On the unconditional Security of QKD Schemes quant-ph/

Size: px
Start display at page:

Download "On the unconditional Security of QKD Schemes quant-ph/"

Transcription

1 On the unondtonal Seurty of QKD Shemes quant-ph/9953

2 alk Outlne ntroduton to Quantum nformaton he BB84 Quantum Cryptosystem ve s attak Boundng ve s nformaton Seurty and Relalty

3 Works on Seurty C.A. Fuhs N. Gsn R.B. Grffths C. S. Nu A. Peres 997: optmal eavesdroppng.. Bham. Mor 997: lmted attaks. D. Mayers 998: results on POVMs. H.K. Lo and H.F. Chau 999 seurty usng quantum fault tolerane.. Bham M. Boyer P. O. Boykn. Mor V. Royhowdhury 999: nformaton vs. Dsturane. M. Ben-Or 999: ased on ompresson. P. Shor and J. Preskll : ased on quantum odes.

4 What Are quts quts? Quts are normalzed vetors from a omplex spae: Quantum operatons are Untary Operators on ths spae. Measurement of Quts s a set of postve operators that sum to whh gve output k wth a gven proalty: ( ) β α ψ β α β α ψ ψ ψ U ( ) ψ ψ k k p tr

5 Let s Measure Some xample quts! See that and s are postve so they defne a measurement ( ) j δ j tr he aove measurement tells exatly whh state was sent > or > onsder the two followng states: tr( ) ( ) tr hs measurement gves and wth equal proalty!

6 A Measurement for the - Bass See that - and s are postve so they defne a measurement he aove measurement tells exatly whh state was sent > or -> ut nothng aout > or >: tr tr tr ( ) tr( ) ( ) tr( ) ( ) tr( ) hs measurement gves and - wth equal proalty!

7 he BB84 (4-state) Sheme Ale wshes to generate a shared seret key wth Bo usng a quantum hannel and an authentated lassal hannel. Ale selets eah t randomly and then the ass: z z x x Ale Classal hannel Bo Quantum hannel

8 BB84 (Cont.) Ale After Bo reeves all the quts Ale announes on the lassal hannel whh ases were used. Now Bo measures n Ale s ass (z and { } or x and { - } ). he sent qut and measured qut should agree. hese values wll e used to form the key. Classal hannel xxzxzzzxxzzx Bo Quantum hannel

9 avesdroppng n addton to Ale and Bo there s ve: ve s not very ne and she wants the key. n an attempt to learn aout the key she may lsten to the lassal hannel and do quantum operatons on the hannel and some quts at her la. Quantum operatons are untary.... ve Ale Ueve j j ve j Bo

10 No Clonng of Quts Untarty of quantum operatons means that quts an t e oped exatly (no-lonng): Proof: U U he left sde of aove s normalzed and untary operatons preserve length so the rght sde s normalzed. nner produt s preserved so nner produt of the left sdes and rght sdes are equal: So: > Any attempt to learn quts dsturs them so ve auses rrors!

11 An xample Attak: (Measure and Resend) A smple attak ve ould perform s to measure eah qut n a random ass and send the result on to Bo. Half the tme ve guesses the ass orretly and learns the t. When she does not guess orretly the error rate s 5%. n total ths attak gves ve half the ts ut auses a 5% error rate. Ale Bo ve

12 CNO Attak z z z z z z z z z z z z z Hene n the x ass Bo s outome eomes random!! n general any nterferene y V leads to errors. n the z ass t works n the x ass:

13

14

15

16

17

18

19

20 BB84 (Cont.) o detet the effets of ve Ale selets a random suset of the quts to e announed as test ts. Ale and Bo ompare these ts to learn the error rate. f the error rate s small enough the test s passed and Ale announes the error orreton nformaton so Bo an orret hs errors. Now Ale and Bo have the same strngs ut ve may have some nformaton. Ale announes prvay amplfaton nformaton to redue ve s nformaton to zero.

