Math 270A: Numerical Linear Algebra


 Claud Blankenship
 3 years ago
 Views:
Transcription
1 Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner Systems 1. Recll tht the trnspose A T of n n n mtrix A is defined s A T ij = A ji. Another chrcteriztion of the trnspose mtrix A T is tht it is the unique djoint opertor stisfying where (, is the usul Eucliden innerproduct, (Au, v = (u, A T v, u, v R n, (u, v = n u i v i. Show tht these two chrcteriztions re equivlent.. Given n SPD (symmetric positive definite n n mtrix A, show tht it defines new innerproduct (u, v A = (Au, v = i=1 n (Au i v i, u, v R n, i=1 clled the Ainnerproduct. I.e., show tht (u, v A is true innerproduct, in tht it stisfies the three innerproduct properties. 3. The Adjoint of mtrix M, denoted M, is defined s the djoint in the Ainnerproduct; i.e., the unique mtrix stisfying: (AMu, v = (Au, M v, u, v R n. Show tht tht n equivlent definition of M is M = A 1 M T A. 4. Now tht we hve new innerproduct (u, v A, give definition of the norm it induces, which we will denote u A. Give n rgument tht it stisfies the three norm properties. 5. Use the vector norm u A to define the opertor (mtrix norm M A which it induces for ny n n mtrix M. Give n rgument tht this definition gives us ccess to the following inequlity: Mu A M A u A, u R n. 6. Use the Anorm to define the Acondition number of ny squre n n mtrix M, which we denote s κ A (M. 7. Prove the following: If M R n n is Aselfdjoint for n SPD A R n n, then ρ(m = M A, κ A (M = λ mx(m λ min (M.
2 8. Let A, B R n n be SPD, nd let α R with α 0. Our gol is to solve the liner system Au = f for the unknown u R n, given f R n, nd given B A 1. Derive the following identity nd rgue tht it hs unique solution u R n tht grees with the solution to Au = f: u = (I αbau + αbf. 9. Derive the prmeterized form of the Bsic Liner Method for the problem Au = f: u n+1 = (I αbau n + αbf. 10. Use the Bnch Fixed Point Theorem to prove tht the BLM converges if α is restricted to subset of R, nd give tht subset. 11. Prove tht when the optiml vlue is chosen for α, the following error bound holds for the Bsic Liner Method: e n+1 ( n+1 1 e 0, 1 + κ A (BA where e n+1 = u u n+1, nd where κ A (BA denotes the Acondition number of BA. 1. Drive more generl error bound for the Bsic Liner Method, similr to the result bove, but one tht holds for ny vlue of α. (Hint: The norm of the error propgtor E = I BA will pper more nturlly thn the condition number of BA. 13. Assume we hve the optiml vlue for α. Assuming tht we would like to chieve the following ccurcy in our itertion fter some number of steps n: e n+1 A e 0 A < ɛ, use the pproximtion: ln ( ( ( 1/ = ln = ( 1/ [ ( ( ( ] <, to show tht we cn chieve this error tolernce with the Bsic Liner Method if n stisfies: n = O (κ A (BA ln ɛ. 14. Derive similr itertion bound result tht holds for ny α. 15. Mny types of mtrices hve O(1 nonzeros per row (the finite difference nd finite element discretiztions of ordinry nd prtil differentil equtions we looked t briefly in 70A, nd will look t more in 70C, lwys generte such mtrices. Assume tht the cost to store nd pply B is O(n. Prove tht the cost of one itertion of BLM will be O(n, where n is the dimension of the problem, i.e., A is n n n mtrix. 16. Wht is the overll complexity (in terms of n nd κ A (BA to solve the problem with the BLM to given tolernce ɛ? (Assume you hve the optiml α. If κ A (BA cn be bounded by constnt, independent of the problem size n, wht is the complexity? Is this then n optiml method?
