кафедра математической экономики, Бакинский государственный университет, г. Баку, Азербайджанская Республика

Size: px
Start display at page:

Download "кафедра математической экономики, Бакинский государственный университет, г. Баку, Азербайджанская Республика"

Transcription

1 An exsence heorem or uzzy prl derenl equon Eendyev H Rusmov L Repulc o Azerjn) Теорема о существовании нечеткого дифференциального уравнения в частных производных Эфендиева Х Д Рустамова Л А Азербайджанская Республика) Эфендиева Хeджер Джавид / Eendyev Hecer - кандидат физико-математических наук преподаватель; Рустамова Ламия Аладдин / Rusmov Lmy - кандидат физико-математических наук преподаватель кафедра математической экономики Бакинский государственный университет г Баку Азербайджанская Республика Asrc: n hs pper rs spce o uzzy numers s consruced nd sclr produc s nroduced he dervve o uzzy uncon n hs spce s dened Furher Posson s equon wh rs oundry condon or uzzy uncons s consdered I s shown h prolems d rgh hnd se nd oundry uncon) re uzzy hen soluon o hs prolem lso s uzzy uncon Аннотация: в данной статье вначале было построено пространство нечетких чисел и представлено скалярное произведение Была определена производная функции принадлежности нечеткого множества в данном пространстве Далее рассматривается уравнение Пуассона с граничными условиями первого рода для функций принадлежности нечеткого множества Показано что если данные задачи правая часть и граничная функция) содержит нечеткие числа то и решение этой задачи это функция принадлежности нечеткого множества Keywords: uzzy prl derenl equon uzzy uncon posson's equon Ключевые слова: нечеткие дифференциальные уравнения в частных производных функция принадлежности нечеткого множества уравнение Пуассона AMS Sujec Clsscon: 3A3 34K36 35R3 6E Inroducon he complexy o he world mkes he evens we ce uncern n urous orms Besdes rndomness uzzness nd s mporn uncerny whch plys n essenl role n he rel world Fuzzy se heory hs een developed very s snce ws nroduced y scens on cyernecs Zdeh [] n 965 A uzzy se chrcerzed wh s memershp uncon y Zdeh For he purpose o mesurng uzzy evens Zdeh [] presened he concep o possly mesure nd he erm o uzzy vrle n 978 o nvesge uzzy derenl equons rs one hs o nroduce he denon o he dervve o uzzy uncon hs denon mus llow one o nvesge ordnry nd prl derenl equon he concep o uzzy dervve ws rs nroduced y Chng nd Zdeh [3] nd ws ollowed up y Duos nd Prde [4] who used he exenson prncple n her pproch Oher mehods hve een dscussed y Pur nd Rlescu [5] A horough heorecl reserch o uzzy Cuchy prolems ws gven y Klev [6] Sekkl [7] Fuzzy prl derenl equons were ormuled y Buckley [8] nd Allhvrnloo [9] used numercl mehod o solve he FPDE) In he presen work nroducng he spce o uzzy numers he dervve o he uzzy uncon s deermned Usng hs pproch he mehod s proposed o nvesge uzzy prl derenl equons he spce o he prs o uzzy numers A uzzy se A s chrcerzed y generlzed chrcersc uncon A) memershp uncon dened on unverse X whch ssumes vlues n ] denoe y -cu clled [ For ny [] A x X : A x) he - cu o A Le A) s n upper semconnuous uncon nd sup p A) x X : A x) s ounded se o X A uzzy se s uzzy numer X R nd or ny [] A s convex nd he hegh o A h s sup x) xx A he hs o e equl o one hs uzzy