21 BB 84 vs. PR Sheme BB 84 teleportaton s equvalent to the followng protool: Share PR pars Ale and Bo measure ther quts randomly n x and z ass. f ther ass hoe agrees on a par then they know eah other s ts otherwse ther measurement results are unorrelated. Ale announes her ass hoe over the pul hannel. Now Bo knows the t loatons where they agree. he rest of the protool s the same as n BB 84

22 rror Correton Ale sends a strng. Bo reeves a strng j. We assume they use a lnear ode wth a party hek matrx H whh s known to ve. Ale announes on the lassal hannel: H nfo ξ Ale Bo omputes: H j nfo Bo Hene Bo learns the syndrome of the errors: H hs syndrome gves nfo to ve! t must e onsdered n the proof! ξ ( ) nfo j nfo ξ Ale ξ Bo

23 Prvay Amplfaton Sne ve s gets some nformaton from her attak and from the CC syndrome measures must e taken to redue ve s nformaton. After Bo s errors are orreted he knows Ale s strng exatly. he key s defned y partes on ths strng: k l v l nfo f ve does not know even one t n the t mask for that key t she knows nothng aout that key t. Clearly there wll e onstrants on the v s for seurty (e.g. no two an e the same).

24 Assumptons n Our Proof rror orreton s a party hek ode. All errors are to the maxmum eneft of ve. Bo wats to learn the ass efore measurng. hs may e assumed wthout loss of generalty t does not atually requre Bo to have a Quantum Memory. We onsder only symmetr attaks for ve whh make some of the varales (j and ) ndependent. hs may e done wthout loss of generalty.

25 ve s State Wth Ale s knowledge one may wrte ve s transformaton: After the test ts are measured the state of ve and Bo eomes: Wth: ve test ψ nfo j U ve j Pr j j t j ' j j t ( j s) j ' j j t j test j nfo

26 ve s State (Cont.) he dstruton of ve s states for all ases of Bo s states s: ρ ve ( ψ ) ψ j j tr Bo j Beng generous people we an assume that ve keeps a state: ϕ j hs s only more nformatve to ve sne: tr j j ( ϕ ) ϕ j j ρ ve j

27 A New Bass for ve s States We defne a new ass for ve s states: hs d turns out to have a meanng: ( ) l l l n d η η ϕ η ( ) l l d η ϕ ˆ ( ) ( ) s j j d l k j k j k l j l k n Pr

28 Boundng ve s nformaton (epsode : he Quantum Menae) f two quantum states (ρ ρ ) are sent wth equal proalty the mutual nformaton of any measurement s ounded y: tr ρ ρ Usng the aove ve s mutual nformaton on one key t gven all lassal nformaton and all other ts s ounded (α s general v s the mnmum dstane of the PA and CC) α d ve α > vˆ/

29 Pr s Seurty Crteron Sne mutual nformaton s not small for all attaks (onsder the measure/resend) we use the followng seurty rteron: ( ) ( ) βn est pass s A; s Ae f the aove s met then the somewhat more ntutve rteron s also met: Pr ( βn / ) βn / est pass > Ae e ve

30 Boundng ve s nformaton (epsode : Proalty Strkes Bak) Usng the meanng of d we otan: ( ) ( ) ( ) < > a np v s s A s pass est / ˆ Pr ; Pr α α ( ) > ˆ / Pr v ve s α α Averagng the aove gves the followng:

31 Boundng ve s nformaton (epsode : Return of Classal Proaltes) By averagng over all ass hoes we get: ( ) ( ) ( ) ( ) < > < > a a np v np v s s s A s pass est / ˆ / ˆ Pr ) Pr( Pr ) Pr( ; Pr α α α α

32 Boundng ve s nformaton (Cont) ( ) ( ) ( ) ) ) ( Pr( ) ) ( Pr( Pr ) Pr( ; Pr ) ( a a a a np p n s np p n np p n s s s A s pass est a a < > < > < > ε ε α α α α ε Now we set the parameter v and average over orders (s): ( ) ε a p v n ˆ he last lne an e ounded wth Hoeffdng s ound.

33 Hoeffdng s Bound Hoeffdng s ound may e appled to ound the proalty of a mean of a set eng dfferent from the sampled mean. hs s what s needed to ound the mutual nformaton: ( ) ( ) ) ) ( Pr( ; Pr ε ε n a a e np p n s A s pass est < > Seurty has een shown ut ths assumes that a ode wth the desred dstane propertes s avalale.

