Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Size: px
Start display at page:

Download "Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but..."

Transcription

1 Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution. But consider Z p +x 3 dx, 0 nd Z 0 e x2 dx. Neither of the bove integrls cn be expressed in terms of functions tht we know. However both of these integrls do exist, since they both represent the re below the curves p +x 3 nd e x2 between x = 0 nd x = (nd both curves re well-behved). Yet in the bove two cses we know wht f(x) is. Sometimes, engineers wnt to clculte n re by computing I, but... They don t know the eqution for f(x). There might be no formul for f(x) t ll! Thnkfully, there re some prcticl methods out there for clculting res under grphs, e.g. counting squres. But this is time-consuming nd boring! Besides, there re other methods of clculting res which re much more ccurte, even though they re still only pproximtions. 7

2 CHAPTER 7. NUMERICAL METHODS The Rectngulr Rule The rectngulr rule (lso clled the midpoint rule) is perhps the simplest of the three methods for estimting n integrl you will see in the course. Integrte over n intervl pple x pple b. Divide this intervl up into n equl subintervls of length h =(b )/n. is the midpoint of the subin- Approximte f in ech subintervl by f(x j ), where x j tervl. Are of ech rectngle: f(x )h, f(x 2 )h,..., f(x n)h. ) f(x)dx h [f(x )+f(x 2)+ + f(x n)]. The pproximtion on the RHS becomes more ccurte s more rectngles re used. In fct, f(x)dx =lim h!0 {h [f(x )+f(x 2)+ + f(x n)]} Note: As h! 0,n!,sinceh = b nd (b n ) is fixed. Remrk 7.. Actully, there re severl di erent versions of the rectngulr rule out there. If you re interested, these re mentioned in Sections 5. nd 5.2 of Thoms Clculus ( th edition). 7.3 The Trpezium Rule Another method of clculting n integrl pproximtely is the trpezoidl (trpezium) rule. The procedure is s follows... Agin, divide the intervl pple x pple b into n equl subintervls, i.e. = x 0 <x <x 2 <...<x n <x n = b, ech with length h =(b )/n. Then the re under the curve is pproximted by sum of n trpezi, insted of rectngles. Are of first trpezium: A = re of rectngle + re of tringle = f()h + 2 (f(x ) f()) = 2 h [f()+f(x )].

3 CHAPTER 7. NUMERICAL METHODS 73 Are of next trpezium:a 2 = 2 h [f(x )+f(x 2 )] Are of penultimte trpezium:a n = 2 h [f(x n 2)+f(x n )]. Are of lst trpezium:a n = 2 h [f(x n )+f(b)] Then f(x)dx Sum of ll n trpezi = 2 h {f()+f(x )+f(x )+f(x 2 )+f(x 2 )+ +f(x n 2 )+f(x n 2 )+f(x n )+f(x n )+f(b)}, i.e. I h 2 {f()+f(b)+2[f(x )+f(x 2 )+ + f(x n )]}. where Exmple 7.. Estimte h = b n using the trpezium rule with n = 5. x i = + ih, i =, 2, 3,...,n. Note tht we hve b =2,= nd n = 5. x dx So nd ) h = b n = 2 = 5 5 =0.2. =, x =.2, x 2 =.4, x 3 =.6, x 4 =.8, b =2, I {f()+f(b)+2[f(x )+f(x 2 )+f(x 3 )+f(x 4 )]} =0. {f() + f(2) + 2 [f(.2) + f(.4) + f(.6) + f(.8)]} = (4 d.p) pple Notes: In the previous exmple, the nlyticl vlue is given by x dx =[lnx]2 =ln2 ln = ln 2 = (4.d.p).

4 CHAPTER 7. NUMERICAL METHODS 74 If we used n = 0, we would hve I , which is even more ccurte thn using n = 5. Error in using the Trpezuim Rule Let ˆ I be the trpezium pproximtion to I, then we define the error " T s Then it turns out tht if then " T = ˆ I I. f 00 (x) pple M for ll x with pple x pple b, (b )3 " T pplem 2n 2. Exmple 7.2. Wht is the smllest n such tht hs mximum error of? 0 e x2 dx We must choose n lrge enough such tht " T pple. Note tht f(x) =e x2 ) f 00 (x) = 2+4x 2 e x2 We re interested in 0 pple x pple 2; on this intervl the mximum vlue of f 00 (x) occurs t x = 2, thus M = f 00 (2) 983 (rounded up). So (b )3 " T pplem 2n 2 pple n n 2 i.e we need 655 n 2 pple ) n The smllest such n tht stisfies this is n = Simpson s Rule Simpson s Rule is yet nother method of numericl integrtion. It is credited to Thoms Simpson (70-76), n English mthemticin, though there is evidence tht similr methods were used 00 yers prior to him. So fr, we looked t two methods for numericl integrtion: Piecewise constnt pproximtion =) Rectngulr Rule

