Discrete Leastsquares Approximations


 Tracey Shepherd
 3 years ago
 Views:
Transcription
1
2 Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve tht is considered to be the fit best for the dt, in some sense Severl types of fits cn be considered But the one tht is used most in pplictions is the lestsqures fit Mthemticlly, the problem is the following: Discrete LestSqures Approximtion Problem Given set of dt points (x k, y i ), i =,, m, find n lgebric polynomil P n (x) = + x + + n x n (n < m) such tht the error in the lestsqures m sense in minimized; tht is, E = (y i x i n x n i ) is minimum For E to be minimum, we must hve i= E j =, j =,, n Now, E = E = m (y i x i n x n i ) i= m x i (y i x i n x n i ) i= E n = m x n i (y i x i n x n i ) i= Setting these equtions to be zero we hve + m i= m i= x i + x i + m i= m i= x i + + n x i + + n m i= m i= x n i = x n+ i = m i= y i m x i y i i= m i= x n i + m i= x n+ i + + n m i= x n i = m x n i y i i=
3 Set now m x k i = s k, k =,,, n, nd denoting the right hnd side entries s b,, b n, i= the bove eqution cn be written s: s + s + + s n n = b (Note tht m i= x i = s = m) s + s + + s n+ n = b s n + s n+ + s n n = b n This is system of (n + ) equtions in (n + ) unknowns,,, n These equtions re clled Norml Equtions This system now cn be solved to obtin these (n + ) unknowns, provided solution to the system exists We will not show tht this system hs unique solution if x i s re distinct The system cn be written in the following mtrix form: or where Define s = s s s n s s s n+ s n s n+ s n s s s n s s s n+ s n s n+ s n Then the bove system hs the form: s = b n, = = n x x x n x x x n V = x 3 x 3 x n 3 x m x m x n m V T V = b b b b n, b = The mtrix V is known s the Vndermonde mtrix, nd it cn be shown [Exercise] tht it hs full rnk if x i s re distinct In this cse the mtrix S = V T V is symmetric nd positive definite [Exercise] nd is therefore nonsingulr Thus, if x i s re distinct, the eqution S = b hs unique solution b b b n
4 Theorem (Existence nd uniqueness of Discrete LestSqures Solutions) Let (x, y ), (x, y ),, (x n, y n ) be n distinct points Then the discrete lestsqure pproximtion problem hs unique solution LestSqures Approximtion of Function We hve described lestsqures pproximtion to fit set of discrete dt Here we describe continuous lestsqure pproximtions of function f(x) by using polynomils The problem cn be stted s follows: LestSqure Approximtions of Function Using Stndrd Polynomils Given function f(x), continuous on [, b], find polynomil P n (x) of degree t most n: P n (x) = + x + x + + n x n such tht the integrl of the squre of the error is minimized Tht is, is minimized E = [f(x) P n (x)] dx The polynomil P n (x) is clled the LestSqures Polynomil,,, n, we denote this by E(,,, n ) For minimiztion, we must hve E i =, i =,,, n Since E is function of As before, these conditions will give rise to norml system of (n + ) equtions in (n + ) unknowns:,,, n Solution of these equtions will yield the unknowns Setting up the Norml Equtions Since We hve E = [f(x) ( + x + x + + n x n )] dx 3
5 E = E = E n = so, E = [f(x) x x n x n ]dx x[f(x) x x n x n ]dx x n [f(x) x x n x n ]dx Similrly, E = i,, 3,, n dx + x dx + x dx + n x n dx = So, (n + ) norml equtions in this cse re: x i dx+ x i+ dx+ x i+ dx + n x i+n dx = f(x)dx x i dx, i = i = : i = : dx + x dx + x dx + + n x n dx = x dx + x dx + 3 x 3 dx + + n x n dx = f(x) xf(x)dx i = n : Denote x n dx + x n+ dx + x n+ dx + + n x n dx = x n f(x)dx x i dx = s i, i =,,, 3,, n, nd b i = Then the bove (n + ) equtions cn be written s x i f(x)dx, i =,,, n s + s + s + + n s n = b s + s + s n+ s n+ = b s n + s n+ + s n+ + + n s n = b n 4