2 numer usully s clled convex norml uzzy numer F Le's dene y F he clss o convex norml uzzy numers hen or ny he se o [ ) s dened [7]) Le -cu o uzzy numer he nervl L R )] [] F F nd [ L ) R )] [ L ) R )] uzzy numer nd k hen -cu o k dene s [ L ) L ) R ) R )] nd k [ kl ) kr )] respecvely Noe h F s no lner spce he operon o surcon s no dened n F ) We consder he se o prs F F mulplcon nd equvlency s ) ) ) k k k k ) ) ) nd dene he operon o ddon ) As zero elemen o hs spce s ken he pr ) e he se o elemens F ) For ny ) From ls relon ) we ge ) x x ) I s cler h x x) ) ) he se o ll prs F F orms srucure o lner spce Le x ) F F y ) F F hen [ L ) R )] L ) R For ny x y F F dene he sclr produc s [ )] [] x y R [ L ) L ) R )) L )) R ) L ) R )) ))] d I my e shown h hs denon sses ll requremens o he sclr produc We denoe hs spce y LF Norm n hs spce s dened s x [ L ) L )) R ) R )) ] d 3) F nd F s We dene dsnce eween wo uzzy numers x y 4) where x ) y ) 3 Dervve o he uzzy uncon Now le s consder uzzy uncon he uncon ) For ny [] [ L ) R )] [] F or ech ) ) nd dene dervve o 5)

3 s clled -cu o he uncon ) F F h Δ ) ) lm ) ) Δ Δ ) ) F F s clled dervve o he uncon ) Denon Le here exss such hen he pr pon hs denon my e wren n he ollowng orm Δ ) ) lm ) Δ Δ re -cu or he uncons ) ) 6) 7) he where )) I s shown h L ) R ) s connuous derenle relvely hen ) s derenle Ech uncon ) my e consdered s n elemen ) F F hen ) )) ) ) Now le ) e pr o uzzy uncons e ) ) ) rom 8) From relon )) )) )) we see h he dervve o he uncon ) For ny ) u )) lso s pr rom F F F F whch F F dened y he ormul ) I cn e shown h consder he sclr produc 9) One my show h hs dervve sses he "necessry nurl" condons Exmple Le ) e uzzy uncon whose -cu s dened s ollows: ) ) d ) ) ) ) d ) [ ) ) ] ) where [ ) )] Exmple Le [ In hs cse ] [ ] y y y hen s no dcul o show h Anlogclly we cn dene prl derenl on n Exmple 3 Le F F e uzzy numer nd y y ) y y y R e uzzy uncon I s no dcul o show h or

4 y u y In overse y ) u y ) y Also s cler h u ) y 4 Fuzzy ellpc equon n Le D R e gven ounded domn wh smooh oundry S nd uzzy uncon y F F y y y y ) n e u u ) depends on he prmeer D u u y) y D We ll wre u CD) he uncon uy) connues on y n D Anlogclly we cn dene U C D) Consder he oundry prolem u y) y D ) u ) g ) S ) Le g ) g ) g )) F F D y) y) y)) F F y D In he derence o rdonl prolems here soluon o he prolem 6) 7) s uzzy uncon u u y) F or pr o he uzzy uncon u y) u y) u y)) F F For he o smplcy hs ype uncons we ll cll uzzy uncon Equon ) nd oundry condon ) we undersnd s equly pr o he domns heorem Le C D) C D) nd C S) hen here exss unequl soluon u y) u y) u y)) F F y D I s neresng o nvesge prolem ) ) when y) g ) y) F g ) F y D S o he prolem ) ) g re uzzy uncons e here s h n hs cse soluon o he prolem ) ) lso s uzzy uncon rom F heorem Le or ny y D nd S e uzzy uncon nd C D) C D) g C S) hen here exss unequl uzzy uncon u u y) F o he prolem ) ) Reerences soluon Zdeh L A Fuzzy ses Inormon nd conrol 965 v 8 p Zdeh L A Fuzzy ses s ss or heory o possly Fuzzy se nd sysems 978 v p Chng S I Zdeh L A On uzzy mppng nd conrol IEEE rns Sysems Mn Cyerne 97; : Duos D Prde H owrds uzzy derenl clculus III Derenon Fuzzy Ses nd Sysems 98; 8 3): Pur M L Rlescu D A Derenls or uzzy uncon J Mh Anl Appl 978; 64: Klev O Fuzzy derenl equons uzzy Ses nd Sysems 4 987) 3-37

5 7 Sekkl S On he uzzy nl vlue prolem Fuzzy Ses nd Sysems 987; 4 3): Buckley J J Feurng Fuzzy derenl equons Fuzzy Ses nd Sysems vol pp Allhvrnloo Derence mehods or uzzy prl derenl equons Compuonl mehods n ppled mhemcs ) No 3 PP ) 6-33