3 Exercise 3.. (Derivtion of the Conjugte Grdient Method. In this problem, we will derive the conjugte grdient (CG method, n extremely importnt itertive method for solving mtrix equtions Au = f when A is symmetric (A = A T nd positivedefinite (u T Au > 0, u 0. (We will refer to mtrices hving both properties s SPD. This problem brings together severl different topics we hve discussed in lecture in 70A, including itertive methods for mtrix equtions, mnipultions with innerproducts nd norms in vector spce, together with some bsic ides from pproximtion nd orthogonl polynomils tht will be exmined more completely in 70B. 1. The CyleyHmilton Theorem sttes tht squre n n mtrix M stisfies its own chrcteristic eqution: P n (M = 0. Using this result, prove tht if M is lso nonsingulr, then the mtrix M 1 cn be written s mtrix polynomil of degree n 1 in M, or M 1 = Q n 1 (M.. Consider now the mtrix eqution: Au = f, where A is n n n SPD mtrix, nd u nd f re nvectors. It is common to precondition such n eqution before ttempting numericl solution, by multiplying by n pproximte inverse opertor B A 1 nd then solving the preconditioned system: BAu = Bf. If A nd B re both SPD, under wht conditions is BA lso SPD? Show tht if A nd B re both SPD, then BA is ASPD (symmetric nd positive in the Ainnerproduct. 3. Given n initil guess u 0 to the solution of BAu = Bf, we cn form the initil residuls: r 0 = f Au 0, s 0 = Br 0 = Bf BAu 0. Do simple mnipultion to show tht the solution u cn be written s: u = u 0 + Q n 1 (BAs 0, where Q( is the mtrix polynomil representing (BA 1. In other words, you hve estblished tht the solution u lies in trnslted Krylov spce: u u 0 + V n 1 (BA, s 0, where V n 1 (BA, s 0 = spn{s 0, BAs 0, (BA s 0,..., (BA n 1 s 0 }. Note tht we cn view the Krylov spces s sequence of expnding subspces V 0 (BA, s 0 V 1 (BA, s 0 V n 1 (BA, s We will now try to construct n itertive method (the CG method for finding u. The lgorithm determines the best pproximtion u k to u in subspce V k (BA, s 0 t ech step k of the lgorithm, by forming u k+1 = u k + α k p k, where p k is such tht p k V k (BA, s 0 t step k, but p k V j (BA, s 0 for j < k. In ddition, we wnt to enforce minimiztion of the error in the Anorm, e k+1 A = u u k+1 A, t step k of the lgorithm. The next itertion expnds the subspce to V k+1 (BA, s 0, finds the best pproximtion in the expnded spce, nd so on, until the exct solution in V n 1 (BA, s 0 is reched. To relize this lgorithm, let s consider how to construct the required vectors p k in n efficient wy. Let p 0 = s 0, nd consider the construction of n Aorthogonl bsis for V n 1 (BA, s 0 using the stndrd GrmSchmidt procedure: p k+1 = BAp k k i=0 (BAp k, p i A (p i, p i A p i, k = 0,..., n. 3
4 At ech step of the procedure, we will hve generted n Aorthogonl (orthogonl in the Ainnerproduct bsis {p 0,..., p k } for V k (BA, s 0. Now, note tht by construction, (p k, v A = 0, v V j (BA, s 0, j < k. Using this fct, nd the fct you estblished previously tht BA is Aselfdjoint, show tht the GrmSchmidt procedure hs only three nonzero terms in the sum, nmely p k+1 = BAp k (BApk, p k A (p k, p k A p k (BApk, p k 1 A (p k 1, p k 1 A p k 1, k = 0,..., n 1. Thus, there exists n efficient threeterm recursion for generting the Aorthogonl bsis for the solution spce. Note tht this threeterm recursion is possible due to the fct tht we re working with orthogonl (mtrix polynomils. 5. We cn nerly write down the CG method now, by ttempting to expnd the solution in terms of our cheply generted Aorthogonl bsis. However, we need to determine how fr to move in ech conjugte direction p k t step k fter we generte p k from the recursion. As remrked erlier, we would like to enforce minimiztion of the quntity e k+1 A = u u k+1 A t step k of the itertive lgorithm. Show tht this is equivlent to enforcing (e k+1, p k A = 0. (I.e., show tht minimizing the error in finding n pproximtion from subspce is mthemticlly equivlent to enforcing tht the pproximtion error be orthogonl to tht subspce. 