5 CHAPTER 7. NUMERICAL METHODS 75 Piecewise liner pproximtion =) Trpezium Rule Piecewise qudrtic pproximtion =) Simpson s Rule For Simpson s rule we divide pple x pple b into n even number of subintervls n of length h =(b )/n with endpoints = x 0 <x <x 2 <...<x n <x n = b, Min ide: Suppose typicl prbol (i.e. x 2 + bx + c) psses through three consecutive points (x i,y i ), (x i,y i ), (x i+,y i+ ) We will not go through the derivtion, but I cn tell you tht Simpson s formul turns out to be... h 3 (S 0 +4S +2S 2 ), where S 0 = f()+f(b), (7.) S = f(x )+f(x 3 )+...+ f(x n ), (7.2) S 2 = f(x 2 )+f(x 4 )+...+ f(x n 2 ). (7.3) (7.4) Observe tht for ll the indices tht pper in S, re odd, while those for S 2 re even (remember tht s n must be even, we hve tht (n ) is odd whilst (n 2) is even). Menwhile it cn be shown for Simpson s rule tht if then Exmple 7.3. Evlute f (4) (x) pplem for ll x with pple x pple b, " S pple M(b )5 80n 4. using Simpson s rule with n = 0,=,b= 2. x dx Note tht h = 2 0 = 0 =0., nd keep trck of ll the vlues of x i nd f(x i ) s follows...

6 CHAPTER 7. NUMERICAL METHODS 76 i x i f(x i )=/x i / 2.2 5/ / / / / / / / /2 Sums i.e. nd therefore Compre with the exct vlue S 0 = S = S 2 = ˆ h 3 (S 0 +4S +2S 2 )= dx x =ln2= , hence this is correct to FIVE d.p. (Trpezium Rule ws correct to d.p.) 7.5 Newton s Method for Root-Finding In engineering, it is often required to find x such tht f(x) =0. (7.5) These vlues of x re known s roots of f(x). Exmples: ) x 2 3x +2=0 2) sin x = 2 x 3) cosh x cos x = All of these cn be written in the form (7.5). In this course, I will introduce you to one of the fstest methods for finding roots of f(x)...newton s Method (.k.. Newton-Rphson Method).

7 CHAPTER 7. NUMERICAL METHODS 77 How the method works: Let our first (initil) guess to the root be x 0.Thenx is the point where the tngent to the curve f t x 0 intersects the x-xis. i.e. tn = f 0 (x 0 )= f(x 0) x 0 x, x = x 0 f(x 0 ) f 0 (x 0 ). Now x is our new guess for the root of f(x).but we might wnt better guess; cll this x 2. It turns out the next itertion is nd we cn repet the procedure yet gin: x 2 = x f(x ) f 0 (x ), x 3 = x 2 f(x 2 ) f 0 (x 2 ), nd so on. We cn keep iterting until we get the desired ccurcy, using the formul: Exmple 7.4. Find the positive solution of x n+ = x n f(x n ) f 0 (x n ). 2sinx = x. Figure 7.: A plot of y =2sin x nd y = x. The root we re fter is the positive x-vlue t the point where the two functions intersect. First, get the originl eqution into the form f(x) = 0: f(x) =x 2sinx ) f 0 (x) = 2 cos x.

8 CHAPTER 7. NUMERICAL METHODS 78 Then, by Newton s Method, We need n initil guess, e.g. x 0 = 2. x n+ = x n x n 2sinx n 2 cos x n = 2(sin x n x n cos x n ) 2 cos x n = N n D n. n x n N n D n x n+ = N n /D n The ctul solution to 4 d.p is Advntges of Newton s method: Converges very fst! You only need to give one initil guess (some methods require TWO). Disdvntges: You need to clculte the derivtive of f(x). Sometimes the method doesn t converge to root t ll! The method is useless if your first guess is sttionry point of f(x) (becuse you get division by zero).

Chapter 3 Solving Nonlinear Equations

Chapter 3 Solving Nonlinear Equations Chpter 3 Solving Nonliner Equtions 3.1 Introduction The nonliner function of unknown vrible x is in the form of where n could be non-integer. Root is the numericl vlue of x tht stisfies f ( x) 0. Grphiclly,

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Midpoint Approximation

Midpoint Approximation Midpoint Approximtion Sometimes, we need to pproximte n integrl of the form R b f (x)dx nd we cnnot find n ntiderivtive in order to evlute the integrl. Also we my need to evlute R b f (x)dx where we do

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES DOIG PHYSICS WITH MATLAB MATHEMATICAL ROUTIES COMPUTATIO OF OE-DIMESIOAL ITEGRALS In Cooper School of Physics, University of Sydney in.cooper@sydney.edu.u DOWLOAD DIRECTORY FOR MATLAB SCRIPTS mth_integrtion_1d.m

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

Lecture 12: Numerical Quadrature

Lecture 12: Numerical Quadrature Lecture 12: Numericl Qudrture J.K. Ryn@tudelft.nl WI3097TU Delft Institute of Applied Mthemtics Delft University of Technology 5 December 2012 () Numericl Qudrture 5 December 2012 1 / 46 Outline 1 Review

