Best Approximation. Chapter The General Case


 Rosaline Evans
 4 years ago
 Views:
Transcription
1 Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given function. This fundmentl problem in Approximtion Theory cn be stted in very generl terms. Let V be Normed Liner Spce nd W finitedimensionl subspce of V, then for given v V, find w W such tht v w v w, for ll w W. Here w is clled the Best Approximtion to v out of the subspce W. Note tht the definition of V defines the prticulr norm to be used nd, when using tht norm, w is the vector tht is closest to v out of ll possible vectors in W. In generl, different norms led to different pproximtions. In the context of Numericl Anlysis, V is usully the set of continuous functions on some intervl [, b], with some selected norm, nd W is usully the spce of polynomils P n. The requirement tht W is finitedimensionl ensures tht we hve bsis for W. Lest Squres Problem Let f(x) be given prticulr continuous function. Using the 2norm f(x) 2 = ( f 2 (x)dx ) 1/2 find p (x) such tht f(x) p (x) 2 f(x) p(x) 2, 69
2 for ll p(x) P n, polynomils of degree t most n, nd x [, b]. This is known s the Lest Squres Problem. Best pproximtions with respect to the 2norm re clled lest squres pproximtions. 4.2 Lest Squres Approximtion In the bove problem, how do we find p (x)? The procedure is the sme, regrdless of the subspce used. So let W be ny finitedimensionl subspce of dimension (n + 1), with bsis vectors φ (x), φ 1 (x),... nd φ n (x). Therefore, ny member of W cn be expressed s Ψ(x) = c i φ i (x), where c i R. The problem is to find c i such tht f Ψ 2 is minimised. Define E(c, c 1,..., c n ) = i= (f(x) Ψ(x)) 2 dx. We require the minimum of E(c, c 1,..., c n ) over ll vlues c, c 1,...,c n. A necessry condition for E to hve minimum is: This implies, or E c i = = 2 = 2 f(x)φ i (x)dx = f(x)φ i (x)dx = (f Ψ) Ψ c i dx, (f Ψ)φ i (x)dx. Ψφ i (x)dx, c j φ j (x)φ i (x)dx. Hence, the c i tht minimise f(x) Ψ(x) 2 stisfy the system of equtions given by f(x)φ i (x)dx = j= c j φ j (x)φ i (x)dx, for i =, 1,...,n, (4.1) j= totl of (n + 1) equtions in (n + 1) unknowns c, c 1,..., c n. These equtions re often clled the Norml Equtions. 7
3 Exmple Using the Norml Equtions (4.1) find the p(x) P n the best fits, in lest squres sense, generl continuous function f(x) in the intervl [, 1]. i.e. find p (x) such tht f(x) p (x) 2 f(x) p(x) 2, for ll p(x) P n, polynomils of degree t most n, nd x [, 1]. Tke the bsis for P n s φ = 1, φ 1 = x, φ 2 = x 2,..., φ n = x n. Then f(x)x i dx = = = = c j x j x i dx j= c j x i+j dx j= j= j= c j [ x i+j+1 i + j + 1 c j i + j + 1. ] 1 Or, writing them out: i = : i =1 :... i =n : fdx = c + c c c n n + 1 xfdx = c 2 + c c c n n + 2 x n fdx = c n c 1 n c n 2n + 1. Or, in mtrix form: 1 1 1/2... 1/n + 1 c f(x)dx 1 1/2 1/3... 1/n + 2 c = xf(x)dx.. 1/n + 1 1/n /2n + 1 xn f(x)dx Does nything look fmilir? A system HA = f where H is the Hilbert mtrix. This is seriously bd news  this system is fmously ILLCONDITIONED! We will hve to find better wy to find p. c n 71
4 4.3 Orthogonl Functions In generl, it will be hrd to solve the Norml Equtions, s the Hilbert mtrix is illconditioned. The previous exmple is n exmple of wht not to do! Insted, using the sme pproch s before choose (if possible) n orthogonl bsis φ i (x) such tht In this cse, the Norml Equtions (4.1) reduce to φ i (x)φ j (x)dx =, i j. f(x)φ i (x)dx = c i φ 2 i (x)dx, for i =, 1,...,n, (4.2) nd the coefficients c i cn be determined directly. Also, we cn increse n without disturbing the erlier coefficients. Note, tht ny orthogonl set with n elements is linerly independent nd hence, will lwys provide bsis for W, n n dimensionl spce, Generlistion of Lest Squres We cn generlise