6. Let s ssume we hve somehow enforced (e k, p i A = 0, i < k, t the previous step of the lgorithm. We hve t our disposl p k V k (BA, s 0, nd let s tke our new pproximtion t step k + 1 s: u k+1 = u k + α k p k, for some steplength α k R in the direction p k. Thus, the error in the new pproximtion is simply: e k+1 = e k + α k p k. Show tht in order to enforce (e k+1, p k A = 0, we must choose α k to be α k = (rk, p k (p k, p k A. 7. The Conjugte Grdient Algorithm you hve derive bove is: (The Conjugte Grdient Algorithm Let u 0 H be given. r 0 = f Au 0, s 0 = Br 0, p 0 = s 0. Do k = 0, 1,... until convergence: α k = (r k, p k /(p k, p k A u k+1 = u k + α k p k r k+1 = r k α k Ap k s k+1 = Br k+1 β k+1 = (BAp k, p k A /(p k, p k A γ k+1 = (BAp k, p k 1 A /(p k 1, p k 1 A p k+1 = BAp k + β k+1 p k + γ k+1 p k 1 End do. Show tht equivlent expressions for some of the prmeters in CG re: ( α k = (r k, s k /(p k, p k A (b δ k+1 = (r k+1, s k+1 /(r k, s k (c p k+1 = s k+1 + δ k+1 p k Remrk: The CG lgorithm tht ppers in textbooks is usully formulted to employ these equivlent expressions due to the reduction in computtionl work of ech itertion. 4
5 Exercise 3.3. (Properties of the Conjugte Grdient Method. In this problem, we will estblish some simple properties of the CG method derived in Problem 1. (Although this nlysis is stndrd, you will hve difficulty finding ll of the pieces in one text. 1. Show tht the error in the CG lgorithm propgtes s: e k+1 = [I BAp k (BA]e 0, where p k P k, the spce of polynomils of degree k.. By construction, we know tht the polynomil bove is such tht e k+1 A = min p k P k [I BAp k (BA]e 0 A. Now, since BA is ASPD, we know tht it hs rel positive eigenvlues λ j σ(ba, nd further, tht the corresponding eigenvectors v j of BA re orthonorml. Using the expnsion of the initil error estblish the inequlity: e 0 = Σ n j=1α j v j, ( [ ] e k+1 A min mx 1 λ jp k (λ j e 0 A. p k P k λ j σ(ba The polynomil which minimizes the mximum norm bove is sid to solve minimx problem. 3. It is wellknown in pproximtion theory tht the Chebyshev polynomils T k (x = cos(k rccos x solve minimx problems of the bove type, in the sense tht they devite lest from zero (in the mxnorm sense in the intervl [ 1, 1], which cn be shown is due to their unique equioscilltion property. (These fcts cn be found in ny introductory numericl nlysis text, such s the one used in Mth 170C. If we extend the Chebyshev polynomils outside the intervl [ 1, 1] in the nturl wy (outlined in clss, it be shown tht shifted nd scled forms of the Chebyshev polynomils solve the bove minimx problem. In prticulr, the solution is simply ( λ T mx+λ min λ k+1 λ mx λ min 1 λp k (λ = p k+1 (λ = (. λ T mx+λ min k+1 λ mx λ min Use n obvious property of the polynomils T k+1 (x to conclude e k+1 A [ ( ] 1 λmx + λ min T k+1 e 0 A. λ mx λ min 4. Use one of the Chebyshev polynomil results given in the lst problem below to refine this inequlity to: λmx(ba e k+1 λ A 1 min(ba λmx(ba λ + 1 min(ba k+1 e 0 A. 5. Using the fct tht BA is Aselfdjoint nd positive definite, show tht the bove error reduction inequlity cn be written more simply s e k+1 A ( k+1 ( κa (BA 1 e κa (BA A = κ A (BA k+1 e 0 A. 6. Assume tht we would like to chieve the following ccurcy in our itertion fter some number of steps n: e n+1 A e 0 A < ɛ. 5
6 Using the pproximtion: ln ( ( ( 1/ = ln = ( 1/ [ ( show tht we cn chieve this error tolernce if n stisfies ( n = O κ 1/ ln A (BA ɛ. ( ( ] <, 7. Mny types of mtrices hve O(1 nonzeros per row (the finite difference nd finite element discretiztions of ordinry nd prtil differentil equtions we look t next qurter lwys generte such mtrices. Therefore, the cost of one itertion of CG will be O(n, where n is the dimension of the problem, i.e., A is n n n mtrix. Wht is the overll complexity (in terms of n nd κ A (BA to solve the problem to given tolernce ɛ? If κ A (BA cn be bounded by constnt, independent of the problem size n, wht is the complexity? Is this then n optiml method? 8. As noted erlier, mny types of mtrices hve O(1 nonzeros per row (the finite difference nd finite element discretiztions of ordinry nd prtil differentil equtions we looked t briefly in 70A, nd will look t more in 70C, lwys generte such mtrices. Assume tht the cost to store nd pply B is O(n. Prove tht the cost of one itertion of CG will be O(n, where n is the dimension of the problem, i.e., A is n n n mtrix. 