Inequalities for Triangles and Pointwise Characterizations

Size: px
Start display at page:

Download "Inequalities for Triangles and Pointwise Characterizations"

Transcription

1 Inequalities for Triangles and Pointwise haracterizations Theorem (The Scalene Inequality): If one side of a triangle has greater length than another side, then the angle opposite the longer side has the greatest measure, and conversely. ~ Referring to the diagram, let > and find such that ** and =. Since is interior to p, we have µ(p) > µ(p1) = µ(p). Since µ(p) > µ(p) by the exterior angle inequality, we have µ(p) > µ(p). 1 For the converse, suppose that mp > mp. There are three possibilities for the relationship between and : Either <, =, or >. y what we just proved, we cannot have < or else mp < mp, a contradiction. Moreover, if =, the triangle is isosceles and mp = mp, a contradiction. So, >. orollary 1: If a triangle has an obtuse or right angle, then the side opposite that angle has the greatest length. efinition: triangle is a right triangle if it has a right angle. The side opposite the right angle is called the hypotenuse and the other two sides are called legs. orollary : In a right triangle, the hypotenuse has length greater than that of either leg.

2 Theorem (The Triangle Inequality): In any triangle, the sum of the measures of two sides is greater than that of the third side. More generally: For any three distinct points,, and, + $, with equality if and only if **. ~ ase 1:,, and are not collinear: Given ª, extend to point so that ** and =. Then = + = + since **. Since ª is isosceles, µ(p1) = µ(p), and point is interior to p. So µ(p) = µ(p) + µ(p3) > µ(p) = µ(p1) = µ(p). y the Scalene Inequality, >, so + >. ase :,, and are collinear. Then, by the Ruler Postulate, either **, **, or **. If **, + =; if ** or **, + >. Note: We have shown that if **, + =, and if not **, then + >. This establishes the if and only if statement. 1 3

3 orollary (Median Inequality Not in our Text): Suppose that M M < 1 ( + ) of ª (i.e, M is the midpoint of ). Then. is the median to side ~ Find point such that M is the midpoint of M. Then by SS and PF, =. onsider ª. y the triangle inequality, < + = +. ut so we < +, or M < 1 ( + ). M

4 Theorem (SS Inequality, lligator Theorem or Hinge Theorem): If in ª and ªXYZ we have = XY, = XZ, but µ(p) > µ(px), then > YZ, and conversely, if > ZY, then µ(p) > µ(px). ~ onstruct ray between and with µ(p) = µ(px), and with = XZ =. Then ª ªXYZ by SS, and = YZ by PF. X Y Z s in the figure below, construct the bisector of p. This cuts segment at an interior point E. (Why?) Then pe pe, E = E, and =, so ªE = ªE by SS. Then E = E, and employing the triangle inequality on ªE, and because *E*, = E + E = E + E > = YZ, so > YZ. X E Y Z For the converse, use the same trick as in the Scalene Inequality: Suppose > YZ but µ(p) # µ(px). If µ(p) = µ(px), then = YZ by SS and PF. If µ(p) < µ(px), then the proof we just gave would establish < YZ, a contradiction. So µ(p) > µ(px).

5 Theorem: If l is a line and P is a point not on l, and let F be the foot of the perpendicular from P to l (i.e., the point where the perpendicular to l that contains P intersects l). If R is any point of l, then PR > PF. ~ Immediate from the above corollary that the hypotenuse of a right triangle is longer than either leg. efinition: If l is a line and P is a point not on l, the distance from P to l is the distance from P to the foot F of the perpendicular from P to l. Theorem (Pointwise haracterization of the ngle isector): Let,, and be three noncollinear points and let P be a point in the interior of p. Then P lies on the angle bisector of p if and only if P is equidistant from the sides of the angle, i.e, the lines and. Theorem (Pointwise haracterization of the Perpendicular isector): The set of all points equidistant from each of two points and is the perpendicular bisector of. The proofs of these two theorems are straightforward applications of isosceles triangles and congruence theorems, and make good exercises.

6 Theorem (The ontinuity of istance): Given ray and any point O not on, define a function d(x) for any real x $0 as the distance from O to P on, where x is the distance from to P. That is,. Then d(x) is continuous. d( x) = OP iff x = P O d(0) d(x) x P ~ Pick ε > 0. Let R and S be points of such that R = x and S = y. Let y x = S R = RS < ε. y the Triangle Inequality, OR OS + RS and OS OR + RS. Either way, OS OR RS. Then we have d( y) d( x) = OS OR RS < ε. Thus d(x) is continuous. Note: We will use this theorem later when we prove the Elementary ontinuity of ircles in hapter 10. O d(0) d(y) d(x) S R

Exterior Angle Inequality

Exterior Angle Inequality xterior ngle Inequality efinition: Given Î, the angles p, p, and p are called interior angles of the triangle. ny angle that forms a linear pair with an interior angle is called an exterior angle. In the

More information

Circles in Neutral Geometry

Circles in Neutral Geometry Everything we do in this set of notes is Neutral. Definitions: 10.1 - Circles in Neutral Geometry circle is the set of points in a plane which lie at a positive, fixed distance r from some fixed point.