34 Relalty of the Key For hgh error proteton we want the allowed error rate (p a ) to e as large as possle. For an (nkd) RLC d/n>δ exept wth: Pr ( d / n < δ ) ( δ ) n H ( δ ) ( r / n) f δ(p a ε)/n then almost all errors wll e orreted (exept an exponentally small fraton). n

35 Seurty of the Key Reall the mnmum dstane of the PACC s vn(p a ε). v s ounded elow y the dstane of the dual of the CCPA whh s a ode: Pr ( ) n r d where d n r m ( ) ( ) n H d / n ( δ < δ ) Wth the followng hoe: δ n ( ( r m n)/ n) ( ) δ ε Forng all these proaltes to e exponentally small gves serey rates p a

36 Serey Rates for RLC o get exponentally small ounds n n all the exponents need to e negatve whh gves: H ( p ε / n) H a < r / n ( p ) ( ) a ε H pa ε / n < Rseret As n tends to nfnty and ε tends to zero we have seurty when: ( p ) H ( p ) R < H seret a a

37 Plot of Serey Rate ( p ) H ( p ) Rseret < H a a Seret Key Rate Allowed rror Rate

38 Seret Key Rate Allowed rror Rate

39 Summary heoretal BB84 s seure for users wth a quantum hannel and lassal resoures. A lower ound on seret key rates s otaned whh s vald for all attaks. A threshold of 7.56% s otaned usng RLC.

Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement

Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement Effcent many-party controlled teleportaton of mult-qut quantum nformaton va entanglement Chu-Png Yang, Shh-I Chu, Syuan Han Physcal Revew A, 24 Presentng: Vctora Tchoudakov Motvaton Teleportaton va the

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

t } = Number of calls in progress at time t. Engsett Model (Erlang-B)

t } = Number of calls in progress at time t. Engsett Model (Erlang-B) Engsett Model (Erlang-B) A B Desrpton: Bloed-alls lost model Consder a entral exhange wth users (susrers) sharng truns (truns). When >, long ours. Ths s the ase of prnpal nterest. Assume that the truns

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008 1 Ph 19a/CS 19a Exercses Due: Wednesday 1 November 008.1 Whch state dd Alce make? Consder a game n whch Alce prepares one of two possble states: ether ρ 1 wth a pror probablty p 1, or ρ wth a pror probablty

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Instance-Based Learning and Clustering

Instance-Based Learning and Clustering Instane-Based Learnng and Clusterng R&N 04, a bt of 03 Dfferent knds of Indutve Learnng Supervsed learnng Bas dea: Learn an approxmaton for a funton y=f(x based on labelled examples { (x,y, (x,y,, (x n,y

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Quantum secret sharing without entanglement

Quantum secret sharing without entanglement Quantum seret sharing without entanglement Guo-Ping Guo, Guang-Can Guo Key Laboratory of Quantum Information, University of Siene and Tehnology of China, Chinese Aademy of Sienes, Hefei, Anhui, P.R.China,

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Regression. The Simple Linear Regression Model

Regression. The Simple Linear Regression Model Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng the Estmated Regresson Equaton for Estmaton and Predcton Resdual Analss: Valdatng

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction.

Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exat nferene: ntroduton Exat nferene: ntroduton Usng a ayesan network to ompute probabltes s alled nferene n general nferene nvolves queres of the form: E=e E = The evdene varables = The query varables

More information

Chapter 4: Probability and Probability Distributions

Chapter 4: Probability and Probability Distributions hapter 4: Proalty and Proalty Dstrutons 4.1 a Ths experment nvolves tossng a sngle de and oservng the outcome. The sample space for ths experment conssts of the followng smple events: E 1 : Oserve a 1

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Machine Learning: and 15781, 2003 Assignment 4

Machine Learning: and 15781, 2003 Assignment 4 ahne Learnng: 070 and 578, 003 Assgnment 4. VC Dmenson 30 onts Consder the spae of nstane X orrespondng to all ponts n the D x, plane. Gve the VC dmenson of the followng hpothess spaes. No explanaton requred.