9. Wht is the overll complexity (in terms of n nd κ A (BA to solve the problem with CG to given tolernce ɛ? If κ A (BA cn be bounded by constnt, independent of the problem size n, wht is the complexity? Is this then n optiml method? Exercise 3.4. (Properties of the Chebyshev Polynomils. The Chebyshev polynomils re defined s: t n (x = cos(n cos 1 x, n = 0, 1,,.... Tking t 0 (x = 1, t 1 (x = x, it cn be show tht the Chebyshev polynomils re n orthogonl fmily tht cn be generted by the stndrd recursion (which holds for ny orthogonl polynomil fmily: t n+1 (x = t 1 (xt n (x t n 1 (x, n = 1,, 3,.... Prove the following extremely useful reltionships: t k (x = 1 [ ( x + k ( x 1 + x ] k x 1, x, (3.1 ( α + 1 t k > 1 ( k α + 1, α 1 α 1 α > 1. (3. (These two results re fundmentl in the convergence nlysis of the conjugte grdient method in the erlier prts of the homework. Hint: For the first result, use the fce tht cos kθ = (e ikθ + e ikθ /. The second result will follow from the first fter lot of lgebr. 6
MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationChapter 3 Polynomials
Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling
More information1 Linear Least Squares
Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More information1 The Lagrange interpolation formula
Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =
More informationJim Lambers MAT 169 Fall Semester Lecture 4 Notes
Jim Lmbers MAT 169 Fll Semester 200910 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of
More informationOrthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationMath 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008
Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 25pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of
More informationMath 1B, lecture 4: Error bounds for numerical methods
Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the
More informationOrthogonal Polynomials
Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils
More informationState space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies
Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response
More informationQuadratic Forms. Quadratic Forms
Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte
More informationCAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.
Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you
More informationAnalytical Methods Exam: Preparatory Exercises
Anlyticl Methods Exm: Preprtory Exercises Question. Wht does it men tht (X, F, µ) is mesure spce? Show tht µ is monotone, tht is: if E F re mesurble sets then µ(e) µ(f). Question. Discuss if ech of the
More informationPhysics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
More informationNOTES ON HILBERT SPACE
NOTES ON HILBERT SPACE 1 DEFINITION: by Prof CI Tn Deprtment of Physics Brown University A Hilbert spce is n inner product spce which, s metric spce, is complete We will not present n exhustive mthemticl
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More informationMath 61CM  Solutions to homework 9
Mth 61CM  Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ
More informationSTURMLIOUVILLE BOUNDARY VALUE PROBLEMS
STURMLIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2
More informationCMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
More informationHilbert Spaces. Chapter Inner product spaces
Chpter 4 Hilbert Spces 4.1 Inner product spces In the following we will discuss both complex nd rel vector spces. With L denoting either R or C we recll tht vector spce over L is set E equipped with ddition,
More informationElements of Matrix Algebra
Elements of Mtrix Algebr Klus Neusser Kurt Schmidheiny September 30, 2015 Contents 1 Definitions 2 2 Mtrix opertions 3 3 Rnk of Mtrix 5 4 Specil Functions of Qudrtic Mtrices 6 4.1 Trce of Mtrix.........................
More informationMath Theory of Partial Differential Equations Lecture 29: SturmLiouville eigenvalue problems (continued).