More information

Chapter 6. Worked-Out Solutions. Chapter 6 Maintaining Mathematical Proficiency (p. 299)

Chapter 6. Worked-Out Solutions. Chapter 6 Maintaining Mathematical Proficiency (p. 299) hapter 6 hapter 6 Maintaining Mathematical Proficiency (p. 99) 1. Slope perpendicular to y = 1 x 5 is. y = x + b 1 = + b 1 = 9 + b 10 = b n equation of the line is y = x + 10.. Slope perpendicular to y

More information

Chapter 6. Worked-Out Solutions AB 3.61 AC 5.10 BC = 5

Chapter 6. Worked-Out Solutions AB 3.61 AC 5.10 BC = 5 27. onstruct a line ( DF ) with midpoint P parallel to and twice the length of QR. onstruct a line ( EF ) with midpoint R parallel to and twice the length of QP. onstruct a line ( DE ) with midpoint Q

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Undefined Terms: Point, Line, Incident, Between, Congruent. Incidence Axioms:

More information

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C. hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a + b = c. roof. b a a 3 b b 4 b a b 4 1 a a 3

More information

GEOMETRY. Similar Triangles

GEOMETRY. Similar Triangles GOMTRY Similar Triangles SIMILR TRINGLS N THIR PROPRTIS efinition Two triangles are said to be similar if: (i) Their corresponding angles are equal, and (ii) Their corresponding sides are proportional.

More information

Geometry 1 st Semester review Name

Geometry 1 st Semester review Name Geometry 1 st Semester review Name 1. What are the next three numbers in this sequence? 0, 3, 9, 18, For xercises 2 4, refer to the figure to the right. j k 2. Name the point(s) collinear to points H and

More information

Introduction Circle Some terms related with a circle

Introduction Circle Some terms related with a circle 141 ircle Introduction In our day-to-day life, we come across many objects which are round in shape, such as dials of many clocks, wheels of a vehicle, bangles, key rings, coins of denomination ` 1, `

More information

Drawing Conclusions. 1. CM is the perpendicular bisector of AB because. 3. Sample answer: 5.1 Guided Practice (p. 267)

Drawing Conclusions. 1. CM is the perpendicular bisector of AB because. 3. Sample answer: 5.1 Guided Practice (p. 267) HPTER 5 Think & Discuss (p. 6). nswers may vary. Sample answer: Position may be the best position because he would have less space for the ball to pass him. He would also be more toward the middle of the

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2005-02-16) Logic Rules (Greenberg): Logic Rule 1 Allowable justifications.

More information

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 3) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 Example 11(a): Fermat point. Given triangle, construct externally similar isosceles triangles

More information

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem hapter 3 The angle bisectors 3.1 The angle bisector theorem Theorem 3.1 (ngle bisector theorem). The bisectors of an angle of a triangle divide its opposite side in the ratio of the remaining sides. If

More information

Section 5-1: Special Segments in Triangles

Section 5-1: Special Segments in Triangles Section 5-1: Special Segments in Triangles Objectives: Identify medians, altitudes, angle bisectors, and perpendicular bisectors. perpendicular bisector C median altitude Vocabulary: A B Perpendicular

More information

Chapter. Triangles. Copyright Cengage Learning. All rights reserved.

Chapter. Triangles. Copyright Cengage Learning. All rights reserved. Chapter 3 Triangles Copyright Cengage Learning. All rights reserved. 3.5 Inequalities in a Triangle Copyright Cengage Learning. All rights reserved. Inequalities in a Triangle Important inequality relationships

More information

Congruence. Chapter The Three Points Theorem

Congruence. Chapter The Three Points Theorem Chapter 2 Congruence In this chapter we use isometries to study congruence. We shall prove the Fundamental Theorem of Transformational Plane Geometry, which states that two plane figures are congruent

More information

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a 2 + b 2 = c 2. roof. b a a 3 2 b 2 b 4 b a b

More information

Chapter 6 Summary 6.1. Using the Hypotenuse-Leg (HL) Congruence Theorem. Example

Chapter 6 Summary 6.1. Using the Hypotenuse-Leg (HL) Congruence Theorem. Example Chapter Summary Key Terms corresponding parts of congruent triangles are congruent (CPCTC) (.2) vertex angle of an isosceles triangle (.3) inverse (.4) contrapositive (.4) direct proof (.4) indirect proof

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2009-03-26) Logic Rule 0 No unstated assumptions may be used in a proof.