6 or in mtrix nottion s s s s n s s s 3 s n+ s n s n+ s n n = b b b n Denote S = (s ii ), = n, b = b b b n Then we hve the liner system: S = b The solution of these equtions will yield the coefficients,,, n of the lestsqures polynomil P n (x) A Specil Cse: Let the intervl be [, ] Then s i = x i dx = i +, Thus, in this cse the mtrix of the norml equtions i =,,, n n S = 3 n + n n+ n + n + n which is Hilbert Mtrix It is wellknown to be illconditioned Algorithm: LestSqures Approximtion using Polynomils Inputs: (i) f(x)  A continuous function on [, b] (ii) n  The degree of the desired lestsqure polynomil 5
7 Output: The coefficients,,, n of the desired lestsqures polynomil: P n (x) = + x + + n x n Step Compute s, s,, s n For i =,, n do End s i = x i dx Step Compute b, b,, b n : For i =,,, n do b i = End x i f(x)dx Step 3 Form the mtrix S nd the vector b s s s n s s s n+ S = s n s n+ s n b = b b b n Step 4 Solve the (n + ) (n + ) system of equtions: S = b, where = n Exmple Find Liner nd Qudrtic lestsqures pproximtions to f(x) = e x on [, ] 6
8 Liner Approximtion: n = ; P (x) = + x s = dx = [ ] x s = xdx = = ( ) = [ ] x s = x 3 dx = = ( ) 3 3 = 3 3 ( ) ( ) s s Thus, S = = s s 3 b = b = e x dx = e e 354 e x xdx = e 7358 The norml system of equtions is: ( 3 ) ( ) = ( b b ) This gives = 75, = 37 The liner lestsqures polynomil P (x) = x Check Accurcy: P (5) = 77 e 5 = 6487 Reltive Error = 453 7
9 Qudrtic Fitting: n = P (x) = + x + x s =, s =, s = 3 s 3 = [ ] x 4 x3 dx = = 4 s 4 = [ ] x 5 x4 dx = = 5 5 b = b = b = The system of norml equtions is: e x dx = e e 354 xe x dx = e 7358 x e x dx = e 5 e 8789 = The solution is: = 9963, = 37, = The qudrtic lestsqures polynomil P (x) = x x 8
10 Check the ccurcy: P (5) = 6889 e 5 = 6487 Reltive error P (5) e 5 e 5 = = 4 Exmple Find liner nd Qudrtic lestsqures polynomil pproximtion to f(x) = x + 5x + 6 in [, ] Liner Fit: b = b = The norml equtions re: 3 P (x) = + x s = s = s = dx = xdx = x dx = 3 (x + 5x + 6)dx = = 53 6 x(x + 5x + 6)dx = ( = = 59 ) = (x 3 + 5x + 6x)dx ] = = 6 The liner lest squres polynomil P (x) = x Check Accurcy: f(5) = 875; P (5) =
11 Reltive error: = 95 Qudrtic LestSqure Approximtion: P (x) = + x + x b = 53 6, b = 59 b = x (x + 5x + 6)dx = S = (x 4 + 5x 3 + 6x )dx = = 69 The solution of the liner system is: = 6, = 5, = P (x) = 6 + 5x + x (Exct) Use of Orthogonl Polynomils in Lestsqures Approximtions The lestsqures pproximtion using polynomils, s described bove, is not numericlly effective; since the system mtrix S of norml equtions is very often illconditioned For exmple, when the intervl is [,], we hve seen tht S is Hilbert mtrix, which is notoriously illconditioned for even modest vlues of n When n = 5, the condition number of this mtrix = cond(s) = O( 5 ) Such computtions cn, however, be mde computtionlly effective by using specil type of polynomils, clled orthogonl polynomils Definition The set of functions φ, φ,, φ n is clled set of orthogonl functions, with respect to weight function w(x), if { if i j w(x)φ j (x)φ i (x)dx = if i = j where C j is rel positive number Furthermore, if C j =, j =,,, n, then the orthogonl set is clled n orthonorml set Using this interesting property, lestsqures computtions cn be more numericlly effective, s shown below Without ny loss of generlity, let s ssume tht w(x) = Ide: The ide is to find n pproximtion of f(x) on [, b] by mens of polynomil of the form P n (x) = φ (x) + φ (x) + + n φ n (x), where {φ n } n k= is set of orthogonl polynomils Tht is, the bsis for generting P n(x) in this cse is set of orthogonl polynomils C j