Mth 412501 Theory of Prtil Differentil Equtions Lecture 29: SturmLiouville eigenvlue problems (continued). Regulr SturmLiouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()
More informationNew Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06073 HIKARI Ltd, www.mhikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
More informationSturmLiouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1
Ch.4. INTEGRAL EQUATIONS AND GREEN S FUNCTIONS Ronld B Guenther nd John W Lee, Prtil Differentil Equtions of Mthemticl Physics nd Integrl Equtions. Hildebrnd, Methods of Applied Mthemtics, second edition
More information1. GaussJacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),
1. GussJcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on
More informationModule 6: LINEAR TRANSFORMATIONS
Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for
More informationMATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous relvlued function on I), nd let L 1 (I) denote the completion
More information1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation
1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview
More informationReview of Calculus, cont d
Jim Lmbers MAT 460 Fll Semester 200910 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationMatrices, Moments and Quadrature, cont d
Jim Lmbers MAT 285 Summer Session 201516 Lecture 2 Notes Mtrices, Moments nd Qudrture, cont d We hve described how Jcobi mtrices cn be used to compute nodes nd weights for Gussin qudrture rules for generl
More informationMatrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
More informationOrdinary differential equations
Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview IntroductionModelling Bsic concepts to understnd n ODE. Description nd properties
More informationLecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.
Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one
More informationMath Solutions to homework 1
Mth 75  Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht
More informationNumerical Methods I Orthogonal Polynomials
Numericl Methods I Orthogonl Polynomils Aleksndr Donev Cournt Institute, NYU 1 donev@cournt.nyu.edu 1 MATHGA 2011.003 / CSCIGA 2945.003, Fll 2014 Nov 6th, 2014 A. Donev (Cournt Institute) Lecture IX
More informationHere we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.
Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More informationg i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f
1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where
More informationExam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH1105 Instructor: Attila Máté 1
Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixedpoint itertion to converge when solving the eqution
More informationAdvanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
More informationACM 105: Applied Real and Functional Analysis. Solutions to Homework # 2.
ACM 05: Applied Rel nd Functionl Anlysis. Solutions to Homework # 2. Andy Greenberg, Alexei Novikov Problem. RiemnnLebesgue Theorem. Theorem (G.F.B. Riemnn, H.L. Lebesgue). If f is n integrble function
More informationMath Lecture 23
Mth 8  Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of
More informationProblem Set 4: Solutions Math 201A: Fall 2016
Problem Set 4: s Mth 20A: Fll 206 Problem. Let f : X Y be onetoone, onto mp between metric spces X, Y. () If f is continuous nd X is compct, prove tht f is homeomorphism. Does this result remin true
More informationChapter 3. Vector Spaces
3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce
More informationDEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.
398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts
More informationODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry dierentil eqution (ODE) du f(t) dt with initil condition u() : Just
More informationNumerical Integration
Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the
More information221B Lecture Notes WKB Method
Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationLinearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
More informationPart IB Numerical Analysis
Prt IB Numericl Anlysis Theorems with proof Bsed on lectures by G. Moore Notes tken by Dexter Chu Lent 2016 These notes re not endorsed by the lecturers, nd I hve modified them (often significntly) fter
More information8 Laplace s Method and Local Limit Theorems
8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved
More informationMATRICES AND VECTORS SPACE
MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN SPACE AND SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationAdvanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015
Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n
More informationElementary Linear Algebra
Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More informationMain topics for the First Midterm
Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 23, Sections 4.14.8, nd Sections 5.15.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the
More informationARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac
REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b
More informationSeparation of Variables in Linear PDE
Seprtion of Vribles in Liner PDE Now we pply the theory of Hilbert spces to liner differentil equtions with prtil derivtives (PDE). We strt with prticulr exmple, the onedimensionl (1D) wve eqution 2 u
More informationCalculus of Variations
Clculus of Vritions Com S 477/577 Notes) YnBin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function
More informationSTURMLIOUVILLE THEORY, VARIATIONAL APPROACH
STURMLIOUVILLE THEORY, VARIATIONAL APPROACH XIAOBIAO LIN. Qudrtic functionl nd the EulerJcobi Eqution The purpose of this note is to study the SturmLiouville problem. We use the vritionl problem s
More informationMTH 5102 Linear Algebra Practice Exam 1  Solutions Feb. 9, 2016
Nme (Lst nme, First nme): MTH 502 Liner Algebr Prctice Exm  Solutions Feb 9, 206 Exm Instructions: You hve hour & 0 minutes to complete the exm There re totl of 6 problems You must show your work Prtil
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationLecture 20: Numerical Integration III
cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed
More informationTHE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS.