More information

Geometry: A Complete Course

Geometry: A Complete Course Geometry: omplete ourse (with Trigonometry) Module - Student WorkText Written by: Thomas E. lark Larry E. ollins Geometry: omplete ourse (with Trigonometry) Module Student Worktext opyright 2014 by VideotextInteractive

More information

1.2 Perpendicular Lines

1.2 Perpendicular Lines Name lass ate 1.2 erpendicular Lines Essential Question: What are the key ideas about perpendicular bisectors of a segment? 1 Explore onstructing erpendicular isectors and erpendicular Lines You can construct

More information

7. m JHI = ( ) and m GHI = ( ) and m JHG = 65. Find m JHI and m GHI.

7. m JHI = ( ) and m GHI = ( ) and m JHG = 65. Find m JHI and m GHI. 1. Name three points in the diagram that are not collinear. 2. If RS = 44 and QS = 68, find QR. 3. R, S, and T are collinear. S is between R and T. RS = 2w + 1, ST = w 1, and RT = 18. Use the Segment Addition

More information

B C. You try: What is the definition of an angle bisector?

B C. You try: What is the definition of an angle bisector? US Geometry 1 What is the definition of a midpoint? The midpoint of a line segment is the point that divides the segment into two congruent segments. That is, M is the midpoint of if M is on and M M. 1

More information

Name: GEOMETRY: EXAM (A) A B C D E F G H D E. 1. How many non collinear points determine a plane?

Name: GEOMETRY: EXAM (A) A B C D E F G H D E. 1. How many non collinear points determine a plane? GMTRY: XM () Name: 1. How many non collinear points determine a plane? ) none ) one ) two ) three 2. How many edges does a heagonal prism have? ) 6 ) 12 ) 18 ) 2. Name the intersection of planes Q and

More information

Geometry Note Cards EXAMPLE:

Geometry Note Cards EXAMPLE: Geometry Note Cards EXAMPLE: Lined Side Word and Explanation Blank Side Picture with Statements Sections 12-4 through 12-5 1) Theorem 12-3 (p. 790) 2) Theorem 12-14 (p. 790) 3) Theorem 12-15 (p. 793) 4)

More information

Questions. Exercise (1)

Questions. Exercise (1) Questions Exercise (1) (1) hoose the correct answer: 1) The acute angle supplements. angle. a) acute b) obtuse c) right d) reflex 2) The right angle complements angle whose measure is. a) 0 b) 45 c) 90

More information

5-1 Practice Form K. Midsegments of Triangles. Identify three pairs of parallel segments in the diagram.

5-1 Practice Form K. Midsegments of Triangles. Identify three pairs of parallel segments in the diagram. 5-1 Practice Form K Midsegments of Triangles Identify three pairs of parallel segments in the diagram. 1. 2. 3. Name the segment that is parallel to the given segment. 4. MN 5. ON 6. AB 7. CB 8. OM 9.

More information

Semester 1 Cumulative Summative Review Teacher: Date: B

Semester 1 Cumulative Summative Review Teacher: Date: B GOMTRY Name: 2016-2017 Semester 1 umulative Summative Review Teacher: ate: To be prepared for your midterm, you will need to PRTI PROLMS and STUY TRMS from the following chapters. Use this guide to help

More information

Basic Trigonometry. Trigonometry deals with the relations between the sides and angles of triangles.

Basic Trigonometry. Trigonometry deals with the relations between the sides and angles of triangles. Basic Trigonometry Trigonometry deals with the relations between the sides and angles of triangles. A triangle has three sides and three angles. Depending on the size of the angles, triangles can be: -

More information

Geometry: A Complete Course

Geometry: A Complete Course Geometry: omplete ourse (with Trigonometry) Module - Student WorkText Written by: Thomas. lark Larry. ollins RRT 4/2010 6. In the figure below, and share the common segment. Prove the following conditional

More information

Definitions. (V.1). A magnitude is a part of a magnitude, the less of the greater, when it measures

Definitions. (V.1). A magnitude is a part of a magnitude, the less of the greater, when it measures hapter 8 Euclid s Elements ooks V 8.1 V.1-3 efinitions. (V.1). magnitude is a part of a magnitude, the less of the greater, when it measures the greater. (V.2). The greater is a multiple of the less when

