UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

Size: px
Start display at page:

Download "UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011"

Transcription

1 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process, i.e., Z,Z,... are i.i.d. N(0,). Define the process X n, n as X 0 = 0, and X n = X n +Z n for n. (a) Is X n an independent increment process? Justify your answer. (b) Is X n a Markov process? Justify your answer. (c) Is X n a Gaussian process? Justify your answer. (d) Find the mean and autocorrelation functions of X n. (e) Specify the first and second order pdfs of X n. (f) Specify the joint pdf of X,X, and X 3. (g) Find E(X 0 X,X,...,X 0 ).. Arrow of time. Let X 0 be a Gaussian random variable with zero mean and unit variance, and X n = αx n + Z n for n, where α is a fixed constant with α < and Z,Z,... are i.i.d. N(0, α ), independent of X 0. (a) Is the process {X n } Gaussian? (b) Is {X n } Markov? (c) Find R X (n,m). (d) Find the (nonlinear) MMSE estimate of X 00 given (X,X,...,X 99 ). (e) Find the MMSE estimate of X 00 given (X 0,X 0,...,X 99 ). (f) Find the MMSE estimate of X 00 given (X,...,X 99,X 0,...,X 99 ).

2 3. AM modulation. Consider the AM modulated random process X(t) = A(t)cos(πt+Θ), where the amplitude A(t) is a zero-mean WSS process with autocorrelation function R A (τ) = e τ, the phase Θ is a Unif[0,π) random variable, and A(t) and Θ are independent. Is X(t) a WSS process? Justify your answer. 4. LTI system with WSS process input. Let Y(t) = h(t) X(t) and Z(t) = X(t) Y(t) as shown in the Figure. (a) Find S Z (f). (b) Find E(Z (t)). Your answers should be in terms of S X (f) and the transfer function H(f) = F[h(t)]. X(t) h(t) Y(t) + - Z(t) Figure : LTI system. 5. Echo filtering. A signal X(t) and its echo arrive at the receiver as Y(t) = X(t) + X(t )+Z(t). Here the signal X(t) is a zero-mean WSS process with power spectral density S X (f) and the noise Z(t) is a zero-mean WSS with power spectral density S Z (f) = N 0 /, uncorrelated with X(t). (a) Find S Y (f) in terms of S X (f),, and N 0. (b) Find the best linear filter to estimate X(t) from {Y(s)} <s<. 6. Discrete-time LTI system with white noise input. Let {X n : < n < } be a discrete-time white noise process, i.e., E(X n ) = 0, < n <, and { n = 0, R X (n) = 0 otherwise. The process is filtered using a linear time invariant system with impulse response α n = 0, h(n) = β n =, 0 otherwise.

3 Find α and β such that the output process Y n has n = 0, R Y (n) = n =, 0 otherwise. 7. Finding time of flight. Finding the distance to an object is often done by sending a signal and measuring the time of flight, the time it takes for the signal to return (assuming speed ofsignal, e.g., light, isknown). Let X(t) bethe signal sent andy(t) = X(t δ)+z(t) be the signal received, where δ is the unknown time of flight. Assume that X(t) and Z(t) (the sensor noise) are uncorrelated zero mean WSS processes. The estimated crosscorrelation function of Y(t) and X(t), R YX (t) is shown in Figure. Find the time of flight δ. R Y X (t) 3 t 5 8 Figure : Crosscorrelation function. 3

4 Additional Exercises Do not turn in solutions to these problems.. Moving average process. Let Z 0,Z,Z,... be i.i.d. N(0,). (a) Let X n = Z n +Z n for n. Find the mean and autocorrelation function of X n. (b) Is {X n } wide-sense stationary? Justify your answer. (c) Is {X n } Gaussian? Justify your answer. (d) Is {X n } strict-sense stationary? Justify your answer. (e) Find E(X 3 X,X ). (f) Find E(X 3 X ). (g) Is {X n } Markov? Justify your answer. (h) Is {X n } independent increment? Justify your answer. (i) Let Y n = Z n +Z n for n. Find the mean and autocorrelation functions of {X n }. (j) Is {Y n } wide-sense stationary? Justify your answer. (k) Is {Y n } Gaussian? Justify your answer. (l) Is {Y n } strict-sense stationary? Justify your answer. (m) Find E(Y 3 Y,Y ). (n) Find E(Y 3 Y ). (o) Is {Y n } Markov? Justify your answer. (p) Is {Y n } independent increment? Justify your answer.. Gauss-Markov process. Let X 0 = 0 and X n = X n +Z n for n, where Z,Z,... are i.i.d. N(0,). Find the mean and autocorrelation function of X n. 3. Random binary waveform. In a digital communication channel the symbol is represented by the fixed duration rectangular pulse { for 0 t < g(t) = 0 otherwise, and the symbol 0 is represented by g(t). The data transmitted over the channel is represented by the random process X(t) = A k g(t k), for t 0, k=0 where A 0,A,... are i.i.d random variables with { + w.p. A i = w.p.. 4

