Math Theory of Partial Differential Equations Lecture 2-9: Sturm-Liouville eigenvalue problems (continued).
|
|
- Solomon Parker
- 3 years ago
- Views:
Transcription
1 Mth Theory of Prtil Differentil Equtions Lecture 2-9: Sturm-Liouville eigenvlue problems (continued).
2 Regulr Sturm-Liouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ() + β 2 φ () = 0, β 3 φ(b) + β 4 φ (b) = 0. Here β i R, β 1 + β 2 0, β 3 + β 4 0. Functions p, q, σ re continuous on [, b], p > 0 nd σ > 0 on [, b].
3 6 properties of regulr Sturm-Liouville problem Eigenvlues re rel. Eigenvlues form n incresing sequence. n-th eigenfunction hs n 1 zeros in (, b). Eigenfunctions re orthogonl with weight σ. Eigenfunctions nd eigenvlues re relted through the Ryleigh quotient. Piecewise smooth functions cn be expnded into generlized Fourier series of eigenfunctions.
4 Regulr Sturm-Liouville eqution: d ( p dφ ) + qφ + λσφ = 0 ( < x < b). dx dx Consider liner differentil opertor L(f ) = d ( p df ) + qf. dx dx Now the eqution cn be rewritten s L(φ) + λσφ = 0.
5 Lgrnge s identity: gl(f ) f L(g) = d dx ( ) p(gf fg ) Integrting over [, b], we obtin Green s formul: b ( ) gl(f ) f L(g) dx = p(gf fg ) b Clim If f nd g stisfy the sme regulr boundry conditions, then the right-hnd side in Green s formul vnishes.
6 Suppose φ n nd φ m re eigenfunctions of the Sturm-Liouville problem corresponding to eigenvlues λ n nd λ m : L(φ n ) + λ n σφ n = 0, L(φ m ) + λ m σφ m = 0. Since φ n nd φ m stisfy the sme regulr boundry conditions, Green s formul implies tht b ( ) φ m L(φ n ) φ n L(φ m ) dx = 0 = b If λ n λ m, then (λ m λ n )φ n (x)φ m (x)σ(x) dx = 0 b φ n (x)φ m (x)σ(x) dx = 0.
7 Suppose φ is complex-vlued eigenfunction corresponding to complex eigenvlue λ: L(φ) + λσφ = 0, β 1 φ() + β 2 φ () = 0, β 3 φ(b) + β 4 φ (b) = 0. We re going to show tht λ R. Any complex number z = x + iy is ssigned its complex conjugte z = x iy. Let us pply the complex conjugcy to the Sturm-liouville eqution nd the boundry conditions.
8 L(φ) + λσφ = 0, β 1 φ() + β 2 φ () = β 3 φ(b) + β 4 φ (b) = 0. It is known tht z 1 + z 2 = z 1 + z 2 nd z 1 z 2 = z 1 z 2. L(φ) + λ σ φ = 0, β 1 φ()+β 2 φ () = β 3 φ(b)+β 4 φ (b) = 0. If z is rel then z = z. L(φ) + λσφ = 0, β 1 φ()+β 2 φ () = β 3 φ(b)+β 4 φ (b) = 0.
9 Let φ denote the complex conjugte function of φ, i.e., φ(x) = φ(x) for x b. We hve tht φ = f + ig, where f nd g re rel-vlued functions. Then φ = f ig. Note tht φ = (f ig) = f ig = f + ig = φ. It follows tht L(φ) = (pφ ) + qφ = (pφ ) + qφ = ( pφ ) + qφ = ( pφ ) + qφ = L(φ).
10 L ( φ ) + λσφ = 0, β 1 φ() + β 2 φ () = β 3 φ(b) + β 4 φ (b) = 0. If φ is n eigenfunction belonging to n eigenvlue λ, then φ is n eigenfunction belonging to the eigenvlue λ. Assume tht λ λ. Then But b b φ(x)φ(x)σ(x) dx = 0. φ(x)φ(x)σ(x) dx = Thus λ = λ = λ R. b φ(x) 2 σ(x) dx > 0.