More information

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line Triangles III Stewart s Theorem, Orthocenter, uler Line 23-Sept-2011 M 341 001 1 Stewart s Theorem (1746) With the measurements given in the triangle below, the following relationship holds: a 2 n + b

More information

Common Core Readiness Assessment 4

Common Core Readiness Assessment 4 ommon ore Readiness ssessment 4 1. Use the diagram and the information given to complete the missing element of the two-column proof. 2. Use the diagram and the information given to complete the missing

More information

Chapter 1. Theorems of Ceva and Menelaus

Chapter 1. Theorems of Ceva and Menelaus hapter 1 Theorems of eva and Menelaus We start these lectures by proving some of the most basic theorems in the geometry of a planar triangle. Let,, be the vertices of the triangle and,, be any points

More information

TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN PLANE. 1. Introduction

TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN PLANE. 1. Introduction TOPIS IN GEOMETRY: THE GEOMETRY OF THE EULIEN PLNE TUGHT Y PIOTR PRZYTYKI. NOTES Y YLN NT. Note. These course notes are based on a course taught by Piotr Przytycki at McGill University in the fall of 2016.

More information

Examples: Identify three pairs of parallel segments in the diagram. 1. AB 2. BC 3. AC. Write an equation to model this theorem based on the figure.

Examples: Identify three pairs of parallel segments in the diagram. 1. AB 2. BC 3. AC. Write an equation to model this theorem based on the figure. 5.1: Midsegments of Triangles NOTE: Midsegments are also to the third side in the triangle. Example: Identify the 3 midsegments in the diagram. Examples: Identify three pairs of parallel segments in the

More information

Question 1 (3 points) Find the midpoint of the line segment connecting the pair of points (3, -10) and (3, 6).

Question 1 (3 points) Find the midpoint of the line segment connecting the pair of points (3, -10) and (3, 6). Geometry Semester Final Exam Practice Select the best answer Question (3 points) Find the midpoint of the line segment connecting the pair of points (3, -0) and (3, 6). A) (3, -) C) (3, -) B) (3, 4.5)

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

Name: Jan 2016 Semester1 Review Block: Date:

Name: Jan 2016 Semester1 Review Block: Date: GOMTRY Name: Jan 2016 Semester1 Review lock: ate: To be prepared for your midterm, you will need to PRTI PROLMS and STUY TRMS from the following chapters. Use this guide to help you practice. Unit 1 (1.1

More information

NAME DATE PER. 1. ; 1 and ; 6 and ; 10 and 11

NAME DATE PER. 1. ; 1 and ; 6 and ; 10 and 11 SECOND SIX WEEKS REVIEW PG. 1 NME DTE PER SECOND SIX WEEKS REVIEW Using the figure below, identify the special angle pair. Then write C for congruent, S for supplementary, or N for neither. d 1. ; 1 and

More information

Geometry. Midterm Review

Geometry. Midterm Review Geometry Midterm Review Class: Date: Geometry Midterm Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1 A plumber knows that if you shut off the water

More information

NAME DATE PERIOD. 4. If m ABC x and m BAC m BCA 2x 10, is B F an altitude? Explain. 7. Find x if EH 16 and FH 6x 5. G

NAME DATE PERIOD. 4. If m ABC x and m BAC m BCA 2x 10, is B F an altitude? Explain. 7. Find x if EH 16 and FH 6x 5. G 5- NM IO ractice isectors, Medians, and ltitudes LG In, is the angle bisector of,,, and are medians, and is the centroid.. ind x if 4x and 0.. ind y if y and 8.. ind z if 5z 0 and 4. 4. If m x and m m

More information

Int. Geometry Units 1-6 Review 1

Int. Geometry Units 1-6 Review 1 Int. Geometry Units 1-6 Review 1 Things to note about this review and the Unit 1-6 Test: 1. This review packet covers major ideas of the first six units, but it does not show examples of all types of problems..

More information

right angle an angle whose measure is exactly 90ᴼ

right angle an angle whose measure is exactly 90ᴼ right angle an angle whose measure is exactly 90ᴼ m B = 90ᴼ B two angles that share a common ray A D C B Vertical Angles A D C B E two angles that are opposite of each other and share a common vertex two

More information

Exercises for Unit I I I (Basic Euclidean concepts and theorems)

Exercises for Unit I I I (Basic Euclidean concepts and theorems) Exercises for Unit I I I (Basic Euclidean concepts and theorems) Default assumption: All points, etc. are assumed to lie in R 2 or R 3. I I I. : Perpendicular lines and planes Supplementary background

More information

Honors Geometry Semester Review Packet

Honors Geometry Semester Review Packet Honors Geometry Semester Review Packet 1) Explain what it means to bisect a segment. Why is it impossible to bisect a line? 2) Are all linear pairs supplementary angles? Are all supplementary angles linear

More information

Exercises for Unit V (Introduction to non Euclidean geometry)

Exercises for Unit V (Introduction to non Euclidean geometry) Exercises for Unit V (Introduction to non Euclidean geometry) V.1 : Facts from spherical geometry Ryan : pp. 84 123 [ Note : Hints for the first two exercises are given in math133f07update08.pdf. ] 1.