5 (a) Find its first and second order pmfs. (b) Find the mean and the autocorrelation function of the process X(t). 4. Absolute-value random walk. Let X n be a random walk defined by X 0 = 0, X n = n Z i, n, i= where {Z i } is an i.i.d. process with P(Z = ) = P(Z = +) =. Define the absolute value random process Y n = X n. (a) Find P{Y n = k}. (b) Find P{max i<0 Y i = 0 Y 0 = 0}. 5. Mixture of two WSS processes. Let X(t) and Y(t) be two zero-mean WSS processes with autocorrelation functions R X (τ) and R Y (τ), respectively. Define the process { X(t), with probability Z(t) = Y(t), with probability. Find the mean and autocorrelation functions for Z(t). Is Z(t) a WSS process? Justify your answer. 6. Stationary Gauss-Markov process. Consider the following variation on the Gauss- Markov process discussed in Lecture Notes 8: X 0 N(0,a) X n = X n +Z n, n, where Z,Z,Z 3,... are i.i.d. N(0,) independent of X 0. (a) Find a such that X n is stationary. Find the mean and autocorrelation functions of X n. (b) (Optional.) Consider the sample mean S n = n n i= X i, n. Show that S n converges to the process mean in probability even though the sequence X n is not i.i.d. (A stationary process for which the sample mean converges to the process mean is called mean ergodic.) 7. QAM random process. Consider the random process X(t) = Z cosωt+z sinωt, < t <, where Z and Z are i.i.d. discrete random variables such that p Zi (+) = p Zi ( ) =. (a) Is X(t) wide-sense stationary? Justify your answer. 5

6 (b) Is X(t) strict-sense stationary? Justify your answer. 8. Finding impulse response of LTI system. To find the impulse response h(t) of an LTI system (e.g., a concert hall), i.e., to identify the system, white noise X(t), < t <, is applied to its input and the output Y(t) is measured. Given the input and output sample functions, the crosscorrelation R YX (τ) is estimated. Show how R YX (τ) can be used to find h(t). 6

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE 53 Handout #46 Prof. Young-Han Kim Thursday, June 5, 04 Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei). Discrete-time Wiener process. Let Z n, n 0 be a discrete time white

More information

UCSD ECE250 Handout #24 Prof. Young-Han Kim Wednesday, June 6, Solutions to Exercise Set #7

UCSD ECE250 Handout #24 Prof. Young-Han Kim Wednesday, June 6, Solutions to Exercise Set #7 UCSD ECE50 Handout #4 Prof Young-Han Kim Wednesday, June 6, 08 Solutions to Exercise Set #7 Polya s urn An urn initially has one red ball and one white ball Let X denote the name of the first ball drawn

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7 UCSD ECE50 Handout #0 Prof. Young-Han Kim Monday, February 6, 07 Solutions to Exercise Set #7. Minimum waiting time. Let X,X,... be i.i.d. exponentially distributed random variables with parameter λ, i.e.,

More information

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011 UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, 2014 Homework Set #6 Due: Thursday, May 22, 2011 1. Linear estimator. Consider a channel with the observation Y = XZ, where the signal X and

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS 1. Define random process? The sample space composed of functions of time is called a random process. 2. Define Stationary process? If a random process is divided

More information

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes EAS 305 Random Processes Viewgraph 1 of 10 Definitions: Random Processes A random process is a family of random variables indexed by a parameter t T, where T is called the index set λ i Experiment outcome

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ, April 1, 010 QUESTION BOOKLET Your