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS ScInLhore),7),9-37,4 ISSN 3-536; CODEN: SINTE 8 9 A NEW INTERPRETATION O INTERVAL-VALUED UZZY INTERIOR IDEALS O ORDERED SEMIGROUPS Hdy Ullh Khn, b, Nor Hnz Srmn, Asghr Khn c nd z Muhmmd Khn d Deprmen of

More information

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

THE EXISTENCE OF SOLUTIONS FOR A CLASS OF IMPULSIVE FRACTIONAL Q-DIFFERENCE EQUATIONS

THE EXISTENCE OF SOLUTIONS FOR A CLASS OF IMPULSIVE FRACTIONAL Q-DIFFERENCE EQUATIONS Europen Journl of Mhemcs nd Compuer Scence Vol 4 No, 7 SSN 59-995 THE EXSTENCE OF SOLUTONS FOR A CLASS OF MPULSVE FRACTONAL Q-DFFERENCE EQUATONS Shuyun Wn, Yu Tng, Q GE Deprmen of Mhemcs, Ynbn Unversy,

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

The Characterization of Jones Polynomial. for Some Knots

The Characterization of Jones Polynomial. for Some Knots Inernon Mhemc Forum,, 8, no, 9 - The Chrceron of Jones Poynom for Some Knos Mur Cncn Yuuncu Y Ünversy, Fcuy of rs nd Scences Mhemcs Deprmen, 8, n, Turkey m_cencen@yhoocom İsm Yr Non Educon Mnsry, 8, n,

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions II The Z Trnsfor Tocs o e covered. Inroducon. The Z rnsfor 3. Z rnsfors of eleenry funcons 4. Proeres nd Theory of rnsfor 5. The nverse rnsfor 6. Z rnsfor for solvng dfference equons II. Inroducon The

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Research Article Oscillatory Criteria for Higher Order Functional Differential Equations with Damping

Research Article Oscillatory Criteria for Higher Order Functional Differential Equations with Damping Journl of Funcon Spces nd Applcons Volume 2013, Arcle ID 968356, 5 pges hp://dx.do.org/10.1155/2013/968356 Reserch Arcle Oscllory Crer for Hgher Order Funconl Dfferenl Equons wh Dmpng Pegung Wng 1 nd H

More information

Query Data With Fuzzy Information In Object- Oriented Databases An Approach The Semantic Neighborhood Of Hedge Algebras

Query Data With Fuzzy Information In Object- Oriented Databases An Approach The Semantic Neighborhood Of Hedge Algebras (IJCSIS) Inernonl Journl of Compuer Scence nd Informon Secury, Vol 9, No 5, My 20 Query D Wh Fuzzy Informon In Obec- Orened Dbses An Approch The Semnc Neghborhood Of edge Algebrs Don Vn Thng Kore-VeNm

More information

Jordan Journal of Physics

Jordan Journal of Physics Volume, Number, 00. pp. 47-54 RTICLE Jordn Journl of Physcs Frconl Cnoncl Qunzon of he Free Elecromgnec Lgrngn ensy E. K. Jrd, R. S. w b nd J. M. Khlfeh eprmen of Physcs, Unversy of Jordn, 94 mmn, Jordn.

More information

The Shapley value for fuzzy games on vague sets

The Shapley value for fuzzy games on vague sets WEA TRANACTIN on INFRMATIN CIENCE APPLICATIN The hapley value or uzzy games on vague ses Fan-Yong Meng* (Correspondng Auhor chool o Managemen Qngdao Technologcal nversy Qngdao 266520 hong Provnce P R Chna

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA Tn Corn DOSESCU Ph D Dre Cner Chrsn Unversy Buchres Consnn RAISCHI PhD Depren of Mhecs The Buchres Acdey of Econoc Sudes ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

A short introduction to local fractional complex analysis

A short introduction to local fractional complex analysis A short introduction to locl rctionl complex nlysis Yng Xio-Jun Deprtment o Mthemtics Mechnics, hin University o Mining Technology, Xuhou mpus, Xuhou, Jingsu, 228, P R dyngxiojun@63com This pper presents