the ide of lest squres, using the inner product nottion. Suppose we define f 2 2 = f, f, where.,. is some inner product (e.g., we considered the cse f, g = fgdx in Chpter 1). Then the lest squres best pproximtion is the Ψ(x) such tht f Ψ 2 is minimised, i.e. we wish to minimise f Ψ, f Ψ. Writing Ψ(x) = n i= c iφ i (x), where φ i P n nd form bsis for P n nd expressing orthogonlity s φ i, φ j = for i j, then choosing c i = f(x), φ i(x) φ i (x), φ i (x) (c.f. eqution 4.2) gurntees tht f Ψ 2 f p 2 for ll p P n. In other words, Ψ is the best pproximtion to f out of P n. (See Tutoril sheet 4, question 1 for derivtion of this result). Exmple Find the lest squres, stright line pproximtion to x 1/2 on [, 1]. i.e., find the Ψ(x) P 1 tht best fits x 1/2 on [, 1]. 72
5 First choose n orthogonl bsis for P 1 : φ (x) = 1 nd φ 1 (x) = x 1 2. These form n orthogonl bsis for P 1 since φ φ 1 dx = (x 1 2 )dx = [ 1 2 x2 1 2 x ] 1 = =. Now construct Ψ = c φ + c 1 φ 1 = c + c 1 (x 1 2 ). To find the Ψ which stisfies f Ψ f p, we solve for the c i s follows... i=: c = f, φ φ, φ f, φ = x 1/2, 1 = x1/2 dx = [ 2 3 x3/2] 1 = 2 3 φ, φ = 1, 1 = 1dx = 1 c = 2 3 i=1: c 1 = f, φ 1 φ 1, φ 1 f, φ 1 = x 1/2, x 1 2 = x1/2 (x 1 2 )dx = (x3/2 1 2 x1/2 )dx = [ 2 5 x2/5 1 3 x3/2] 1 = 1 15 φ 1, φ 1 = x 1 2, x 1 2 = (x 1 2 )2 dx = (x2 x )dx = [ 1 3 x3 1 2 x x] 1 = 1 12 c 1 = = 4 5 Hence, the lest squres, stright line pproximtion to x 1/2 on [, 1] is Ψ(x) = x ( x 1 2) = Exmple Show tht truncted Fourier Series is lest squres pproximtion of f(x) for ny f(x) in the intervl [ π, π]. Choose W to be the 2n + 1 dimensionl spce of functions spnned by the bsis φ = 1, φ 1 = cosx, φ 2 = sin x, φ 3 = cos2x, φ 4 = sin 2x,...,φ 2n 1 = cosnx, φ 2n = sin nx, This bsis forms n orthogonl set of functions: e.g. π φ φ 1 dx = π π π cosxdx = [sinx] π π =, etc.,... 73
6 Thus, lest squres pproximtion Ψ(x) of f(x) cn be written Ψ(x) = c + c 1 cosx + c 2 sin x + + c 2n 1 cosnx + c 2n sin nx, with the c i given by nd so on. c = f, φ φ, φ = 1 2π c 1 = f, φ 1 φ 1, φ 1 = π π π π f(x)dx, cosxf(x)dx/ π π cos 2 xdx = 1 π π π cosxf(x)dx, The pproximtion Ψ is the truncted Fourier series for f(x). Hence, Fourier series is n exmple of Lest Squres Approximtion: Best Approximtion in the lest squres sense. Exmple Let x = {x i }, i = 1,..., n nd y = {y i }, i = 1,..., n be the set of dt points (x i, y i ). Find the lest squres best stright line fit to these dt points. We define the inner product in this cse to be x,y = x i y i, i=1 Next we let Ψ(x) = {c 1 (x i x) + c }, i = 1,..., n with x = 1 n n i=1 x i. Here φ (x) = 1, i = 1,..., n nd φ 1 (x) = {x i x}, i,..., n. Observe tht φ (x), φ 1 (x) = (x i x) 1 = i=1 x i i=1 x = nx nx =, so φ, φ 1 re n orthogonl set. Hence, if we clculte c nd c 1 s follows c 1 = y, φ 1 n φ 1, φ 1 = i=1 y i(x i x) n i=1 (x i x), 2 nd (using φ, φ = n i=1 1 = n) i=1 c = y, φ n φ, φ = i=1 y i. n then Ψ(x) is the best liner fit (in lest squres sense) to the dt points (x i, y i ). 74
7 4.3.2 Approximtions of Differing Degrees Consider f Ψ 2 f p(x) 2, Ψ, p P n, where Ψ = n i= c iφ i (x), where φ i (x) form n orthofonl bsis for P i. Note, p(x) my be ANY p(x) P n, polynomils of degree t most n. If we choose n 1 p(x) = c i φ i (x), i= then p(x) P n, nd p(x) is the best pproximtion to f(x) of degree n 1 (p(x) P n 1 ). Now from bove we hve n 1 f Ψ 2 f c i φ i 2. This mens tht the Lest Squres Best pproximtion from P n is t lest s good s the Lest Squres Best pproximtion from P n 1. i.e. Adding more terms (higher degree bsis functions) does not mke the pproximtion worse  in fct, it will usully mke it better. i= 4.4 Minimx In the previous two sections, we hve considered the best pproximtion in situtions involving the 2 