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Random Processes Why we Care

Random Processes Why we Care Random Processes Why we Care I Random processes describe signals that change randomly over time. I Compare: deterministic signals can be described by a mathematical expression that describes the signal

More information

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts White Gaussian Noise I Definition: A (real-valued) random process X t is called white Gaussian Noise if I X t is Gaussian for each time instance t I Mean: m X (t) =0 for all t I Autocorrelation function:

More information

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE53 Handout #34 Prof Young-Han Kim Tuesday, May 7, 04 Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) Linear estimator Consider a channel with the observation Y XZ, where the

More information

Properties of the Autocorrelation Function

Properties of the Autocorrelation Function Properties of the Autocorrelation Function I The autocorrelation function of a (real-valued) random process satisfies the following properties: 1. R X (t, t) 0 2. R X (t, u) =R X (u, t) (symmetry) 3. R

More information

ECE Homework Set 3

ECE Homework Set 3 ECE 450 1 Homework Set 3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3

More information

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2 ECE 341: Probability and Random Processes for Engineers, Spring 2012 Homework 13 - Last homework Name: Assigned: 04.18.2012 Due: 04.25.2012 Problem 1. Let X(t) be the input to a linear time-invariant filter.

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: May 24, 2011. Lecture 6p: Spectral Density, Passing Random Processes through LTI Systems, Filtering Terms

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1 ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen D. van Alphen 1 Lecture 10 Overview Part 1 Review of Lecture 9 Continuing: Systems with Random Inputs More about Poisson RV s Intro. to Poisson Processes

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

ECE 630: Statistical Communication Theory

ECE 630: Statistical Communication Theory ECE 630: Statistical Communication Theory Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University Last updated: April 6, 2017 2017, B.-P. Paris ECE 630: Statistical Communication

More information

Fundamentals of Noise

Fundamentals of Noise Fundamentals of Noise V.Vasudevan, Department of Electrical Engineering, Indian Institute of Technology Madras Noise in resistors Random voltage fluctuations across a resistor Mean square value in a frequency

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

ECE-340, Spring 2015 Review Questions

ECE-340, Spring 2015 Review Questions ECE-340, Spring 2015 Review Questions 1. Suppose that there are two categories of eggs: large eggs and small eggs, occurring with probabilities 0.7 and 0.3, respectively. For a large egg, the probabilities

More information

Chapter 2 Random Processes

Chapter 2 Random Processes Chapter 2 Random Processes 21 Introduction We saw in Section 111 on page 10 that many systems are best studied using the concept of random variables where the outcome of a random experiment was associated

More information

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else ECE 450 Homework #3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3 4 5

More information

UCSD ECE153 Handout #27 Prof. Young-Han Kim Tuesday, May 6, Solutions to Homework Set #5 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE153 Handout #27 Prof. Young-Han Kim Tuesday, May 6, Solutions to Homework Set #5 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE53 Handout #7 Prof. Young-Han Kim Tuesday, May 6, 4 Solutions to Homework Set #5 (Prepared by TA Fatemeh Arbabjolfaei). Neural net. Let Y = X + Z, where the signal X U[,] and noise Z N(,) are independent.

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Noise Sensors and associated electronics. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Noise Sensors and associated electronics. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Noise Sensors and associated electronics Processing Noise with Linear Filters 2 Mathematical Foundations Filtering Stationary

More information

Solutions to Homework Set #6 (Prepared by Lele Wang)

Solutions to Homework Set #6 (Prepared by Lele Wang) Solutions to Homework Set #6 (Prepared by Lele Wang) Gaussian random vector Given a Gaussian random vector X N (µ, Σ), where µ ( 5 ) T and 0 Σ 4 0 0 0 9 (a) Find the pdfs of i X, ii X + X 3, iii X + X

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information

Random Processes Handout IV

Random Processes Handout IV RP-IV.1 Random Processes Handout IV CALCULATION OF MEAN AND AUTOCORRELATION FUNCTIONS FOR WSS RPS IN LTI SYSTEMS In the last classes, we calculated R Y (τ) using an intermediate function f(τ) (h h)(τ)