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Numerical Simulations of Femtosecond Pulse. Propagation in Photonic Crystal Fibers. Comparative Study of the S-SSFM and RK4IP

Numerical Simulations of Femtosecond Pulse. Propagation in Photonic Crystal Fibers. Comparative Study of the S-SSFM and RK4IP Appled Mhemcl Scences Vol. 6 1 no. 117 5841 585 Numercl Smulons of Femosecond Pulse Propgon n Phoonc Crysl Fbers Comprve Sudy of he S-SSFM nd RK4IP Mourd Mhboub Scences Fculy Unversy of Tlemcen BP.119

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

MODELLING AND EXPERIMENTAL ANALYSIS OF MOTORCYCLE DYNAMICS USING MATLAB

MODELLING AND EXPERIMENTAL ANALYSIS OF MOTORCYCLE DYNAMICS USING MATLAB MODELLING AND EXPERIMENTAL ANALYSIS OF MOTORCYCLE DYNAMICS USING MATLAB P. Florn, P. Vrání, R. Čermá Fculy of Mechncl Engneerng, Unversy of Wes Bohem Asrc The frs pr of hs pper s devoed o mhemcl modellng

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

Lecture 4: Trunking Theory and Grade of Service (GOS)

Lecture 4: Trunking Theory and Grade of Service (GOS) Lecure 4: Trunkng Theory nd Grde of Servce GOS 4.. Mn Problems nd Defnons n Trunkng nd GOS Mn Problems n Subscrber Servce: lmed rdo specrum # of chnnels; mny users. Prncple of Servce: Defnon: Serve user

More information

Power Series Solutions for Nonlinear Systems. of Partial Differential Equations

Power Series Solutions for Nonlinear Systems. of Partial Differential Equations Appled Mhemcl Scences, Vol. 6, 1, no. 14, 5147-5159 Power Seres Soluons for Nonlner Sysems of Prl Dfferenl Equons Amen S. Nuser Jordn Unversy of Scence nd Technology P. O. Bo 33, Irbd, 11, Jordn nuser@us.edu.o

More information

Lesson Notes: Week 40-Vectors

Lesson Notes: Week 40-Vectors Lesson Notes: Week 40-Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

W. B. Vasantha Kandasamy Florentin Smarandache NEUTROSOPHIC BILINEAR ALGEBRAS AND THEIR GENERALIZATIONS

W. B. Vasantha Kandasamy Florentin Smarandache NEUTROSOPHIC BILINEAR ALGEBRAS AND THEIR GENERALIZATIONS W. B. Vsnh Kndsmy Florenn Smrndche NEUTROSOPHIC BILINEAR ALGEBRAS AND THEIR GENERALIZATIONS Svensk fyskrkve Sockholm, Sweden 00 Svensk fyskrkve (Swedsh physcs rchve) s publsher regsered wh he Royl Nonl

More information

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24 Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Integral Equations and their Relationship to Differential Equations with Initial Conditions

Integral Equations and their Relationship to Differential Equations with Initial Conditions Scece Refleco SR Vol 6 wwwscecereflecocom Geerl Leers Mhemcs GLM 6 3-3 Geerl Leers Mhemcs GLM Wese: hp://wwwscecereflecocom/geerl-leers--mhemcs/ Geerl Leers Mhemcs Scece Refleco Iegrl Equos d her Reloshp

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Chapter 2 Linear Mo on

Chapter 2 Linear Mo on Chper Lner M n .1 Aerge Velcy The erge elcy prcle s dened s The erge elcy depends nly n he nl nd he nl psns he prcle. Ths mens h prcle srs rm pn nd reurn bck he sme pn, s dsplcemen, nd s s erge elcy s

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681 Revew: Trnsforons Trnsforons Modelng rnsforons buld cople odels b posonng (rnsforng sple coponens relve o ech oher ewng rnsforons plcng vrul cer n he world rnsforon fro world coordnes o cer coordnes Perspecve

More information

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 + Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

More information

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x  0 : Clculus II MAT 146 Integrtion Applictions: Volumes of 3D Solids Our gol is to determine volumes of vrious shpes. Some of the shpes re the result of rotting curve out n xis nd other shpes re simply given

