstract This paper provides a model and analysis of the frequency response and key characteristics

More information

Air Pollution Control EENV 4313

Air Pollution Control EENV 4313 Air Pollution Control EENV 4313 Chapter 6 Air Pollutant Concentration Models Wh do we need them? To predict the ambient air concentrations that will result from an planned set of emissions for an specified

More information

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown 9.07 Introduction to Probabilit and Statistics for Brain and Cognitive Sciences Emer N. Brown I. Objectives Lecture 4: Transformations of Random Variables, Joint Distributions of Random Variables A. Understand

More information

Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test

Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test Statistical and System Transfer Function Based Method For Jitter and Noise Estimation In Communication Design and Test Mike Li and Jan Wilstrup Wavecrest Purposes Illustrate the shortfalls of simple parametric

More information

Solutions to Two Interesting Problems

Solutions to Two Interesting Problems Solutions to Two Interesting Problems Save the Lemming On each square of an n n chessboard is an arrow pointing to one of its eight neighbors (or off the board, if it s an edge square). However, arrows

More information

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES Department of Electrical Engineering Indian Institute of Technology, Madras 1st February 2007 Outline Introduction. Approaches to electronic mitigation - ADC

More information

LECTURE 5 Noise and ISI

LECTURE 5 Noise and ISI MIT 6.02 DRAFT Lecture Notes Spring 2010 (Last update: February 22, 2010) Comments, questions or bug reports? Please contact 6.02-staff@mit.edu LECTURE 5 Noise and ISI Sometimes theory tells you: Stop

More information

6.451 Principles of Digital Communication II Wednesday, May 4, 2005 MIT, Spring 2005 Handout #22. Problem Set 9 Solutions

6.451 Principles of Digital Communication II Wednesday, May 4, 2005 MIT, Spring 2005 Handout #22. Problem Set 9 Solutions 6.45 Principles of Digital Communication II Wednesda, Ma 4, 25 MIT, Spring 25 Hand #22 Problem Set 9 Solutions Problem 8.3 (revised) (BCJR (sum-product) decoding of SPC codes) As shown in Problem 6.4 or

More information

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Digital Communication System Introduction Bandlimited channels distort signals the result is smeared pulses intersymol interference

More information

ECC for NAND Flash. Osso Vahabzadeh. TexasLDPC Inc. Flash Memory Summit 2017 Santa Clara, CA 1

ECC for NAND Flash. Osso Vahabzadeh. TexasLDPC Inc. Flash Memory Summit 2017 Santa Clara, CA 1 ECC for NAND Flash Osso Vahabzadeh TexasLDPC Inc. 1 Overview Why Is Error Correction Needed in Flash Memories? Error Correction Codes Fundamentals Low-Density Parity-Check (LDPC) Codes LDPC Encoding and

More information

Identification of Nonlinear Dynamic Systems with Multiple Inputs and Single Output using discrete-time Volterra Type Equations

Identification of Nonlinear Dynamic Systems with Multiple Inputs and Single Output using discrete-time Volterra Type Equations Identification of Nonlinear Dnamic Sstems with Multiple Inputs and Single Output using discrete-time Volterra Tpe Equations Thomas Treichl, Stefan Hofmann, Dierk Schröder Institute for Electrical Drive

More information

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations TUTORIAL ON DIGITAL MODULATIONS Part 8a: Error probability A [2011-01-07] 07] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello 1 Part 8a: Error

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems

Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems Geoff Zhang September, 2018 Outline 1/(1+D) precoding for PAM4 link systems 1/(1+D)

More information

Fundamentals of PLLs (III)

Fundamentals of PLLs (III) Phase-Locked Loops Fundamentals of PLLs (III) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Phase transfer function in linear model i (s) Kd e (s) Open-loop transfer

More information

SENS'2006 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY June 2006, Varna, Bulgaria

SENS'2006 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY June 2006, Varna, Bulgaria SENS'6 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY 4 6 June 6, Varna, Bulgaria SIMULATION ANALYSIS OF THE VITERBI CONVOLUTIONAL DECODING ALGORITHM

More information

An Information Theory For Preferences

An Information Theory For Preferences An Information Theor For Preferences Ali E. Abbas Department of Management Science and Engineering, Stanford Universit, Stanford, Ca, 94305 Abstract. Recent literature in the last Maimum Entrop workshop

More information

Designing Sequential Logic Circuits

Designing Sequential Logic Circuits igital Integrated Circuits (83-313) Lecture 5: esigning Sequential Logic Circuits Semester B, 2016-17 Lecturer: r. Adam Teman TAs: Itamar Levi, Robert Giterman 26 April 2017 isclaimer: This course was

More information

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0 PRINCIPLES OF MATHEMATICS 11 Chapter Quadratic Functions Lesson 1 Graphs of Quadratic Functions (.1) Date A. QUADRATIC FUNCTIONS A quadratic function is an equation that can be written in the following

More information

Symmetry Arguments and the Role They Play in Using Gauss Law

Symmetry Arguments and the Role They Play in Using Gauss Law Smmetr Arguments and the Role The la in Using Gauss Law K. M. Westerberg (9/2005) Smmetr plas a ver important role in science in general, and phsics in particular. Arguments based on smmetr can often simplif

More information

4452 Mathematical Modeling Lecture 13: Chaos and Fractals

4452 Mathematical Modeling Lecture 13: Chaos and Fractals Math Modeling Lecture 13: Chaos and Fractals Page 1 442 Mathematical Modeling Lecture 13: Chaos and Fractals Introduction In our tetbook, the discussion on chaos and fractals covers less than 2 pages.