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

ECE534, Spring 2018: Solutions for Problem Set #5

ECE534, Spring 2018: Solutions for Problem Set #5 ECE534, Spring 08: s for Problem Set #5 Mean Value and Autocorrelation Functions Consider a random process X(t) such that (i) X(t) ± (ii) The number of zero crossings, N(t), in the interval (0, t) is described

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Problems on Discrete & Continuous R.Vs

Problems on Discrete & Continuous R.Vs 013 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE : Probability & Random Process : MA 61 : University Questions : SKMA1004 Name of the Student: Branch: Unit I (Random Variables) Problems on Discrete

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Introduction to Probability and Stochastic Processes I

Introduction to Probability and Stochastic Processes I Introduction to Probability and Stochastic Processes I Lecture 3 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark Slides

More information

Problem Sheet 1 Examples of Random Processes

Problem Sheet 1 Examples of Random Processes RANDOM'PROCESSES'AND'TIME'SERIES'ANALYSIS.'PART'II:'RANDOM'PROCESSES' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''Problem'Sheets' Problem Sheet 1 Examples of Random Processes 1. Give

More information

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes ECE353: Probability and Random Processes Lecture 18 - Stochastic Processes Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu From RV

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

ECE 541 Stochastic Signals and Systems Problem Set 11 Solution

ECE 541 Stochastic Signals and Systems Problem Set 11 Solution ECE 54 Stochastic Signals and Systems Problem Set Solution Problem Solutions : Yates and Goodman,..4..7.3.3.4.3.8.3 and.8.0 Problem..4 Solution Since E[Y (t] R Y (0, we use Theorem.(a to evaluate R Y (τ

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

Final Examination Solutions (Total: 100 points)

Final Examination Solutions (Total: 100 points) Final Examination Solutions (Total: points) There are 4 problems, each problem with multiple parts, each worth 5 points. Make sure you answer all questions. Your answer should be as clear and readable

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

The distribution inherited by Y is called the Cauchy distribution. Using that. d dy ln(1 + y2 ) = 1 arctan(y)

The distribution inherited by Y is called the Cauchy distribution. Using that. d dy ln(1 + y2 ) = 1 arctan(y) Stochastic Processes - MM3 - Solutions MM3 - Review Exercise Let X N (0, ), i.e. X is a standard Gaussian/normal random variable, and denote by f X the pdf of X. Consider also a continuous random variable

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

UCSD ECE 153 Handout #20 Prof. Young-Han Kim Thursday, April 24, Solutions to Homework Set #3 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE 153 Handout #20 Prof. Young-Han Kim Thursday, April 24, Solutions to Homework Set #3 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE 53 Handout #0 Prof. Young-Han Kim Thursday, April 4, 04 Solutions to Homework Set #3 (Prepared by TA Fatemeh Arbabjolfaei). Time until the n-th arrival. Let the random variable N(t) be the number

More information

3F1 Random Processes Examples Paper (for all 6 lectures)

3F1 Random Processes Examples Paper (for all 6 lectures) 3F Random Processes Examples Paper (for all 6 lectures). Three factories make the same electrical component. Factory A supplies half of the total number of components to the central depot, while factories

More information

Chapter 4 Random process. 4.1 Random process

Chapter 4 Random process. 4.1 Random process Random processes - Chapter 4 Random process 1 Random processes Chapter 4 Random process 4.1 Random process 4.1 Random process Random processes - Chapter 4 Random process 2 Random process Random process,

More information

Question Paper Code : AEC11T03

Question Paper Code : AEC11T03 Hall Ticket No Question Paper Code : AEC11T03 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : Additional Problems MATERIAL CODE : JM08AM004 REGULATION : R03 UPDATED ON : March 05 (Scan the above QR code for the direct

More information

Final. Fall 2016 (Dec 16, 2016) Please copy and write the following statement:

Final. Fall 2016 (Dec 16, 2016) Please copy and write the following statement: ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 06 Instructor: Prof. Stanley H. Chan Final Fall 06 (Dec 6, 06) Name: PUID: Please copy and write the following statement: I certify

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 4: Review on Fourier analysis and probabilty theory Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Febraury 19 th, 2015 1 Course Website o http://lms.mans.edu.eg/eng/

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : MA6451 PROBABILITY AND RANDOM PROCESSES SEM / YEAR:IV / II

More information

Application of Matched Filter

Application of Matched Filter Application of Matched Filter Lecture No. 12 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview This lecture will look at the following: Matched filter vs

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS page 1 of 5 (+ appendix) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

More information

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, 2007 Cover Sheet Test Duration: 120 minutes. Open Book but Closed Notes. Calculators allowed!! This test contains five problems. Each of

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, and Noise Modeling Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Emil Björnson Course Director

More information

Fig 1: Stationary and Non Stationary Time Series

Fig 1: Stationary and Non Stationary Time Series Module 23 Independence and Stationarity Objective: To introduce the concepts of Statistical Independence, Stationarity and its types w.r.to random processes. This module also presents the concept of Ergodicity.