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels Frequeny-Seletve and Tme-Varyng Channels Ampltude flutuatons are not the only effet. Wreless hannel an be frequeny seletve (.e. not flat) and tmevaryng. Frequeny flat/frequeny-seletve hannels Frequeny

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 1 The Schrödnger Equaton 1.1 (a) F; () T; (c) T. 1. (a) Ephoton = hν = hc/ λ =(6.66 1 34 J s)(.998 1 8 m/s)/(164 1 9 m) = 1.867 1 19 J. () E = (5 1 6 J/s)( 1 8 s) =.1 J = n(1.867 1 19 J) and n

More information

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ]

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ] 1 Prolem (10P) Show that f X s a random varale, then E[X] = arg mn E[(X ) 2 ] Thus a good predcton for X s E[X] f the squared dfference s used as the metrc. The followng rules are used n the proof: 1.

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if SK300 and SK400 Lnk funtons for bnomal GLMs Autumn 08 We motvate the dsusson by the beetle eample GLMs for bnomal and multnomal data Covers the followng materal from hapters 5 and 6: Seton 5.6., 5.6.3,

More information

An Inequality for the trace of matrix products, using absolute values

An Inequality for the trace of matrix products, using absolute values arxv:1106.6189v2 [math-ph] 1 Sep 2011 An Inequalty for the trace of matrx products, usng absolute values Bernhard Baumgartner 1 Fakultät für Physk, Unverstät Wen Boltzmanngasse 5, A-1090 Venna, Austra

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution Effcent Optmal Control for a Untary Operaton under Dsspatve Evoluton Mchael Goerz, Danel Rech, Chrstane P. Koch Unverstät Kassel March 20, 2014 DPG Frühjahrstagung 2014, Berln Sesson Q 43 Mchael Goerz

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm.

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm. Brander and Lews (1986) Lnk the relatonshp between fnanal and produt sdes of a frm. The way a frm fnanes ts nvestment: (1) Debt: Borrowng from banks, n bond market, et. Debt holders have prorty over a

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Entanglement vs Discord: Who Wins?

Entanglement vs Discord: Who Wins? Entanglement vs Dscord: Who Wns? Vlad Gheorghu Department of Physcs Carnege Mellon Unversty Pttsburgh, PA 15213, U.S.A. Januray 20, 2011 Vlad Gheorghu (CMU) Entanglement vs Dscord: Who Wns? Januray 20,

More information

Lecture Notes 7: The Unruh Effect

Lecture Notes 7: The Unruh Effect Quantum Feld Theory for Leg Spnners 17/1/11 Lecture Notes 7: The Unruh Effect Lecturer: Prakash Panangaden Scrbe: Shane Mansfeld 1 Defnng the Vacuum Recall from the last lecture that choosng a complex

More information

arxiv:quant-ph/ v2 5 Oct 2005

arxiv:quant-ph/ v2 5 Oct 2005 Probablstc clonng wth supplementary nformaton arxv:quant-ph/0505207 v2 5 Oct 2005 Koj Azuma, 1, Junch Shmamura, 1,2, 3 Masato Koash, 1,2, 3 and Nobuyuk Imoto 1,2, 3 1 Dvson of Materals Physcs, Department

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3 C 634 Intermedate M Waves Fall 216 Prof. Davd R. akson Dept. of C Notes 3 1 Types of Current ρ v Note: The free-harge densty ρ v refers to those harge arrers (ether postve or negatve) that are free to

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 017 018 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students. PPOL 59-3 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 6 Luca Trevsan September, 07 Scrbed by Theo McKenze Lecture 6 In whch we study the spectrum of random graphs. Overvew When attemptng to fnd n polynomal

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #16 Scrbe: Yannan Wang Aprl 3, 014 1 Introducton The goal of our onlne learnng scenaro from last class s C comparng wth best expert and

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Signal space Review on vector space Linear independence Metric space and norm Inner product

Signal space Review on vector space Linear independence Metric space and norm Inner product Sgnal space.... Revew on vector space.... Lnear ndependence... 3.3 Metrc space and norm... 4.4 Inner product... 5.5 Orthonormal bass... 7.6 Waveform communcaton system... 9.7 Some examples... 6 Sgnal space

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Logic effort and gate sizing

Logic effort and gate sizing EEN454 Dgtal Integrated rcut Desgn Logc effort and gate szng EEN 454 Introducton hp desgners face a bewlderng arra of choces What s the best crcut topolog for a functon? How man stages of logc gve least