11 Some fcts bout Eucliden spce Eucliden spce R 3. Let v = (v 1, v 2, v 3 ), u = (u 1, u 2, u 3 ) be two vectors. v u = v 1 u 1 + v 2 u 2 + v 3 u 3 is the dot product. v nd u re orthogonl if v u = 0. v = v v. Vectors e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1) form n orthonorml bsis. v = v 1 e 1 + v 2 e 2 + v 3 e 3 = (v e 1 )e 1 + (v e 2 )e 2 + (v e 3 )e 3.
12 Let v 1,v 2,v 3 be orthogonl nonzero vectors. They form bsis in R 3 so tht for ny u R 3 we hve u = c 1 v 1 + c 2 v 2 + c 3 v 3. Note tht u v n = c n v n v n so tht c n = u v n v n v n. Pythgoren theorem implies tht u 2 = c 1 v c 2 v c 3 v 3 2. Observe tht c n v n 2 = c n 2 v n v n. Hence u u = u v 1 2 v 1 v 1 + u v 2 2 v 2 v 2 + u v 3 2 v 3 v 3 (Prsevl s equlity)
13 Let v 1,v 2 be orthogonl nonzero vectors. Given vector u R 3, let u 0 = u (c 1 v 1 + c 2 v 2 ), where c n = u v n v n v n. It is esy to check tht u 0 v 1 = u 0 v 2 = 0 so tht u 0 (u u 0 ) = 0. Pythgoren theorem implies tht u 2 = c 1 v c 2 v u 0 2 c 1 v c 2 v 2 2. Since c n v n 2 = c n 2 v n v n, we get u u u v 1 2 v 1 v 1 + u v 2 2 v 2 v 2 (Bessel s inequlity)
14 Suppose A nd B re liner opertors in R 3. We sy tht B is djoint to A (denoted B = A ) if Au v = u Bv for ll u,v R 3. Let A = ( ij ) 1 i,j 3, B = (b ij ) 1 i,j 3. Then Ae j = 1j e 1 + 2j e 2 + 3j e 3, hence ij = Ae j e i. Similrly, b ij = Be j e i = e i Be j. It follows tht ij = b ji, i.e., B is the trnspose of A. A is clled self-djoint if A = A. Self-djoint opertors hve only rel eigenvlues. Suppose v 1, v 2 re eigenvectors of A belonging to eigenvlues λ 1, λ 2. Then λ 1 v 1 v 2 = Av 1 v 2 = v 1 Av 2 = λ 2 v 1 v 2. If λ 1 λ 2 then v 1 v 2 = 0.
15 From Eucliden spce to Hilbert spce Hilbert spce is n infinite-dimensionl nlogue of Eucliden spce. One reliztion is L 2 [, b] = {f : b f (x) 2 dx < }. Inner product of functions: f, g = b f (x)g(x) dx. Since fg 1 2 ( f 2 + g 2 ), the inner product is well defined for ny f, g L 2 [, b]. Norm of function: f = f, f. Convergence: we sy tht f n f in the men if f f n 0 s n.
16 Functions f, g L 2 [, b] re clled orthogonl if f, g = 0. Alterntive inner product: f, g w = b where w is the weight function. f (x)g(x)w(x) dx, Functions f nd g re clled orthogonl with weight w if f, g w = 0.
17 A set f 1, f 2,... of pirwise orthogonl nonzero functions is clled complete if it is mximl, i.e., there is no nonzero function g such tht g, f n = 0, n = 1, 2,.... A complete set forms bsis of the Hilbert spce, tht is, ech function g L 2 [, b] cn be expnded into series g = n=1 c nf n tht converges in the men. The expnsion is unique: c n = g, f n f n, f n.
MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH
STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH XIAO-BIAO LIN. Qudrtic functionl nd the Euler-Jcobi Eqution The purpose of this note is to study the Sturm-Liouville problem. We use the vritionl problem s
STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS
STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2
Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman
Applied Prtil Differentil Equtions with Fourier Series nd Boundry Vlue Problems 5th Edition Richrd Hbermn Person Eduction Limited Edinburgh Gte Hrlow Essex CM20 2JE Englnd nd Associted Compnies throughout
4 Sturm-Liouville Boundary Value Problems
4 Sturm-Liouville Boundry Vlue Problems We hve seen tht trigonometric functions nd specil functions re the solutions of differentil equtions. These solutions give orthogonl sets of functions which cn be
Best Approximation in the 2-norm
Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f
1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where
1 2-D Second Order Equations: Separation of Variables
Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +
Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
MATH 423 Linear Algebra II Lecture 28: Inner product spaces.
MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function
MATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion
Green function and Eigenfunctions
Green function nd Eigenfunctions Let L e regulr Sturm-Liouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions
Math Fall 2006 Sample problems for the final exam: Solutions
Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series
Chapter 28. Fourier Series An Eigenvalue Problem.
Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why
Inner-product spaces
Inner-product spces Definition: Let V be rel or complex liner spce over F (here R or C). An inner product is n opertion between two elements of V which results in sclr. It is denoted by u, v nd stisfies:
u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx
Chpter 9: Green s functions for time-independent problems Introductory emples One-dimensionl het eqution Consider the one-dimensionl het eqution with boundry conditions nd initil condition We lredy know
Linearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i
AMS A Applied Mthemticl Methods I Lecture 6 Copyright y Hongyun Wng, UCSC Recp of Lecture 5 Clssifiction of oundry conditions Dirichlet eumnn Mixed Adjoint opertor, self-djoint opertor Sturm-Liouville
Numerical Methods I Orthogonal Polynomials
Numericl Methods I Orthogonl Polynomils Aleksndr Donev Cournt Institute, NYU 1 donev@cournt.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fll 2014 Nov 6th, 2014 A. Donev (Cournt Institute) Lecture IX
Sturm-Liouville Theory
LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory
Hilbert Spaces. Chapter Inner product spaces
Chpter 4 Hilbert Spces 4.1 Inner product spces In the following we will discuss both complex nd rel vector spces. With L denoting either R or C we recll tht vector spce over L is set E equipped with ddition,
Variational Techniques for Sturm-Liouville Eigenvalue Problems
Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment
Fourier series. Preliminary material on inner products. Suppose V is vector space over C and (, )
Fourier series. Preliminry mteril on inner products. Suppose V is vector spce over C nd (, ) is Hermitin inner product on V. This mens, by definition, tht (, ) : V V C nd tht the following four conditions
Theoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.
398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts
Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008
Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of
1 E3102: a study guide and review, Version 1.0
1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very
Math 270A: Numerical Linear Algebra
Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner
18 Sturm-Liouville Eigenvalue Problems
18 Sturm-Liouville Eigenvlue Problems Up until now ll our eigenvlue problems hve been of the form d 2 φ + λφ = 0, 0 < x < l (1) dx2 plus mix of boundry conditions, generlly being Dirichlet or Neumnn type.
(9) P (x)u + Q(x)u + R(x)u =0
STURM-LIOUVILLE THEORY 7 2. Second order liner ordinry differentil equtions 2.1. Recll some sic results. A second order liner ordinry differentil eqution (ODE) hs the form (9) P (x)u + Q(x)u + R(x)u =0
2 Sturm Liouville Theory
2 Sturm Liouville Theory So fr, we ve exmined the Fourier decomposition of functions defined on some intervl (often scled to be from π to π). We viewed this expnsion s n infinite dimensionl nlogue of expnding
Chapter 3 Polynomials
Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling
Abstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
Notes on the Eigenfunction Method for solving differential equations
Notes on the Eigenfunction Metho for solving ifferentil equtions Reminer: Wereconsieringtheinfinite-imensionlHilbertspceL 2 ([, b] of ll squre-integrble functions over the intervl [, b] (ie, b f(x 2
df dt f () b f () a dt
Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem
REGULAR TWO-POINT BOUNDARY VALUE PROBLEMS
REGUAR TWO-POINT BOUNDARY VAUE PROBEMS PHIIP WWAKER Supposethtndrerelnumerswith
Handout 4. Inverse and Implicit Function Theorems.
8.95 Hndout 4. Inverse nd Implicit Function Theorems. Theorem (Inverse Function Theorem). Suppose U R n is open, f : U R n is C, x U nd df x is invertible. Then there exists neighborhood V of x in U nd
Eigenfunction Expansions for a Sturm Liouville Problem on Time Scales
Interntionl Journl of Difference Equtions (IJDE). ISSN 0973-6069 Volume 2 Number 1 (2007), pp. 93 104 Reserch Indi Publictions http://www.ripubliction.com/ijde.htm Eigenfunction Expnsions for Sturm Liouville
LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for
ECTURE 3 Orthogonl Functions 1. Orthogonl Bses The pproprite setting for our iscussion of orthogonl functions is tht of liner lgebr. So let me recll some relevnt fcts bout nite imensionl vector spces.