12 Lestsqures Approximtion of Function Using Orthogonl Polynomils Given f(x), continuous on [, b], find,,, n using polynomil of the form: P n (x) = φ (x) + φ (x) + + n φ n (x), where {φ k (x)} n k= is given set of orthogonl polynomils on [, b], such tht the error function: is minimized As before, we set E(,,, n ) = [f(x) ( φ (x) + n φ n (x))] dx Now E i =, i =,,, n E = Setting this equl to zero, we get φ (x)[f(x) φ (x) φ (x) n φ n (x)]dx φ (x)f(x)dx = Since, {φ k (x)} n k= is n orthogonl set, we hve, nd ( φ (x) + + n φ n (x))φ (x)dx φ (x) dx = C, φ (x)φ i (x) dx =, i Applying the bove orthogonl property, we see from bove tht Tht is, φ (x)f(x)dx = C
13 = φ (x)f(x)dx C Similrly, E = φ (x)[f(x) φ (x) φ (x) n φ n (x)]dx The orthogonl property of {φ j (x)} n j= implies tht so, setting E =, we get φ (x) = C nd φ (x)φ i (x) =, i, = φ (x)f(x)dx C In generl, k = φ k (x)f(x)dx, k =,,, n, C k where C k = φ k(x)dx Expresions for k with Weight Function w(x) If the weight function w(x) is included, we obtin k = w(x)f(x)φ k (x)dx, k =,, n C k
14 Algorithm: LestSqures Approximtion Using Orthogonl Polynomils Inputs: f(x)  A continuous function on [, b] w(x)  A weight function (n integrble function on [, b]) {φ k (x)} n k=  A set of n orthogonl functions on [, b] Output: The coefficients,,, n such tht is minimized w(x)[f(x) φ (x) φ (x) n φ n (x)] dx Step Compute C k, k =,,, n s follows: For k =,,,, n do End C k = w(x)φ k(x)dx Step Compute k, k =,, n s follows: For k =,,,, n do k = w(x)f(x)φ k (x)dx C k End LestSqures Approximtion Using Legendre s Polynomils Recll tht the Legendre Polynomils {φ k (x)} re given by φ (x) = φ (x) = x φ (x) = x 3 φ 3 (x) = x x etc re orthogonl polynomils on [, ], with respect to the weight function w(x) = If these polynomils re used for lestsqures pproximtion, then it is esy to see tht 3
15 C = C = C = φ (x)dx = φ (x)dx = φ (x)dx = dx = x dx = ( 3 x ) dx = nd so on Exmple: Find liner nd qudrtic lestsqures pproximtion to f(x) = e x using Legendre polynomils Liner Approximtion: P (x) = φ (x) + φ (x) φ (x) =, φ (x) = x C = φ (x)dx = = φ (x)e x dx C The liner lestsqures polynomil dx = [x] = So, = e x dx = [ex ] = [ x C = φ (x)dx = x 3 dx = 3 = 3 xe x dx = 3 [ ] = 3 e e ( e ) e ] P (x) = φ (x) + φ (x) = [ e ] + 3 e e x = = 3 Accurcy Check: P (5) = e 5 = 6487 [ e ] + 3 e e 5 = 77 Reltive error: = 475 4
16 Qudrtic Approximtion: P (x) = φ (x) + φ (x) + φ (x) = ( e ), = 3 e e C = φ (x)dx = = ( x x3 3 + x = e x φ (x)dx C = 45 8 (x 3 ) dx ) ( e x x ) dx 3 = 8 45 = e 7 e Qudrtic lestsqures polynomil: P (x) = ( e ) + 3e ( e x + e 7 ) ( x ) e 3 Accurcy check: Reltive error P n (5) = 5868 e 5 = = 375 Compre this reltive error with tht obtined erlier with n nonorthogonl polynomil of degree 5
17 Chebyshev polynomils: Another wonderful fmily of orthogonl polynomils Definition: The set of polynomils defined by T n (x) = cos[n rccos x], n on [, ] re clled the Chebyshev polynomils To see tht T n (x) is polynomil of degree n in our fmilir form, we derive recursive reltion by noting tht T (x) = (A polynomil of degree zero) T (x) = x (A polynomil of degree ) A Recursive Reltion for Generting Chebyshev Polynomils: Substitute θ = rc cos x Then, T n (x) = cos(nθ), θ π T n+ (x) = cos(n + )θ = cos nθ cos θ sin nθ sin θ T n (x) = cos(n )θ = cos nθ cos θ + sin nθ sin θ Adding the lst two equtions, we obtin T n+ (x) + T n (x) = cos nθ cos θ The right hnd side still does not look like polynomil in x But note tht cos θ = x So, or T n+ (x) = cos nθ cos θ T n (x) = x cos(n cos rc x) T n (x) = xt n (x) T n (x) T n+ (x) = xt n (x) T n (x), n Using this recursive reltion, the Chebyshev polynomils of the succesive degrees cn be generted n = : T (x) = xt (x) T (x) = x n = : T 3 (x) = xt (x) T (x) = x(x ) x = 4x 3 3x nd so on 6