THE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrdlindeloftheorem/ This document is proof of the existenceuniqueness theorem
More informationSUMMER KNOWHOW STUDY AND LEARNING CENTRE
SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18
More informationVariational Techniques for SturmLiouville Eigenvalue Problems
Vritionl Techniques for SturmLiouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment
More informationMath 6395: Hyperbolic Conservation Laws and Numerical Methods. Hyperbolic Conservation Laws are a type of PDEs arise from physics: fluid/gas dynamics.
Mth 6395: Hyperbolic Conservtion Lws nd Numericl Methods Course structure Hyperbolic Conservtion Lws re type of PDEs rise from physics: fluid/gs dynmics. Distintive solution structures Other types of PDEs
More informationFunctional Analysis I Solutions to Exercises. James C. Robinson
Functionl Anlysis I Solutions to Exercises Jmes C. Robinson Contents 1 Exmples I pge 1 2 Exmples II 5 3 Exmples III 9 4 Exmples IV 15 iii 1 Exmples I 1. Suppose tht v α j e j nd v m β k f k. with α j,
More informationLinear Algebra 1A  solutions of ex.4
Liner Algebr A  solutions of ex.4 For ech of the following, nd the inverse mtrix (mtritz hofkhit if it exists  ( 6 6 A, B (, C 3, D, 4 4 ( E i, F (inverse over C for F. i Also, pick n invertible mtrix
More informationarxiv: v1 [math.ra] 1 Nov 2014
CLASSIFICATION OF COMPLEX CYCLIC LEIBNIZ ALGEBRAS DANIEL SCOFIELD AND S MCKAY SULLIVAN rxiv:14110170v1 [mthra] 1 Nov 2014 Abstrct Since Leibniz lgebrs were introduced by Lody s generliztion of Lie lgebrs,
More informationP 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)
1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this
More informationLecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
More informationA Matrix Algebra Primer
A Mtrix Algebr Primer Mtrices, Vectors nd Sclr Multipliction he mtrix, D, represents dt orgnized into rows nd columns where the rows represent one vrible, e.g. time, nd the columns represent second vrible,
More informationNumerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1
AMSC/CMSC 46/466 T. von Petersdorff 1 umericl Integrtion 1 Introduction We wnt to pproximte the integrl I := f xdx where we re given, b nd the function f s subroutine. We evlute f t points x 1,...,x n
More informationNumerical Analysis: Trapezoidal and Simpson s Rule
nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =
More information1B40 Practical Skills
B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need
More informationREPRESENTATION THEORY OF PSL 2 (q)
REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory
More informationInnerproduct spaces
Innerproduct spces Definition: Let V be rel or complex liner spce over F (here R or C). An inner product is n opertion between two elements of V which results in sclr. It is denoted by u, v nd stisfies:
More informationAMATH 731: Applied Functional Analysis Fall Some basics of integral equations
AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)
More informationMath 4310 Solutions to homework 1 Due 9/1/16
Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1
More information4 SturmLiouville Boundary Value Problems
4 SturmLiouville Boundry Vlue Problems We hve seen tht trigonometric functions nd specil functions re the solutions of differentil equtions. These solutions give orthogonl sets of functions which cn be
More informationc n φ n (x), 0 < x < L, (1) n=1
SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry
More informationSTUDY GUIDE FOR BASIC EXAM
STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There
More information2 Sturm Liouville Theory
2 Sturm Liouville Theory So fr, we ve exmined the Fourier decomposition of functions defined on some intervl (often scled to be from π to π). We viewed this expnsion s n infinite dimensionl nlogue of expnding
More informationChapter 5 : Continuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll
More informationNumerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
More informationWe will see what is meant by standard form very shortly
THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible
More information