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

CS286r Assign One. Answer Key

CS286r Assign One. Answer Key CS286r Assgn One Answer Key 1 Game theory 1.1 1.1.1 Let off-equlbrum strateges also be that people contnue to play n Nash equlbrum. Devatng from any Nash equlbrum s a weakly domnated strategy. That s,

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables Lnear Correlaton Many research ssues are pursued wth nonexpermental studes that seek to establsh relatonshps among or more varables E.g., correlates of ntellgence; relaton between SAT and GPA; relaton

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 15 Scribe: Jieming Mao April 1, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 15 Scribe: Jieming Mao April 1, 2013 COS 511: heoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 15 Scrbe: Jemng Mao Aprl 1, 013 1 Bref revew 1.1 Learnng wth expert advce Last tme, we started to talk about learnng wth expert advce.

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

A solution to the Curse of Dimensionality Problem in Pairwise Scoring Techniques

A solution to the Curse of Dimensionality Problem in Pairwise Scoring Techniques A soluton to the Curse of Dmensonalty Problem n Parwse orng Tehnques Man Wa MAK Dept. of Eletron and Informaton Engneerng The Hong Kong Polytehn Unversty un Yuan KUNG Dept. of Eletral Engneerng Prneton

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

An introduction to least-squares fitting

An introduction to least-squares fitting atonale An ntroducton to least-squares fng.p. Pla hp://www.sppla.co.uk Ths paper provdes a mnmall mathematcal ntroducton to least-squares fng, ntended to e of some modest value to engneerng students needng

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

EC3075 Mathematical Approaches to Economics

EC3075 Mathematical Approaches to Economics EC3075 Mathematal Aroahes to Eonoms etures 7-8: Dualt and Constraned Otmsaton Pemberton & Rau haters 7-8 Dr Gaa Garno [Astle Clarke Room 4 emal: gg44] Dualt n onsumer theor We wll exose the rmal otmsaton

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Midterm Examination. Regression and Forecasting Models

Midterm Examination. Regression and Forecasting Models IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 7-90 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions Internatonal Mathematcal Olympad Prelmnary Selecton ontest Hong Kong Outlne of Solutons nswers: 7 4 7 4 6 5 9 6 99 7 6 6 9 5544 49 5 7 4 6765 5 6 6 7 6 944 9 Solutons: Snce n s a two-dgt number, we have

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

} Often, when learning, we deal with uncertainty:

} Often, when learning, we deal with uncertainty: Uncertanty and Learnng } Often, when learnng, we deal wth uncertanty: } Incomplete data sets, wth mssng nformaton } Nosy data sets, wth unrelable nformaton } Stochastcty: causes and effects related non-determnstcally

More information

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13]

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13] Algorthms Lecture 11: Tal Inequaltes [Fa 13] If you hold a cat by the tal you learn thngs you cannot learn any other way. Mark Twan 11 Tal Inequaltes The smple recursve structure of skp lsts made t relatvely

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 4, 000 Ths paper formalzes a onept presented n my book, "Eletrogravtaton As A Unfed

More information

arxiv:quant-ph/ Jul 2002

arxiv:quant-ph/ Jul 2002 Lnear optcs mplementaton of general two-photon proectve measurement Andrze Grudka* and Anton Wóck** Faculty of Physcs, Adam Mckewcz Unversty, arxv:quant-ph/ 9 Jul PXOWRZVNDR]QDRODQG Abstract We wll present

More information

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C Some basc nequaltes Defnton. Let V be a vector space over the complex numbers. An nner product s gven by a functon, V V C (x, y) x, y satsfyng the followng propertes (for all x V, y V and c C) (1) x +

More information

DOAEstimationforCoherentSourcesinBeamspace UsingSpatialSmoothing

DOAEstimationforCoherentSourcesinBeamspace UsingSpatialSmoothing DOAEstmatonorCoherentSouresneamspae UsngSpatalSmoothng YnYang,ChunruWan,ChaoSun,QngWang ShooloEletralandEletronEngneerng NanangehnologalUnverst,Sngapore,639798 InsttuteoAoustEngneerng NorthwesternPoltehnalUnverst,X

More information