18 The orthogonl property of the Chebyshev polynomils We now show tht Chebyshev polynomils re orthogonl with respect to the weight function w(x) =, in the intervl [, ] x To demonstrte the orthogonl property of these polynomils, consider = = T m (x)t n (x)dx, m n x π = = = cos(rccos x) cos(n rccos x) x dx cos mθ cos nθdθ ( By chnging the vrible from x to θ with substitution of rccosx = θ) π [ cos(m + n)θdθ + sin(m + n)θ (m + n) ] π π + cos(m n)θdθ [ sin(m n)θ (m n) ] π Similrly, it cn be shown [Exercise] tht Summrizing: T n(x)dx x = π for n Orthogonl Property of the Chebyshev Polynomils T m (x)t n (x) dx = x if m n π if m = n The LestSqure Approximtion using Chebyshev Polynomils 7
19 As before, the Chebyshev polynomils cn be used to find lestsqures pproximtions to function f(x) s stted below The lestsqures pproximting polynomil P n (x) of f(x) using Chebyshev polynomils is given by: P n (x) = C T (x) + C T (x) + + C n T n where nd C i = π f(x)t i (x)dx, i =,, n x C = π f(x)dx x Find liner lestsqures pproximtion of f(x) = e x using Chebyshev poly Exmple: nomils Here P (x) = φ (x) + φ i (x) = T (x) + T (x) = + x, where Thus, P (x) = x Check the ccurcy: = π = π e x dx x 66 xe x dx 33 x P (5) = 975; e 5 = 6487 Reltive error = 4 Monic Chebyshev Polynomils Note tht T k (x) is Chebyshev polynomil of degree k with the leding coefficient k, k Thus we cn generte set of monic Chebyshev polynomils from the polynomils T k (x) s follows: 8
20 The Monic Chebyshev Polynomils, T k (x), re then given by T (x) =, T k (x) = k T k(x), k The k zeros of T k (x) re esily clculted [Exercise]: ( ) j x j = cos k π, j =,,, k The mximum or minimum vlues of T k (x) occur t x j = cos T k ( x j ) = ()j, j =,,, k k ( ) jπ, nd k Polynomil Approximtions with Chebyshev the polynomils: As seen bove the Chebyshev polynomils cn, of course, be used to find lestsqures polynomil pproximtions However, these polynomils hve severl other wonderful polynomil pproximtion properties Some of them re stted below The mximum bsolute vlue of ny monic polynomil of degree n over [, ] is lwys greter thn or equl to tht of T n (x) over the sme intervl; which is, by the lst property, n Minimx Property of the Chebyshev Polynomils If P n (x) is ny monic polynomil of degree n, then = mx T n n (x) mx P n (x) x [,] x [,] Moreover, this hppens when P n (x) = T n (x) Proof: By contrdiction [Exercise] 9
21 Choosing the interpolting nodes with the Chebyshev Zeros Recll tht error in polynomil interpoltion by polynomil P n (x) of degree t most n is given by where Ψ(x) = (x x )(x x ) (x x n ) E = f(x) P (x) = f n+ (ξ) (n + )! Ψ(x), The question is: How to choose these (n + ) nodes x, x,, x n so tht Ψ(x) is minimized in [, ]? The nswer cn be given from the lstmentioned property of the monic Chebyshev polynomils Note tht Ψ(x) is monic polynomil of degree (n + ) So, by the minimx property mx T n+ (x) mx Ψ(x) x [,] x [,] Tht is, the mximum vlue of ψ(x) is smllest when x, x,, x n re chosen s the (n + ) zeros of T n+ (x) nd this mximum vlue is n Choosing the Nodes for Minimizing Polynomil Interpoltion error To minimize the polynomil interpoltion error, choose the nodes x, x,, x n s the (n+) zeros of the (n + )th degree monic Chebyshev polynomil Note (Working with n rbitrry intervl) If the intervl is [, b], different from [, ], then, the zeros of T n+ (x) need to be shifted by using the trnsformtion: x = [(b )x + ( + b)] Exmple Let the interpolting polynomil be of degree t most nd the intervl be [5, ] The three zeros of T 3 (x) in [, ] re given by x = cos π 6, x = cos π, nd x 3 = cos 5 6 π These zeros re to be shifted using trnsformtion: x new = [( 5) x i + ( + 5)]