More information

REVIEW PACKET January 2012

REVIEW PACKET January 2012 NME: REVIEW PKET January 2012 My PERIOD DTE of my EXM TIME of my EXM **THERE RE 10 PROBLEMS IN THIS REVIEW PKET THT RE IDENTIL TO 10 OF THE PROBLEMS ON THE MIDTERM EXM!!!** Your exam is on hapters 1 6

More information

2. In ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 26, find AB.

2. In ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 26, find AB. 2009 FGCU Mathematics Competition. Geometry Individual Test 1. You want to prove that the perpendicular bisector of the base of an isosceles triangle is also the angle bisector of the vertex. Which postulate/theorem

More information

Pythagoras Theorem and Its Applications

Pythagoras Theorem and Its Applications Lecture 10 Pythagoras Theorem and Its pplications Theorem I (Pythagoras Theorem) or a right-angled triangle with two legs a, b and hypotenuse c, the sum of squares of legs is equal to the square of its

More information

10. Show that the conclusion of the. 11. Prove the above Theorem. [Th 6.4.7, p 148] 4. Prove the above Theorem. [Th 6.5.3, p152]

10. Show that the conclusion of the. 11. Prove the above Theorem. [Th 6.4.7, p 148] 4. Prove the above Theorem. [Th 6.5.3, p152] foot of the altitude of ABM from M and let A M 1 B. Prove that then MA > MB if and only if M 1 A > M 1 B. 8. If M is the midpoint of BC then AM is called a median of ABC. Consider ABC such that AB < AC.

More information

Geometry Unit 1 Practice

Geometry Unit 1 Practice Lesson 1-1 1. Persevere in solving problems. Identify each figure. hen give all possible names for the figure. a. S Geometry Unit 1 Practice e. P S G Q. What is a correct name for this plane? W R Z X b..

More information

3, 5, Inequalities in One Triangle. Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.

3, 5, Inequalities in One Triangle. Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. 7. HANG GLIDING The supports on a hang glider form triangles like the one shown. Which is longer the

More information

A Theorem of Hilbert. Mat 3271 Class

A Theorem of Hilbert. Mat 3271 Class Theorem of Hilbert Mat 3271 lass Theorem (Hilbert) ssume that there exists lines l and l parallel such that l is not asymptotic to l. Then there exists a unique common perpendicular to the given lines.

More information

Plane geometry Circles: Problems with some Solutions

Plane geometry Circles: Problems with some Solutions The University of Western ustralia SHL F MTHMTIS & STTISTIS UW MY FR YUNG MTHMTIINS Plane geometry ircles: Problems with some Solutions 1. Prove that for any triangle, the perpendicular bisectors of the

More information

2. P lies on the perpendicular bisector of RS ; Because. 168 ft. 3. P lies on the angle bisector of DEF;

2. P lies on the perpendicular bisector of RS ; Because. 168 ft. 3. P lies on the angle bisector of DEF; 9. = 9 x 9. = x 95. a. ft b. ft b ft c. 9. a. 0 ft b. ft c. hapter. Start Thinking ft ft The roof lines become steeper; The two top chords will get longer as the king post gets longer, but the two top

More information

); 5 units 5. x = 3 6. r = 5 7. n = 2 8. t =

); 5 units 5. x = 3 6. r = 5 7. n = 2 8. t = . Sample answer: dilation with center at the origin and a scale factor of 1 followed b a translation units right and 1 unit down 5. Sample answer: reflection in the -axis followed b a dilation with center

More information

The circumcircle and the incircle

The circumcircle and the incircle hapter 4 The circumcircle and the incircle 4.1 The Euler line 4.1.1 nferior and superior triangles G F E G D The inferior triangle of is the triangle DEF whose vertices are the midpoints of the sides,,.