1 E3102: A study guide and review, Version 1.2
1 E3102: A study guide nd review, Version 1.2 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in
NOTES ON HILBERT SPACE
NOTES ON HILBERT SPACE 1 DEFINITION: by Prof C-I Tn Deprtment of Physics Brown University A Hilbert spce is n inner product spce which, s metric spce, is complete We will not present n exhustive mthemticl
c n φ n (x), 0 < x < L, (1) n=1
SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry
Lecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1
Ch.4. INTEGRAL EQUATIONS AND GREEN S FUNCTIONS Ronld B Guenther nd John W Lee, Prtil Differentil Equtions of Mthemticl Physics nd Integrl Equtions. Hildebrnd, Methods of Applied Mthemtics, second edition
STURM-LIOUVILLE PROBLEMS
STURM-LIOUVILLE PROBLEMS Mrch 8, 24 We hve seen tht in the process of solving certin liner evolution equtions such s the het or wve equtions we re led in very nturl wy to n eigenvlue problem for second
Functional Analysis I Solutions to Exercises. James C. Robinson
Functionl Anlysis I Solutions to Exercises Jmes C. Robinson Contents 1 Exmples I pge 1 2 Exmples II 5 3 Exmples III 9 4 Exmples IV 15 iii 1 Exmples I 1. Suppose tht v α j e j nd v m β k f k. with α j,
Chapter 3. Vector Spaces
3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce
Summary: Method of Separation of Variables
Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section
CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 2
CS434/54: Pttern Recognition Prof. Olg Veksler Lecture Outline Review of Liner Algebr vectors nd mtrices products nd norms vector spces nd liner trnsformtions eigenvlues nd eigenvectors Introduction to
k and v = v 1 j + u 3 i + v 2
ORTHOGONAL FUNCTIONS AND FOURIER SERIES Orthogonl functions A function cn e considered to e generliztion of vector. Thus the vector concets like the inner roduct nd orthogonlity of vectors cn e extended
Partial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES
STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES 1. Regulr Sturm-Liouville Problem The method of seprtion of vribles to solve boundry vlue problems leds to ordinry differentil equtions on intervls
MATRICES AND VECTORS SPACE
MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR
21.6 Green Functions for First Order Equations
21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to
Review SOLUTIONS: Exam 2
Review SOUTIONS: Exm. True or Flse? (And give short nswer ( If f(x is piecewise smooth on [, ], we cn find series representtion using either sine or cosine series. SOUTION: TRUE. If we use sine series,
Matrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
ODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =
(4.1) D r v(t) ω(t, v(t))
1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution
Partial Differential Equations
Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry
Multivariate problems and matrix algebra
University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured
Best Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
STUDY GUIDE FOR BASIC EXAM
STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There
Orthogonal Polynomials
Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils
Mapping the delta function and other Radon measures
Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support
The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr
Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues
Matrices, Moments and Quadrature, cont d
Jim Lmbers MAT 285 Summer Session 2015-16 Lecture 2 Notes Mtrices, Moments nd Qudrture, cont d We hve described how Jcobi mtrices cn be used to compute nodes nd weights for Gussin qudrture rules for generl
Lecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.
Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you
Outline. Math Partial Differential Equations. Rayleigh Quotient. Rayleigh Quotient. Sturm-Liouville Problems Part C
Mth 53 - Prtil Differentil Equtions Sturm-Liouville Problems Prt C Outline Tril Functions Joseph M. Mhffy, jmhffy@mil.sdsu.edu Deprtment of Mthemtics nd Sttistics Dynmicl Systems Group Computtionl Sciences
International Jour. of Diff. Eq. and Appl., 3, N1, (2001),
Interntionl Jour. of Diff. Eq. nd Appl., 3, N1, (2001), 31-37. 1 New proof of Weyl s theorem A.G. Rmm Mthemtics Deprtment, Knss Stte University, Mnhttn, KS 66506-2602, USA rmm@mth.ksu.edu http://www.mth.ksu.edu/
Math 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
Chapter Five - Eigenvalues, Eigenfunctions, and All That
Chpter Five - Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl
M597K: Solution to Homework Assignment 7
M597K: Solution to Homework Assignment 7 The following problems re on the specified pges of the text book by Keener (2nd Edition, i.e., revised nd updted version) Problems 3 nd 4 of Section 2.1 on p.94;
The Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
REPRESENTATION THEORY OF PSL 2 (q)
REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory
Problem Set 4: Solutions Math 201A: Fall 2016
Problem Set 4: s Mth 20A: Fll 206 Problem. Let f : X Y be one-to-one, onto mp between metric spces X, Y. () If f is continuous nd X is compct, prove tht f is homeomorphism. Does this result remin true
Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015
Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n
AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives
AMATH 731: Applied Functionl Anlysis Fll 214 Additionl notes on Fréchet derivtives (To ccompny Section 3.1 of the AMATH 731 Course Notes) Let X,Y be normed liner spces. The Fréchet derivtive of n opertor
ECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
Sturm Liouville Problems
Sturm Liouville Problems More generl eigenvlue problems So fr ll of our exmple PDEs hve led to seprted equtions of the form X + ω 2 X =, with stndrd Dirichlet or Neumnn boundry conditions Not surprisingly,
Lecture 4: Piecewise Cubic Interpolation
Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 4: Piecewise Cubic Interpoltion Compiled 5 September In this lecture we consider piecewise cubic interpoltion
Separation of Variables in Linear PDE
Seprtion of Vribles in Liner PDE Now we pply the theory of Hilbert spces to liner differentil equtions with prtil derivtives (PDE). We strt with prticulr exmple, the one-dimensionl (1D) wve eqution 2 u
MA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),
1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on
The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5
The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle
Problem set 5: Solutions Math 207B, Winter r(x)u(x)v(x) dx.
Problem set 5: Soltions Mth 7B, Winter 6. Sppose tht p : [, b] R is continosly differentible fnction sch tht p >, nd q, r : [, b] R re continos fnctions sch tht r >, q. Define weighted inner prodct on
Calculus of Variations
Clculus of Vritions Com S 477/577 Notes) Yn-Bin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function
Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
Convex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem
The Bnch lgebr of functions of bounded vrition nd the pointwise Helly selection theorem Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto Jnury, 015 1 BV [, b] Let < b. For f
Lecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl
Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that
Mth 118: Honours Clculus II Winter, 2005 List of Theorems Lemm 5.1 (Prtition Refinement): If P nd Q re prtitions of [, b] such tht Q P, then L(P, f) L(Q, f) U(Q, f) U(P, f). Lemm 5.2 (Upper Sums Bound
Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
MTH 5102 Linear Algebra Practice Exam 1 - Solutions Feb. 9, 2016
Nme (Lst nme, First nme): MTH 502 Liner Algebr Prctice Exm - Solutions Feb 9, 206 Exm Instructions: You hve hour & 0 minutes to complete the exm There re totl of 6 problems You must show your work Prtil
CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx
Mth 5 2006-2007) Yum-Tong Siu Lgrnge Multipliers nd Vritionl Problems with Constrints Integrl Constrints. Consider the vritionl problem of finding the extremls for the functionl J[y] = F x,y,y )dx with
Math 6455 Oct 10, Differential Geometry I Fall 2006, Georgia Tech
Mth 6455 Oct 10, 2006 1 Differentil Geometry I Fll 2006, Georgi Tech Lecture Notes 12 Riemnnin Metrics 0.1 Definition If M is smooth mnifold then by Riemnnin metric g on M we men smooth ssignment of n
M344 - ADVANCED ENGINEERING MATHEMATICS
M3 - ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If
Orthogonal functions
Orthogonl functions Given rel vrible over the intervl (, b nd set of rel or complex functions U n (ξ, n =, 2,..., which re squre integrble nd orthonorml b U n(ξu m (ξdξ = δ n,m ( if the set of of functions
Chapter 2. Vectors. 2.1 Vectors Scalars and Vectors
Chpter 2 Vectors 2.1 Vectors 2.1.1 Sclrs nd Vectors A vector is quntity hving both mgnitude nd direction. Emples of vector quntities re velocity, force nd position. One cn represent vector in n-dimensionl