22 Use of Chebyshev Polynomils to Economize Power Series Power Series Economiztion Let P n (x) = + x+ + n x n be polynomil of degree n obtined by truncting power series expnsion of continuous function on [, b] The problem is to find polynomil P r (x) of degree r (< n) such tht P n (x) P r (x) < ɛ, where ɛ is tolernce supplied by users The problem is esily solved by using the Minimx Property of the Chebyshev polynomils First note tht n P n (x) P n (x) is monic polynomil So, by the minimx property, we hve Thus, if we choose mx P n (x) P n (x) n mx T n (x) = n n P n (x) = P n (x) n Tn (x), then the minimum vlue of mx P n (x) P n (x) = n n n If this quntity,, plus error due to the trunction of the power series is within the n permissible tolernce ɛ, we cn then repet the process by constructing P n (x) from P n (x) s bove The process cn be continued until the ccumulted error exceeds the tolernce ɛ So, the process cn be summrized s follows: Power Series Economiztion Process by Chebyshev Polynomils Obtin P n (x) = + x n + + n x n by truncting the power series expnsion of f(x) Find the error of trunction E P T Compute P n (x): P n (x) = P n (x) n Tn (x) Check if the totl error ( E P T + n n ) is less thn ɛ If so, continue the process by decresing the degree of the polynomils successively until the ccumulted error becomes greter thn ɛ
Orthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationNumerical Methods I Orthogonal Polynomials
Numericl Methods I Orthogonl Polynomils Aleksndr Donev Cournt Institute, NYU 1 donev@cournt.nyu.edu 1 MATHGA 2011.003 / CSCIGA 2945.003, Fll 2014 Nov 6th, 2014 A. Donev (Cournt Institute) Lecture IX
More informationChapter 3 Polynomials
Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling
More informationLecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature
Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics  A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More information1 The Lagrange interpolation formula
Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationOrthogonal Polynomials
Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils
More informationNumerical Analysis: Trapezoidal and Simpson s Rule
nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationNumerical Integration
Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the
More informationNumerical Analysis. Doron Levy. Department of Mathematics Stanford University
Numericl Anlysis Doron Levy Deprtment of Mthemtics Stnford University December 1, 2005 D. Levy Prefce i D. Levy CONTENTS Contents Prefce i 1 Introduction 1 2 Interpoltion 2 2.1 Wht is Interpoltion?............................
More informationIII. Lecture on Numerical Integration. File faclib/dattab/lecturenotes/numericalinter03.tex /by EC, 3/14/2008 at 15:11, version 9
III Lecture on Numericl Integrtion File fclib/dttb/lecturenotes/numericalinter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the
More informationMath 1B, lecture 4: Error bounds for numerical methods
Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the
More information1. GaussJacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),
1. GussJcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on
More informationNumerical quadrature based on interpolating functions: A MATLAB implementation
SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in
More informationCAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.
Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you
More informationNumerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
More informationMORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More informationMath 270A: Numerical Linear Algebra
Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationLecture 4: Piecewise Cubic Interpolation
Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics  A Peirce UBC Lecture 4: Piecewise Cubic Interpoltion Compiled 5 September In this lecture we consider piecewise cubic interpoltion
More informationCMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
More informationReview of Calculus, cont d
Jim Lmbers MAT 460 Fll Semester 200910 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some
More informationP 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)
1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this
More informationConstruction of Gauss Quadrature Rules
Jim Lmbers MAT 772 Fll Semester 201011 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht NewtonCotes qudrture
More informationSturmLiouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1
Ch.4. INTEGRAL EQUATIONS AND GREEN S FUNCTIONS Ronld B Guenther nd John W Lee, Prtil Differentil Equtions of Mthemticl Physics nd Integrl Equtions. Hildebrnd, Methods of Applied Mthemtics, second edition
More informationLecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at UrbanaChampaign. March 20, 2014
Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t UrbnChmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method
More informationNumerical Analysis. Chassidy Bozeman. May 30, 2016
Numericl Anlysis Chssidy Bozemn My 30, 016 Contents 1 Theorems 1 1.1 561 Theorems............................................. 1 1. 56 Theorems............................................. Root Finding.1
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationProperties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums  1 Riemnn
More informationWeek 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationDEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.
398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts
More informationSection 7.1 Integration by Substitution
Section 7. Integrtion by Substitution Evlute ech of the following integrls. Keep in mind tht using substitution my not work on some problems. For one of the definite integrls, it is not possible to find
More informationUNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE
UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence
More informationThe Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.
Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationPartial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the righthnd side limit equls to the lefthnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
More informationNew Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06073 HIKARI Ltd, www.mhikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
More informationNumerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1
AMSC/CMSC 46/466 T. von Petersdorff 1 umericl Integrtion 1 Introduction We wnt to pproximte the integrl I := f xdx where we re given, b nd the function f s subroutine. We evlute f t points x 1,...,x n
More informationNumerical Integration
Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl
More information1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
More informationChapter 3 Solving Nonlinear Equations
Chpter 3 Solving Nonliner Equtions 3.1 Introduction The nonliner function of unknown vrible x is in the form of where n could be noninteger. Root is the numericl vlue of x tht stisfies f ( x) 0. Grphiclly,
More informationNUMERICAL INTEGRATION
NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls
More information1 Linear Least Squares
Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving
More informationEulerMaclaurin Summation Formula 1
Jnury 9, EulerMclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,
More informationLecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University
Lecture Note 4: Numericl differentition nd integrtion Xioqun Zng Sngi Jio Tong University Lst updted: November, 0 Numericl Anlysis. Numericl differentition.. Introduction Find n pproximtion of f (x 0 ),
More informationReview of Riemann Integral
1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.
More informationB.Sc. in Mathematics (Ordinary)
R48/0 DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8 B.Sc. in Mthemtics (Ordinry) SUPPLEMENTAL EXAMINATIONS 01 Numericl Methods Dr. D. Mckey Dr. C. Hills Dr. E.A. Cox Full mrks for complete nswers
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationMatrices, Moments and Quadrature, cont d
Jim Lmbers MAT 285 Summer Session 201516 Lecture 2 Notes Mtrices, Moments nd Qudrture, cont d We hve described how Jcobi mtrices cn be used to compute nodes nd weights for Gussin qudrture rules for generl
More information3.4 Numerical integration
3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,
More informationPart IB Numerical Analysis
Prt IB Numericl Anlysis Theorems with proof Bsed on lectures by G. Moore Notes tken by Dexter Chu Lent 2016 These notes re not endorsed by the lecturers, nd I hve modified them (often significntly) fter
More informationCalculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties
Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwthchen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:
More informationUnit #9 : Definite Integral Properties; Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationAM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h
AM Mthemticl Anlysis Oct. Feb. Dte: October Exercises Lecture Exercise.. If h, prove the following identities hold for ll x: sin(x + h) sin x h cos(x + h) cos x h = sin γ γ = sin γ γ cos(x + γ) (.) sin(x
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationDOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES
DOIG PHYSICS WITH MATLAB MATHEMATICAL ROUTIES COMPUTATIO OF OEDIMESIOAL ITEGRALS In Cooper School of Physics, University of Sydney in.cooper@sydney.edu.u DOWLOAD DIRECTORY FOR MATLAB SCRIPTS mth_integrtion_1d.m
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationIntegrals  Motivation
Integrls  Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is nonliner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but
More informationLECTURE 19. Numerical Integration. Z b. is generally thought of as representing the area under the graph of fèxè between the points x = a and
LECTURE 9 Numericl Integrtion Recll from Clculus I tht denite integrl is generlly thought of s representing the re under the grph of fèxè between the points x = nd x = b, even though this is ctully only
More informationIntroduction to Numerical Analysis. Hector D. Ceniceros
Introduction to Numericl Anlysis Hector D. Ceniceros c Drft dte November 27, 2018 Contents Contents i Prefce 1 1 Introduction 3 1.1 Wht is Numericl Anlysis?.................. 3 1.2 An Illustrtive Exmple.....................