norm. However, best pproximtion in terms of the mximum (or infinity) norm: f p f p, p P n, implies tht we choose the polynomil tht minimises the mximum error over [, b]. This is more nturl wy of thinking bout Best Approximtion. In such sitution, we cll p (x) the minimx pproximtion to f(x) on [, b]. Exmple Find the best constnt (p P ) pproximtion to f(x) in the intervl [, b]. Let c P, thus we wnt to minimise f(x) c : { } min mx f(x) c, ll c [,b] Clerly, the c tht minimises this is c mx } error c = mx{f} + min{f} 2. b Exmple Find the best stright line fit (p P 1 ) to f(x) = e x in the intervl [, 1]. 75
8 We wnt to find the stright line fit, hence we let p = mx + c nd we look to minimise f x e p 1(x) f(x) p = e x (mx + c) i.e., { } min mx ll m,c [,1] ex (mx + c). θ 1 Geometriclly, the mximum occurs in three plces, x =, x = θ nd x = 1. x = : e ( + c) = E (i) x = θ : e θ (mθ + c) = E (ii) x = 1 : e 1 (m + c) = E (iii) lso, the error t x = θ hs turning point, so tht x (ex (mx + c)) x=θ = e θ m = m = e θ θ = log e m. (i) nd (iii) imply 1 c = E = e m c or, m = e θ = log e (1.7183). (ii) nd (iii) imply e θ + e mθ c m c = or, c = 1 [m + e mθ m] Hence the minimx stright line is given by x As the bove exmple illustrtes, finding the minimx polynomil p n(x) for n 1 is not stright forwrd exercise. Also, note tht the process involves the evlution of the error, E in the bove exmple Chebyshev Polynomils Revisited Recll tht the Chebyshev polynomils stistfy q(x) P n+1 such tht q(x) = x n nt n+1(x) q(x), 76
9 In prticulr, if we consider n = 2, then x3 3 4 x x x x +, or x3 3 4 x x 3 ( 2 x 2 ) 1 x, constnts, 1, 2. Hence p 2 (x) P 2. x3 3 4 x x 3 p 2 (x), This mens the p (x) P 2 tht is the minimx pproximtion to f(x) = x 3 in the intervl [ 1, 1], i.e. the p (x) tht stisfies is p 2(x) = 3 4 x. x 3 p 2 (x) x 3 p 2 (x). From this exmple, we cn see tht the Chebyshev polynomil T n+1 (x) cn be used to quickly find the best polynomil of degree t most n (in the sense tht the mximum error is minimised) to the function f(x) = x n+1 in the intervl [ 1, 1]. Finding the minimx pproximtion to f(x) = x n+1 my see quite limited. However, in combintion with the following results it cn be very useful. If p n(x) is the minimx pproximtion to f(x) on [, b] from P n then 1. αp n (x) is the minimx pproximtion to αf(x) where α R, nd 2. p n(x) + q n (x) is the minimx pproximtion to f(x) + q n (x) where q n (x) P n. (See Tutoril Sheet 8 for proofs nd n exmple) 4.5 Equioscilltion From the bove exmples, we see tht the error occurs severl times. In Exmple 4.4.1: n=  mximum error occurred twice In Exmple 4.4.2: n=1  mximum error occurred three times 77
10 In Exmple 4.4.3: n=2  mximum error occurred four times In order to find the minimx pproximtion, we hve found p, p 1 nd p 2 such tht the mximum error equioscilltes. Definition: A continuous function is sid to equioscillte on n points of [, b] if there exist n points x i x 1 < x 2 < < x n b, such tht nd E(x i ) = mx x b E(x), i = 1,...,n, E(x i ) = E(x i+1 ), i = 1,...,n 1. Theorem: For the function f(x), where x [,b], nd some p n (x) P n, suppose f(x) p n (x) equioscilltes on t lest (n + 2) points in [,b]. Then p n (x) is the minimx pproximtion for f(x). (See Phillips & Tylor for proof.) The inverse of this theorem is lso true: if p n (x) is the minimx polynomil of degree n, then f(x) p n (x) equioscilltes on t lest (n + 2) points. The property of equioscilltion chrcterises the minimx pproximtion. Exmple Construct the minimx, stright line pproximtion to x 1/2 on [, 1]. So we wish to find p 1 (x) = mx + c such tht is minimised. mx [,1] x 1/2 (mx + c) From the bove theorem we know the mximum must occur in n + 2 = 3 plces, x =, x = θ nd x = 1. x = : ( + c) = E (i) x = θ : θ 1/2 (mθ + c) = E (ii) x = 1 : 1 (m + c) = E (iii) 78