More information

CLASS IX GEOMETRY MOCK TEST PAPER

CLASS IX GEOMETRY MOCK TEST PAPER Total time:3hrs darsha vidyalay hunashyal P. M.M=80 STION- 10 1=10 1) Name the point in a triangle that touches all sides of given triangle. Write its symbol of representation. 2) Where is thocenter of

More information

Math 120 Review Questions Chapters 2 and 3

Math 120 Review Questions Chapters 2 and 3 Math 120 Review Questions hapters 2 and 3 1. State whether the stateents are always true (), soeties true (S), or never true (N). a. Two parallel lines are coplanar. b. The easure of an exterior angle

More information

Unit 4-Review. Part 1- Triangle Theorems and Rules

Unit 4-Review. Part 1- Triangle Theorems and Rules Unit 4-Review - Triangle Theorems and Rules Name of Theorem or relationship In words/ Symbols Diagrams/ Hints/ Techniques 1. Side angle relationship 2. Triangle inequality Theorem 3. Pythagorean Theorem

More information

Work with a partner. Use dynamic geometry software. Draw any scalene ABC. a. Find the side lengths and angle measures of the triangle.

Work with a partner. Use dynamic geometry software. Draw any scalene ABC. a. Find the side lengths and angle measures of the triangle. OMMON ORE Learning Standard HSG-O..0 6.5 Indirect Proof and Inequalities in One riangle Essential Question How are the sides related to the angles of a triangle? How are any two sides of a triangle related

More information

a. 1 b. i c. 1-2i d. i e. NOTA

a. 1 b. i c. 1-2i d. i e. NOTA Theta Individual State Convention 017 1. 15 1 16 15 i i i i i =? a. 1 b. i c. 1- i d. i e. NOTA. Mr. Lu has $.7 in pennies, nickels, dimes, quarters and half dollars. If he has an equal number of coins

More information

Objectives To find the measure of an inscribed angle To find the measure of an angle formed by a tangent and a chord

Objectives To find the measure of an inscribed angle To find the measure of an angle formed by a tangent and a chord 1-3 Inscribed ngles ommon ore State Standards G-.. Identify and describe relationships among inscribed angles, radii, and chords. lso G-..3, G-..4 M 1, M 3, M 4, M 6 bjectives To find the measure of an

More information

Geometry First Semester Exam Review

Geometry First Semester Exam Review Geometry First Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Name three points that are collinear. a. points T, Q, and R c. points

More information

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words.

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words. Standard 1: Algebra and Functions Students graph linear inequalities in two variables and quadratics. They model data with linear equations. IM2.1.1 Graph a linear inequality in two variables. IM2.1.2

More information

1. How many planes can be drawn through any three noncollinear points? a. 0 b. 1 c. 2 d. 3. a cm b cm c cm d. 21.

1. How many planes can be drawn through any three noncollinear points? a. 0 b. 1 c. 2 d. 3. a cm b cm c cm d. 21. FALL SEMESTER EXAM REVIEW (Chapters 1-6) CHAPTER 1 1. How many planes can be drawn through any three noncollinear points? a. 0 b. 1 c. 2 d. 3 2. Find the length of PQ. a. 50.9 cm b. 46.3 cm c. 25.7 cm

More information

Los Angeles Unified School District Periodic Assessments. Geometry. Assessment 2 ASSESSMENT CODE LA08_G_T2_TST_31241

Los Angeles Unified School District Periodic Assessments. Geometry. Assessment 2 ASSESSMENT CODE LA08_G_T2_TST_31241 Los Angeles Unified School District Periodic Assessments Assessment 2 2008 2009 Los Angeles Unified School District Periodic Assessments LA08_G_T2_TST_31241 ASSESSMENT ODE 1100209 The test items contained

More information

Chapter 19 Exercise 19.1

Chapter 19 Exercise 19.1 hapter 9 xercise 9... (i) n axiom is a statement that is accepted but cannot be proven, e.g. x + 0 = x. (ii) statement that can be proven logically: for example, ythagoras Theorem. (iii) The logical steps

More information

Name: Period: Date: Given: is the bisector of Draw JD and DL such that it makes triangle DJL. Then answer the question. a. 17 b. 73 c. 118 d.

Name: Period: Date: Given: is the bisector of Draw JD and DL such that it makes triangle DJL. Then answer the question. a. 17 b. 73 c. 118 d. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which statement is not necessarily true? Name: Given: is the bisector of Draw JD and DL such that it makes

More information

triangles in neutral geometry three theorems of measurement

triangles in neutral geometry three theorems of measurement lesson 10 triangles in neutral geometry three theorems of measurement 112 lesson 10 in this lesson we are going to take our newly created measurement systems, our rulers and our protractors, and see what

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 21 Example 11: Three congruent circles in a circle. The three small circles are congruent.