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memor Components Integrated Circuits BASIC LOGIC BLOCK - GATE - Logic

More information

Understanding Data Sheet Jitter Specifications for Cypress Timing Products

Understanding Data Sheet Jitter Specifications for Cypress Timing Products for Cypress Timing Products Introduction This note describes how Cypress Semiconductor defines jitter for clock product specifications. There are several motivations for this. First, there is no accepted

More information

Determining the Optimal Decision Delay Parameter for a Linear Equalizer

Determining the Optimal Decision Delay Parameter for a Linear Equalizer International Journal of Automation and Computing 1 (2005) 20-24 Determining the Optimal Decision Delay Parameter for a Linear Equalizer Eng Siong Chng School of Computer Engineering, Nanyang Technological

More information

EDEXCEL ANALYTICAL METHODS FOR ENGINEERS H1 UNIT 2 - NQF LEVEL 4 OUTCOME 4 - STATISTICS AND PROBABILITY TUTORIAL 3 LINEAR REGRESSION

EDEXCEL ANALYTICAL METHODS FOR ENGINEERS H1 UNIT 2 - NQF LEVEL 4 OUTCOME 4 - STATISTICS AND PROBABILITY TUTORIAL 3 LINEAR REGRESSION EDEXCEL AALYTICAL METHODS FOR EGIEERS H1 UIT - QF LEVEL 4 OUTCOME 4 - STATISTICS AD PROBABILITY TUTORIAL 3 LIEAR REGRESSIO Tabular and graphical form: data collection methods; histograms; bar charts; line

More information

The decision-feedback equalizer optimization for Gaussian noise

The decision-feedback equalizer optimization for Gaussian noise Journal of Theoretical and Alied Comuter Science Vol. 8 No. 4 4. 5- ISSN 99-634 (rinted 3-5653 (online htt://www.jtacs.org The decision-feedback eualizer otimization for Gaussian noise Arkadiusz Grzbowski

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

Solutions to Selected Problems

Solutions to Selected Problems Solutions to Selected Problems from Madhow: Fundamentals of Digital Communication and from Johannesson & Zigangirov: Fundamentals of Convolutional Coding Saif K. Mohammed Department of Electrical Engineering

More information

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices Indian Institute of Technolog Jodhpur, Year 207 208 Digital Logic and Design (Course Code: EE222) Lecture 5: Digital Electronics Fundamentals Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

Exponential, Logistic, and Logarithmic Functions

Exponential, Logistic, and Logarithmic Functions CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.1 Eponential and Logistic Functions 3.2 Eponential and Logistic Modeling 3.3 Logarithmic Functions and Their Graphs 3.4 Properties of Logarithmic

More information

INF Introduction to classifiction Anne Solberg

INF Introduction to classifiction Anne Solberg INF 4300 8.09.17 Introduction to classifiction Anne Solberg anne@ifi.uio.no Introduction to classification Based on handout from Pattern Recognition b Theodoridis, available after the lecture INF 4300

More information

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity Phsics 111 Lecture 9 (Walker: 5.4-5) Newton s Third Law ree Bod Diagram Solving -D orce Problems Weight & Gravit Sept. 1, 009 Quiz Wednesda - Chaps. 3 & 4 Lecture 9 1/6 Newton s Third Law of Motion orces

More information

Byung-Soo Choi.

Byung-Soo Choi. Grover Search and its Applications Bung-Soo Choi bschoi3@gmail.com Contents Basics of Quantum Computation General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric

More information

Entropy, Relative Entropy and Mutual Information Exercises

Entropy, Relative Entropy and Mutual Information Exercises Entrop, Relative Entrop and Mutual Information Exercises Exercise 2.: Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips required. (a) Find the entrop H(X)

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

Average or mean value of data in a histogram. The average is calculated by the formula: i=

Average or mean value of data in a histogram. The average is calculated by the formula: i= B Histogram Parameters avg Average Average or mean value of data in a histogram. The average is calculated by the formula: Count# n avg = (bin count) i (bin value) i (bin count) i, i= 1 where n is the

More information

Voltage-Controlled Oscillator (VCO)

Voltage-Controlled Oscillator (VCO) Voltage-Controlled Oscillator (VCO) Desirable characteristics: Monotonic f osc vs. V C characteristic with adequate frequency range f max f osc Well-defined K vco f min slope = K vco VC V C in V K F(s)