More informationUndergraduate Research
Undergrdute Reserch A Trigonometric Simpson s Rule By Ctherine Cusimno Kirby nd Sony Stnley Biogrphicl Sketch Ctherine Cusimno Kirby is the dughter of Donn nd Sm Cusimno. Originlly from Vestvi Hills, Albm,
More informationCambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level. Published
Cmbridge Interntionl Exmintions Cmbridge Interntionl Advnced Subsidiry nd Advnced Level MATHEMATICS 9709/ Pper October/November 06 MARK SCHEME Mximum Mrk: 75 Published This mrk scheme is published s n
More informationEuler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )
Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s
More informationCOSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III)  Gauss Quadrature and Adaptive Quadrature
COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III  Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting
More informationPhysics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
More informationPolynomials and Division Theory
Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the
More informationMath 473: Practice Problems for the Material after Test 2, Fall 2011
Mth 473: Prctice Problems for the Mteril fter Test, Fll SOLUTION. Consider the following modified het eqution u t = u xx + u x. () Use the relevnt 3 point pproximtion formuls for u xx nd u x to derive
More informationNumerical Integration
Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture
More informationAdvanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.
Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil
More informationMath& 152 Section Integration by Parts
Mth& 5 Section 7.  Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationLecture Notes: Orthogonal Polynomials, Gaussian Quadrature, and Integral Equations
18330 Lecture Notes: Orthogonl Polynomils, Gussin Qudrture, nd Integrl Equtions Homer Reid My 1, 2014 In the previous set of notes we rrived t the definition of Chebyshev polynomils T n (x) vi the following
More informationOverview of Calculus I
Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More informationWe partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.
Mth 255  Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn
More informationIntroduction to Numerical Analysis
Introduction to Numericl Anlysis Doron Levy Deprtment of Mthemtics nd Center for Scientific Computtion nd Mthemticl Modeling (CSCAMM) University of Mrylnd June 14, 2012 D. Levy CONTENTS Contents 1 Introduction
More informationChapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More informationChapter 5 : Continuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More informationHow can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?
Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those
More informationx = b a N. (131) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is
Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According
More informationThe Riemann Integral
Deprtment of Mthemtics King Sud University 20172018 Tble of contents 1 Antiderivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Antiderivtive Function Definition Let f : I R be function
More informationA REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
More informationMath 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008
Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 25pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of
More informationInterpolation. Gaussian Quadrature. September 25, 2011
Gussin Qudrture September 25, 2011 Approximtion of integrls Approximtion of integrls by qudrture Mny definite integrls cnnot be computed in closed form, nd must be pproximted numericlly. Bsic building
More informationTHE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS.
THE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrdlindeloftheorem/ This document is proof of the existenceuniqueness theorem
More informationNumerical Linear Algebra Assignment 008
Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com
More informationLecture 12: Numerical Quadrature
Lecture 12: Numericl Qudrture J.K. Ryn@tudelft.nl WI3097TU Delft Institute of Applied Mthemtics Delft University of Technology 5 December 2012 () Numericl Qudrture 5 December 2012 1 / 46 Outline 1 Review
More informationConvex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
More informationc n φ n (x), 0 < x < L, (1) n=1
SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry
More informationQuantum Physics II (8.05) Fall 2013 Assignment 2
Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.
More informationSections 5.2: The Definite Integral
Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)
More informationChapter 6. Infinite series
Chpter 6 Infinite series We briefly review this chpter in order to study series of functions in chpter 7. We cover from the beginning to Theorem 6.7 in the text excluding Theorem 6.6 nd Rbbe s test (Theorem
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More information