11 Also, the error t x = θ hs turning point: ( ) x 1/2 (mx + c) x = x=θ ( ) 1 2 x 1/2 m = 1 2 θ 1/2 m = θ = 1 4m 2. Combining (i) nd (iii): c = 1 m c m = 1 Combining (ii) nd (iii): x=θ θ 1/2 (mθ + c) + 1 (m + c) = 1 2m 1 4m + 1 m 2c = c = c = 1 8. Hence the minimx stright line pproximtion to x 1/2 is given by x On the other hnd, the lest squres, stright line pproximtion ws 4 5 x , mking it cler tht different norms led to different pproximtions! 4.6 Chebyshev Series Agin The property of equioscilltion chrcterises the minimx pproximtion. Suppose we could produce the following series expnsion, f(x) = i T i (x) for f(x) defined on [ 1, 1]. This is clled Chebyshev series. Not such crzy ide! Put x = cosθ, then f(cosθ) = i T i (cosθ) = i cos(iθ), θ π, i= i= i= which is just the Fourier cosine series for the function f(cosθ). Hence, it is series we could evlute (using numericl integrtion if necessry). Now, suppose the series converges rpidly so tht, n+1 n+2 n+3... so few terms re good pproximtion of the function. 79
12 Let Ψ(x) = n i= it i (x) then f(x) Ψ(x) = n+1 T n+1 (x) + n+2 T n+2 (x) +... n+1 T n+1 (x), or, the error is dominted by the leding term n+1 T n+1 (x). Now T n+1 (x) equioscilltes (n + 2) times on [ 1, 1]. If f(x) Ψ(x) = n+1 T n+1 (x), then Ψ(x) would be the minimx polynomil of degree n to f(x). Since f(x) Ψ(x) n+1 T n+1 (x), Ψ(x) is not the minimx but is polynomil tht is close to the minimx, s long s n+2, n+3,... re smll compred to n+1. The ctul error lmost equioscilltes on (n + 2) points. Exmple 4.6.1: Find the minimx qudrtic pproximtion to f(x) = (1 x 2 ) 1/2 in the intervl [ 1, 1]. First, we note tht if x = cosθ then f(cosθ) = (1 cos 2 θ) 1/2 = sin θ nd the intervl x [ 1, 1] becomes θ [, π]. The Fourier cosine series for sinθ on [, π] is given by F( θ ) sinθ = 2 π 4 π [ cos2θ 3 + cos4θ 15 + cos6θ 35 ] +... π π So with x = cosθ, we hve (1 x 2 ) 1/2 = 2 π 4 π [ T2 (x) 3 + T 4(x) 15 + T 6(x) 35 ] +..., (1 x 2 ) 1/2 where 1 x Thus let use consider the qudrtic p 2 (x) = 2 π 4 π T 2 (x) 3 = 2 π 4 3π (2x2 1) = 2 3π (3 2(2x2 1)) = 2 3π (5 4x2 ). The error f(x) p 2 (x) 4 π 8 T 4 (x) 15,
13 which oscilltes = 5 times in [1,1]. At lest 4 equioscilltion points re required for p 2 (x) to be the minimx pproximtion of (1 x 2 ) 1/2, so we need to see whether the bove oscilltion points re of equl mplitude. T 4 (x) hs extreme vlues when 8x 4 8x = ±1, i.e. t x =, x = 1, x = 1, x = 1/ 2 nd x = 1/ 2. (1 x 2 ) 1/2 p 2 (x) error x = 1 1/3π.61 x = ±1/ 2 1/ 2 2/π.75 x = ±1 2/3π.2122 So the error oscilltes but not eqully. Hence, p 2 (x) is not quite the minimx pproximtion to f(x) = (1 x 2 ) 1/2, but it is good first pproximtion. The true minimx qudrtic to (1 x 2 ) 1/2 is ctully ( 9 8 x2) = (1.125 x 2 ), nd thus our estimte of ( x 2 ) is not bd. 4.7 Economistion of Power Series Another wy of exploiting the properties of Chebyshev polynomils is possible for functions f(x) for which power series exists. Consider the function f(x) which equls the power series f(x) = n x n. n=1 Let us ssume tht we re interested in pproximting f(x) with polynomil of degree m. One such pproximtion is m f(x) = n x n + R m, n=1 which hs error R m. Cn we get better pproximtion of degree m thn this? Yes! A better pproximtion my be found by finding function p m (x) such tht f(x) p m (x) equioscilltes t lest m + 2 times in the given intervl. Consider the truncted series of degree m + 1 m f(x) = n x n + m+1 x m+1 + R m+1. n=1 The Chebyshev polynomil of degree m + 1, equioscilltes m + 2 times, nd equls T m+1 (x) = 2 m x m+1 + t m 1 (x), 81