More information

The PPM Poisson Channel: Finite-Length Bounds and Code Design

The PPM Poisson Channel: Finite-Length Bounds and Code Design August 21, 2014 The PPM Poisson Channel: Finite-Length Bounds and Code Design Flavio Zabini DEI - University of Bologna and Institute for Communications and Navigation German Aerospace Center (DLR) Balazs

More information

Metastability. Introduction. Metastability. in Altera Devices

Metastability. Introduction. Metastability. in Altera Devices in Altera Devices May 1999, ver. 4 Application Note 42 Introduction The output of an edge-triggered flipflop has two valid states: high and low. To ensure reliable operation, designs must meet the flipflop

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

Signal integrity in deep-sub-micron integrated circuits

Signal integrity in deep-sub-micron integrated circuits Signal integrity in deep-sub-micron integrated circuits Alessandro Bogliolo abogliolo@ing.unife.it Outline Introduction General signaling scheme Noise sources and effects in DSM ICs Supply noise Synchronization

More information

IBIS EBD Modeling, Usage and Enhancement An Example of Memory Channel Multi-board Simulation

IBIS EBD Modeling, Usage and Enhancement An Example of Memory Channel Multi-board Simulation IBIS EBD Modeling, Usage and Enhancement An Example of Memory Channel Multi-board Simulation Tao Xu Asian IBIS Summit taoxu@sigrity.com Shanghai China November 11, 2008 Agenda Memory channel simulation

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Sequential Circuits Sequential circuits combinational circuits state gate delay

Sequential Circuits Sequential circuits combinational circuits state gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

Compression methods: the 1 st generation

Compression methods: the 1 st generation Compression methods: the 1 st generation 1998-2017 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Still1g 2017 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 32 Basic

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digital Communications Professor Ha Nguyen September 5 EE456 Digital Communications Block Diagram of Binary Communication Systems m ( t { b k } b k = s( t b = s ( t k m ˆ ( t { bˆ } k r( t Bits in

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

Polarization division multiplexing system quality in the presence of polarization effects

Polarization division multiplexing system quality in the presence of polarization effects Opt Quant Electron (2009) 41:997 1006 DOI 10.1007/s11082-010-9412-0 Polarization division multiplexing system quality in the presence of polarization effects Krzysztof Perlicki Received: 6 January 2010

More information

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates 5.3.3 The general solution for plane waves incident on a laered halfspace The general solution to the elmhol equation in rectangular coordinates The vector propagation constant Vector relationships between

More information

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation Convolution In this section we consider the problem of determining the response of a linear, time-invariant circuit to an arbitrary input, x(t). This situation is illustrated in Figure 1 where x(t) is

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

Lecture 4 Propagation of errors

Lecture 4 Propagation of errors Introduction Lecture 4 Propagation of errors Example: we measure the current (I and resistance (R of a resistor. Ohm's law: V = IR If we know the uncertainties (e.g. standard deviations in I and R, what

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS151/251A V. Stojanovic, J. Wawrzynek Fall 2015 10/13/15 Midterm Exam Name: ID

More information

COMPRESSIVE (CS) [1] is an emerging framework,

COMPRESSIVE (CS) [1] is an emerging framework, 1 An Arithmetic Coding Scheme for Blocked-based Compressive Sensing of Images Min Gao arxiv:1604.06983v1 [cs.it] Apr 2016 Abstract Differential pulse-code modulation (DPCM) is recentl coupled with uniform

More information

Review of Elementary Probability Lecture I Hamid R. Rabiee

Review of Elementary Probability Lecture I Hamid R. Rabiee Stochastic Processes Review o Elementar Probabilit Lecture I Hamid R. Rabiee Outline Histor/Philosoph Random Variables Densit/Distribution Functions Joint/Conditional Distributions Correlation Important

More information

A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES

A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES G. Krismanic, N. Baumgartinger and H. Pfützner Institute of Fundamentals and Theor of Electrical Engineering Bioelectricit

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

!P x. !E x. Bad Things Happen to Good Signals Spring 2011 Lecture #6. Signal-to-Noise Ratio (SNR) Definition of Mean, Power, Energy ( ) 2.

!P x. !E x. Bad Things Happen to Good Signals Spring 2011 Lecture #6. Signal-to-Noise Ratio (SNR) Definition of Mean, Power, Energy ( ) 2. Bad Things Happen to Good Signals oise, broadly construed, is any change to the signal from its expected value, x[n] h[n], when it arrives at the receiver. We ll look at additive noise and assume the noise

More information

Summary II: Modulation and Demodulation

Summary II: Modulation and Demodulation Summary II: Modulation and Demodulation Instructor : Jun Chen Department of Electrical and Computer Engineering, McMaster University Room: ITB A1, ext. 0163 Email: junchen@mail.ece.mcmaster.ca Website:

More information