More information

Foundations of Neutral Geometry

Foundations of Neutral Geometry C H A P T E R 12 Foundations of Neutral Geometry The play is independent of the pages on which it is printed, and pure geometries are independent of lecture rooms, or of any other detail of the physical

More information

(Chapter 10) (Practical Geometry) (Class VII) Question 1: Exercise 10.1 Draw a line, say AB, take a point C outside it. Through C, draw a line parallel to AB using ruler and compasses only. Answer 1: To

More information

Vocabulary. Term Page Definition Clarifying Example altitude of a triangle. centroid of a triangle. circumcenter of a triangle. circumscribed circle

Vocabulary. Term Page Definition Clarifying Example altitude of a triangle. centroid of a triangle. circumcenter of a triangle. circumscribed circle CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying eample. Term Page Definition Clarifying

More information

2) Are all linear pairs supplementary angles? Are all supplementary angles linear pairs? Explain.

2) Are all linear pairs supplementary angles? Are all supplementary angles linear pairs? Explain. 1) Explain what it means to bisect a segment. Why is it impossible to bisect a line? 2) Are all linear pairs supplementary angles? Are all supplementary angles linear pairs? Explain. 3) Explain why a four-legged

More information

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 9: Proving Theorems About Triangles Instruction

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 9: Proving Theorems About Triangles Instruction Prerequisite Skills This lesson requires the use of the following skills: identifying and using vertical angles, supplementary angles, and complementary angles to find unknown angle measures recognizing

More information

TOPIC-1 Rational Numbers

TOPIC-1 Rational Numbers TOPI- Rational Numbers Unit -I : Number System hapter - : Real Numbers Rational Number : number r is called a rational number, if it can be written in the form p/q, where p and q are integers and q 0,

More information

Geometry Final exam Review First Semester

Geometry Final exam Review First Semester Name: lass: ate: Geometry Final exam Review First Semester Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the measure of O. Then, classify the angle

More information

Chapter 03 Test. 1 Complete the congruence statement. A B C D. 2 Complete the congruence statement. A B C D

Chapter 03 Test. 1 Complete the congruence statement. A B C D. 2 Complete the congruence statement. A B C D hapter 03 Test Name: ate: 1 omplete the congruence statement. 2 omplete the congruence statement. 3 If, which of the following can you NOT conclude as being true? opyright 2005-2006 by Pearson Education

More information

Postulates, Definitions, and Theorems (Chapter 4)

Postulates, Definitions, and Theorems (Chapter 4) Postulates, Definitions, and Theorems (Chapter 4) Segment Addition Postulate (SAP) All segments AB and BC have unique real number measures AB and BC such that: ABCBC = AC if and only if B is between A

More information

Construction of a Triangle from the Feet of Its Angle Bisectors

Construction of a Triangle from the Feet of Its Angle Bisectors onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study the problem of construction of a triangle from the feet of its internal angle bisectors. conic solution is possible.

More information

Writing: Answer each question with complete sentences. 1) Explain what it means to bisect a segment. Why is it impossible to bisect a line?

Writing: Answer each question with complete sentences. 1) Explain what it means to bisect a segment. Why is it impossible to bisect a line? Writing: Answer each question with complete sentences. 1) Explain what it means to bisect a segment. Why is it impossible to bisect a line? 2) Are all linear pairs supplementary angles? Are all supplementary

More information

Name: Class: Date: 5. If the diagonals of a rhombus have lengths 6 and 8, then the perimeter of the rhombus is 28. a. True b.

Name: Class: Date: 5. If the diagonals of a rhombus have lengths 6 and 8, then the perimeter of the rhombus is 28. a. True b. Indicate whether the statement is true or false. 1. If the diagonals of a quadrilateral are perpendicular, the quadrilateral must be a square. 2. If M and N are midpoints of sides and of, then. 3. The

More information

Exercise 2.1. Identify the error or errors in the proof that all triangles are isosceles.

Exercise 2.1. Identify the error or errors in the proof that all triangles are isosceles. Exercises for Chapter Two He is unworthy of the name of man who is ignorant of the fact that the diagonal of a square is incommensurable with its side. Plato (429 347 B.C.) Exercise 2.1. Identify the error

More information

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIII GEOMETRIL OLYMPID IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (.Zaslavsky) (8) Mark on a cellular paper four nodes forming a convex quadrilateral with the sidelengths equal to

More information

SEMESTER REVIEW 1: Chapters 1 and 2

SEMESTER REVIEW 1: Chapters 1 and 2 Geometry Fall emester Review (13-14) EEER REVIEW 1: hapters 1 and 2 1. What is Geometry? 2. What are the three undefined terms of geometry? 3. Find the definition of each of the following. a. Postulate