14 where t m 1 re the terms in the Chebyshev polynomil of degree t most m 1. Hence, we cn write x m+1 = 1 2 m (T m+1(x) t m 1 (x)). Substituting for x m+1 in our expression for f(x) we get f(x) = m n=1 n x n + m+1 2 m (T m+1(x) t m 1 (x)) + R m+1. Rerrnging we find polynomil of degree t most m, p m (x) = m n=1 n x n m+1 2 m t m 1(x). This polynomil will be pretty good pproximtion to f(x) since f(x) p m (x) = m+1 2 m T m+1(x) + R m+1, which oscilltes m + 2 times lmost eqully provided R m+1 is smll. Although p m (x) is not the minimx pproximtion to f(x) it is close nd the error m+1 2 m T m+1(x) + R m+1 m+1 2 m + R m+1, since T m+1 (x) 1, is generlly lot less thn the error R m for the truncted power series of degree m. This process is clled the Economistion of power series. Exmple 4.7.1: The Tylor expnsion of sin x where R 7 = x7 7! For x [ 1, 1], R 7 1 7!.2. However, where sin x = x x3 3! + x5 5! + R 7, d 7 dx 7 (sin x) x=θ = x7 ( cosθ). 7! sin x = x x3 3! + R 5, R 5 = x5 d 5 5! dx 5 (sin x) x=θ = x5 5! (cosθ), so R 5 1 5!.83. The extr term mkes big difference! Now suppose we express x 5 in terms of Chebyshev polynomils, T 5 (x) = 16x 5 2x 3 + 5x, 82
15 so Then x 5 = T 5(x) + 2x 3 5x 16 sin x = x x ( T5 (x) + 2x 3 5x 5! 16 ( ) ( 1 = x 1 x ! ) + R 7 ) ! T 5(x) + R 7. Now T 5 (x) 1 for x [ 1, 1] so if we ignore the term in T 5 (x) we obtin ( ) 1 sin x = x 1 x3 16 4! Error where 1 Error R ! T 5(x), = This new cubic hs mximum error of bout.7, compred with.83 for x x
Orthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationChapter 3 Polynomials
Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling
More informationCMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
More information1. GaussJacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),
1. GussJcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationNumerical Analysis: Trapezoidal and Simpson s Rule
nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationMath 1B, lecture 4: Error bounds for numerical methods
Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the
More informationOrthogonal Polynomials
Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils
More informationP 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)
1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this
More informationEuler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )
Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationPartial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the righthnd side limit equls to the lefthnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
More informationNumerical Methods I Orthogonal Polynomials
Numericl Methods I Orthogonl Polynomils Aleksndr Donev Cournt Institute, NYU 1 donev@cournt.nyu.edu 1 MATHGA 2011.003 / CSCIGA 2945.003, Fll 2014 Nov 6th, 2014 A. Donev (Cournt Institute) Lecture IX
More informationMath& 152 Section Integration by Parts
Mth& 5 Section 7.  Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible
More information1 The Lagrange interpolation formula
Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x
More informationQuadratic Forms. Quadratic Forms
Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte
More informationUnit #9 : Definite Integral Properties; Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationc n φ n (x), 0 < x < L, (1) n=1
SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry
More informationNumerical Integration
Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More informationNumerical Analysis. Doron Levy. Department of Mathematics Stanford University
Numericl Anlysis Doron Levy Deprtment of Mthemtics Stnford University December 1, 2005 D. Levy Prefce i D. Levy CONTENTS Contents Prefce i 1 Introduction 1 2 Interpoltion 2 2.1 Wht is Interpoltion?............................