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 03 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA 6 MATERIAL NAME : Problem Material MATERIAL CODE : JM08AM008 (Scan the above QR code for the direct download of

More information

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Statistical regularity Properties of relative frequency

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

EE Introduction to Digital Communications Homework 8 Solutions

EE Introduction to Digital Communications Homework 8 Solutions EE 2 - Introduction to Digital Communications Homework 8 Solutions May 7, 2008. (a) he error probability is P e = Q( SNR). 0 0 0 2 0 4 0 6 P e 0 8 0 0 0 2 0 4 0 6 0 5 0 5 20 25 30 35 40 SNR (db) (b) SNR

More information

MA6451 PROBABILITY AND RANDOM PROCESSES

MA6451 PROBABILITY AND RANDOM PROCESSES MA6451 PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES 1.1 Discrete and continuous random variables 1. Show that the function is a probability density function of a random variable X. (Apr/May

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

Lecture - 30 Stationary Processes

Lecture - 30 Stationary Processes Probability and Random Variables Prof. M. Chakraborty Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 30 Stationary Processes So,

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely EE 11: Introduction to Digital Communication Systems Midterm Solutions 1. Consider the following discrete-time communication system. There are two equallly likely messages to be transmitted, and they are

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 4 Ergodic Random Processes, Power Spectrum Linear Systems 0 c 2011, Georgia Institute of Technology (lect4 1) Ergodic Random Processes An ergodic random process is one

More information

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements Analysis and Design of Analog Integrated Circuits Lecture 14 Noise Spectral Analysis for Circuit Elements Michael H. Perrott March 18, 01 Copyright 01 by Michael H. Perrott All rights reserved. Recall

More information

2016 Spring: The Final Exam of Digital Communications

2016 Spring: The Final Exam of Digital Communications 2016 Spring: The Final Exam of Digital Communications The total number of points is 131. 1. Image of Transmitter Transmitter L 1 θ v 1 As shown in the figure above, a car is receiving a signal from a remote

More information

FINAL EXAM: 3:30-5:30pm

FINAL EXAM: 3:30-5:30pm ECE 30: Probabilistic Methods in Electrical and Computer Engineering Spring 016 Instructor: Prof. A. R. Reibman FINAL EXAM: 3:30-5:30pm Spring 016, MWF 1:30-1:0pm (May 6, 016) This is a closed book exam.

More information

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Stochastic Processes Theory for Applications Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv Swgg&sfzoMj ybr zmjfr%cforj owf fmdy xix Acknowledgements xxi 1 Introduction and review

More information

ECE 353 Probability and Random Signals - Practice Questions

ECE 353 Probability and Random Signals - Practice Questions ECE 353 Probability and Random Signals - Practice Questions Winter 2018 Xiao Fu School of Electrical Engineering and Computer Science Oregon State Univeristy Note: Use this questions as supplementary materials

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Homework 3 (Stochastic Processes)

Homework 3 (Stochastic Processes) In the name of GOD. Sharif University of Technology Stochastic Processes CE 695 Dr. H.R. Rabiee Homework 3 (Stochastic Processes). Explain why each of the following is NOT a valid autocorrrelation function:

More information

Electrical Engineering Written PhD Qualifier Exam Spring 2014

Electrical Engineering Written PhD Qualifier Exam Spring 2014 Electrical Engineering Written PhD Qualifier Exam Spring 2014 Friday, February 7 th 2014 Please do not write your name on this page or any other page you submit with your work. Instead use the student

More information

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering Stochastic Processes and Linear Algebra Recap Slides Stochastic processes and variables XX tt 0 = XX xx nn (tt) xx 2 (tt) XX tt XX

More information