More information

Honors Geometry Term 1 Practice Final

Honors Geometry Term 1 Practice Final Name: Class: Date: ID: A Honors Geometry Term 1 Practice Final Short Answer 1. RT has endpoints R Ê Ë Á 4,2 ˆ, T Ê ËÁ 8, 3 ˆ. Find the coordinates of the midpoint, S, of RT. 5. Line p 1 has equation y

More information

Geometry M1: Unit 3 Practice Exam

Geometry M1: Unit 3 Practice Exam Class: Date: Geometry M1: Unit 3 Practice Exam Short Answer 1. What is the value of x? 2. What is the value of x? 3. What is the value of x? 1 4. Find the value of x. The diagram is not to scale. Given:

More information

CBSE Class IX Syllabus. Mathematics Class 9 Syllabus

CBSE Class IX Syllabus. Mathematics Class 9 Syllabus Mathematics Class 9 Syllabus Course Structure First Term Units Unit Marks I Number System 17 II Algebra 25 III Geometry 37 IV Co-ordinate Geometry 6 V Mensuration 5 Total 90 Second Term Units Unit Marks

More information

Indicate the answer choice that best completes the statement or answers the question.

Indicate the answer choice that best completes the statement or answers the question. Indicate the answer choice that best completes the statement or answers the question. ANIMATION Find the translation that moves the figure on the coordinate plane. Given the following information, determine

More information

Triangle Congruence and Similarity Review. Show all work for full credit. 5. In the drawing, what is the measure of angle y?

Triangle Congruence and Similarity Review. Show all work for full credit. 5. In the drawing, what is the measure of angle y? Triangle Congruence and Similarity Review Score Name: Date: Show all work for full credit. 1. In a plane, lines that never meet are called. 5. In the drawing, what is the measure of angle y? A. parallel

More information

Menelaus and Ceva theorems

Menelaus and Ceva theorems hapter 3 Menelaus and eva theorems 3.1 Menelaus theorem Theorem 3.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof.

More information

Answers. Chapter10 A Start Thinking. and 4 2. Sample answer: no; It does not pass through the center.

Answers. Chapter10 A Start Thinking. and 4 2. Sample answer: no; It does not pass through the center. hapter10 10.1 Start Thinking 6. no; is not a right triangle because the side lengths do not satisf the Pthagorean Theorem (Thm. 9.1). 1. (3, ) 7. es; is a right triangle because the side lengths satisf

More information

Geometry Arcs and Chords. Geometry Mr. Austin

Geometry Arcs and Chords. Geometry Mr. Austin 10.2 Arcs and Chords Mr. Austin Objectives/Assignment Use properties of arcs of circles, as applied. Use properties of chords of circles. Assignment: pp. 607-608 #3-47 Reminder Quiz after 10.3 and 10.5

More information

MT EDUCARE LTD. MATHEMATICS SUBJECT : Q L M ICSE X. Geometry STEP UP ANSWERSHEET

MT EDUCARE LTD. MATHEMATICS SUBJECT : Q L M ICSE X. Geometry STEP UP ANSWERSHEET IS X MT UR LT. SUJT : MTHMTIS Geometry ST U NSWRSHT 003 1. In QL and RM, LQ MR [Given] LQ RM [Given] QL ~ RM [y axiom of similarity] (i) Since, QL ~ RM QL M L RM QL RM L M (ii) In QL and RQ, we have Q

More information

MAHESH TUTORIALS. Time : 1 hr. 15 min. Q.1. Solve the following : 3

MAHESH TUTORIALS. Time : 1 hr. 15 min. Q.1. Solve the following : 3 S.S.. MHESH TUTRILS Test - II atch : S Marks : 30 Date : GEMETRY hapter : 1,, 3 Time : 1 hr. 15 min..1. Solve the following : 3 The areas of two similar triangles are 18 cm and 3 cm respectively. What

More information

EC and AB because AIA are congruent Substituting into the first equation above

EC and AB because AIA are congruent Substituting into the first equation above 4.1 Triangles Sum onjectures uxillary line: an extra line or segment that helps you with your proof. Page 202 Paragraph proof explaining why the Triangle Sum onjecture is true. onjecture: The sum of the

More information

Chapter Review #1-3. Choose the best answer.

Chapter Review #1-3. Choose the best answer. Chapter Review #1- Choose the best answer. 1. Which statement is NOT true? A Parallel lines do not intersect. B A segment has exactly two endpoints. C Two planes that do not intersect are always skew.

More information

Circles-Tangent Properties

Circles-Tangent Properties 15 ircles-tangent roperties onstruction of tangent at a point on the circle. onstruction of tangents when the angle between radii is given. Tangents from an external point - construction and proof Touching

More information