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019
ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil
More informationChapter 28. Fourier Series An Eigenvalue Problem.
Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why
More informationDEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.
398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts
More informationNUMERICAL INTEGRATION
NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls
More informationAdvanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.
Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil
More information221B Lecture Notes WKB Method
Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using
More informationg i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f
1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where
More informationW. We shall do so one by one, starting with I 1, and we shall do it greedily, trying
Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)
More informationPhysics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More informationLecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature
Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics  A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationProperties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums  1 Riemnn
More information7.2 The Definite Integral
7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationOverview of Calculus I
Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,
More informationNumerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1
AMSC/CMSC 46/466 T. von Petersdorff 1 umericl Integrtion 1 Introduction We wnt to pproximte the integrl I := f xdx where we re given, b nd the function f s subroutine. We evlute f t points x 1,...,x n
More informationRiemann is the Mann! (But Lebesgue may besgue to differ.)
Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More information3.4 Numerical integration
3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationReview of Calculus, cont d
Jim Lmbers MAT 460 Fll Semester 200910 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More information1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
More informationODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =
More informationImproper Integrals. Type I Improper Integrals How do we evaluate an integral such as
Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph
More informationZ b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...
Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.
More informationLecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
More informationf(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all
3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the
More informationAPPROXIMATE INTEGRATION
APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose ntiderivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be
More informationNumerical quadrature based on interpolating functions: A MATLAB implementation
SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in
More informationDefinite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
More informationInnerproduct spaces
Innerproduct spces Definition: Let V be rel or complex liner spce over F (here R or C). An inner product is n opertion between two elements of V which results in sclr. It is denoted by u, v nd stisfies:
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More informationThe Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
More informationWeek 10: Line Integrals
Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More informationChapter 5. Numerical Integration
Chpter 5. Numericl Integrtion These re just summries of the lecture notes, nd few detils re included. Most of wht we include here is to be found in more detil in Anton. 5. Remrk. There re two topics with
More informationDefinite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function
More information1 Linear Least Squares
Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving
More informationFundamental Theorem of Calculus
Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under
More informationMA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
More informationLecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at UrbanaChampaign. March 20, 2014
Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t UrbnChmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method
More informationMORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
More informationChapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More informationIntroduction to Numerical Analysis
Introduction to Numericl Anlysis Doron Levy Deprtment of Mthemtics nd Center for Scientific Computtion nd Mthemticl Modeling (CSCAMM) University of Mrylnd June 14, 2012 D. Levy CONTENTS Contents 1 Introduction
More information1 Probability Density Functions
Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our
More informationQuantum Physics II (8.05) Fall 2013 Assignment 2
Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.
More informationMath 270A: Numerical Linear Algebra
Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner
More informationNew Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06073 HIKARI Ltd, www.mhikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
More informationMATH 144: Business Calculus Final Review
MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More informationRecitation 3: More Applications of the Derivative
Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech
More informationLecture 1: Introduction to integration theory and bounded variation
Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You
More informationf(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral
Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one
More informationAdvanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
More informationLecture 12: Numerical Quadrature
Lecture 12: Numericl Qudrture J.K. Ryn@tudelft.nl WI3097TU Delft Institute of Applied Mthemtics Delft University of Technology 5 December 2012 () Numericl Qudrture 5 December 2012 1 / 46 Outline 1 Review
More information221A Lecture Notes WKB Method
A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e
More informationx = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b
CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick
More informationn f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1
The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the
More informationCAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.
Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you
More information1 The fundamental theorems of calculus.
The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl new nme for ntiderivtive. Differentiting integrls. Tody we provide the connection
More informationExam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH1105 Instructor: Attila Máté 1
Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixedpoint itertion to converge when solving the eqution
More information1.3 The Lemma of DuBoisReymond
28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBoisReymond We needed extr regulrity to integrte by prts nd obtin the Euler Lgrnge eqution. The following result shows tht, t lest sometimes, the extr
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More informationNumerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
More informationWeek 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationSection 7.1 Integration by Substitution
Section 7. Integrtion by Substitution Evlute ech of the following integrls. Keep in mind tht using substitution my not work on some problems. For one of the definite integrls, it is not possible to find
More informationState space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies
Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response
More informationThings to Memorize: A Partial List. January 27, 2017
Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors  Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved
More information