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives

AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives AMATH 731: Applied Functionl Anlysis Fll 214 Additionl notes on Fréchet derivtives (To ccompny Section 3.1 of the AMATH 731 Course Notes) Let X,Y be normed liner spces. The Fréchet derivtive of n opertor

More information

The Algebra (al-jabr) of Matrices

The Algebra (al-jabr) of Matrices Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (l-jbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

Looking for All Palindromes in a String

Looking for All Palindromes in a String Looking or All Plindromes in String Shih Jng Pn nd R C T Lee Deprtment o Computer Science nd Inormtion Engineering, Ntionl Chi-Nn University, Puli, Nntou Hsien,, Tiwn, ROC sjpn@lgdoccsiencnuedutw, rctlee@ncnuedutw

More information

MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

MATH 423 Linear Algebra II Lecture 28: Inner product spaces. MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function

More information

Math 131. Numerical Integration Larson Section 4.6

Math 131. Numerical Integration Larson Section 4.6 Mth. Numericl Integrtion Lrson Section. This section looks t couple of methods for pproimting definite integrls numericlly. The gol is to get good pproimtion of the definite integrl in problems where n

More information

Topics Covered AP Calculus AB

Topics Covered AP Calculus AB Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

Generation of Crowned Parabolic Novikov gears

Generation of Crowned Parabolic Novikov gears Engneerng Leers, 5:, EL_5 4 Generon o Crowned Prol Novkov gers Somer M. Ny, Memer, IAENG, Mohmmd Q. Adullh, nd Mohmmed N.Mohmmed Asr - The Wldher-Novkov ger s one o he rulr r gers, whh hs he lrge on re

More information

Section 3.2 Maximum Principle and Uniqueness

Section 3.2 Maximum Principle and Uniqueness Section 3. Mximum Principle nd Uniqueness Let u (x; y) e smooth solution in. Then the mximum vlue exists nd is nite. (x ; y ) ; i.e., M mx fu (x; y) j (x; y) in g Furthermore, this vlue cn e otined y point

More information

Lump Solutions to a Jimbo-Miwa Like Equations

Lump Solutions to a Jimbo-Miwa Like Equations Lump Soluons o Jmbo-Mw Lke Equons Hrun-Or-Roshd * M. Zulkr Al b Deprmen o Mhemcs Pbn Unvers o Scence nd Technolog Bngldesh b Deprmen o Mhemcs Rjshh Unvers Bngldesh * Eml: hrunorroshdmd@gml.com Absrc A

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

Method of upper lower solutions for nonlinear system of fractional differential equations and applications Malaya Journal of Maemak, Vol. 6, No. 3, 467-472, 218 hps://do.org/1.26637/mjm63/1 Mehod of upper lower soluons for nonlnear sysem of fraconal dfferenal equaons and applcaons D.B. Dhagude1 *, N.B. Jadhav2

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel Int. J. Contemp. Mth. Sciences, Vol. 6, 2011, no. 11, 535-543 Solution to Fredholm Fuzzy Integrl Equtions with Degenerte Kernel M. M. Shmivnd, A. Shhsvrn nd S. M. Tri Fculty of Science, Islmic Azd University

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS ON THE WEA LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS FENGBO HANG Absrac. We denfy all he weak sequenal lms of smooh maps n W (M N). In parcular, hs mples a necessary su cen opologcal

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES 1. TRANSLATION Figure shows rigid body trnslting in three-dimensionl spce. Any two points in the body, such s A nd B, will move long prllel stright lines if

More information

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN) EE 537-635 Microwve Engineering Fll 7 Prof. Dvid R. Jcson Dep. of EE Noes Wveguides Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model Our gol is o come up wih rnsmission line model for

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL 28 Nottion: N {, 2, 3,...}. (Tht is, N.. Let (X, M be mesurble spce with σ-finite positive mesure µ. Prove tht there is finite positive mesure ν on (X, M such

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

A new model for solving fuzzy linear fractional programming problem with ranking function

A new model for solving fuzzy linear fractional programming problem with ranking function J. ppl. Res. Ind. Eng. Vol. 4 No. 07 89 96 Journl of pplied Reserch on Indusril Engineering www.journl-prie.com new model for solving fuzzy liner frcionl progrmming prolem wih rning funcion Spn Kumr Ds

More information