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Numerical Integration

Numerical Integration Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

6.5 Numerical Approximations of Definite Integrals

6.5 Numerical Approximations of Definite Integrals Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 6.5 Numericl Approximtions of Definite Integrls Sometimes the integrl of function cnnot be expressed with elementry functions, i.e., polynomil,

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus The Fundmentl Theorem of Clculus MATH 151 Clculus for Mngement J. Robert Buchnn Deprtment of Mthemtics Fll 2018 Objectives Define nd evlute definite integrls using the concept of re. Evlute definite integrls

More information

Math 131. Numerical Integration Larson Section 4.6

Math 131. Numerical Integration Larson Section 4.6 Mth. Numericl Integrtion Lrson Section. This section looks t couple of methods for pproimting definite integrls numericlly. The gol is to get good pproimtion of the definite integrl in problems where n

More information

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx... Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 + Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Big idea in Calculus: approximation

Big idea in Calculus: approximation Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

More information

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find nti-derivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible

More information

1 Part II: Numerical Integration

1 Part II: Numerical Integration Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS S Cpter Numericl Integrtion lso clled qudrture Te gol of numericl integrtion is to pproximte numericlly. f(x)dx Tis is useful for difficult integrls like sin(x) ; sin(x ); x + x 4 Or worse still for multiple-dimensionl

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x I. Dierentition. ) Rules. *product rule, quotient rule, chin rule MATH 34B FINAL REVIEW. Find the derivtive of the following functions. ) f(x) = 2 + 3x x 3 b) f(x) = (5 2x) 8 c) f(x) = e2x 4x 7 +x+2 d)

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Section 7.1 Integration by Substitution

Section 7.1 Integration by Substitution Section 7. Integrtion by Substitution Evlute ech of the following integrls. Keep in mind tht using substitution my not work on some problems. For one of the definite integrls, it is not possible to find

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

Lab 11 Approximate Integration

Lab 11 Approximate Integration Nme Student ID # Instructor L Period Dte Due L 11 Approximte Integrtion Ojectives 1. To ecome fmilir with the right endpoint rule, the trpezoidl rule, nd Simpson's rule. 2. To compre nd contrst the properties

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9 III Lecture on Numericl Integrtion File fclib/dttb/lecture-notes/numerical-inter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled? Section 5. - Ares nd Distnces Exmple : Suppose cr trvels t constnt 5 miles per hour for 2 hours. Wht is the totl distnce trveled? Exmple 2: Suppose cr trvels 75 miles per hour for the first hour, 7 miles

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2-Dimensionl Gussin Qudrture 20 4

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Overview of Calculus

Overview of Calculus Overview of Clculus June 6, 2016 1 Limits Clculus begins with the notion of limit. In symbols, lim f(x) = L x c In wors, however close you emn tht the function f evlute t x, f(x), to be to the limit L

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

B.Sc. in Mathematics (Ordinary)

B.Sc. in Mathematics (Ordinary) R48/0 DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8 B.Sc. in Mthemtics (Ordinry) SUPPLEMENTAL EXAMINATIONS 01 Numericl Methods Dr. D. Mckey Dr. C. Hills Dr. E.A. Cox Full mrks for complete nswers

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

ROB EBY Blinn College Mathematics Department

ROB EBY Blinn College Mathematics Department ROB EBY Blinn College Mthemtics Deprtment Mthemtics Deprtment 5.1, 5.2 Are, Definite Integrls MATH 2413 Rob Eby-Fll 26 Weknowthtwhengiventhedistncefunction, wecnfindthevelocitytnypointbyfindingthederivtiveorinstntneous

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

MATH 115 FINAL EXAM. April 25, 2005

MATH 115 FINAL EXAM. April 25, 2005 MATH 115 FINAL EXAM April 25, 2005 NAME: Solution Key INSTRUCTOR: SECTION NO: 1. Do not open this exm until you re told to begin. 2. This exm hs 9 pges including this cover. There re 9 questions. 3. Do

More information

Tangent Line and Tangent Plane Approximations of Definite Integral

Tangent Line and Tangent Plane Approximations of Definite Integral Rose-Hulmn Undergrdute Mthemtics Journl Volume 16 Issue 2 Article 8 Tngent Line nd Tngent Plne Approximtions of Definite Integrl Meghn Peer Sginw Vlley Stte University Follow this nd dditionl works t:

More information

The Riemann Integral

The Riemann Integral Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

More information

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1 Section 5.4 Fundmentl Theorem of Clculus 2 Lectures College of Science MATHS : Clculus (University of Bhrin) Integrls / 24 Definite Integrl Recll: The integrl is used to find re under the curve over n

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Calculus I-II Review Sheet

Calculus I-II Review Sheet Clculus I-II Review Sheet 1 Definitions 1.1 Functions A function is f is incresing on n intervl if x y implies f(x) f(y), nd decresing if x y implies f(x) f(y). It is clled monotonic if it is either incresing

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

AP Calculus AB Unit 5 (Ch. 6): The Definite Integral: Day 12 Chapter 6 Review

AP Calculus AB Unit 5 (Ch. 6): The Definite Integral: Day 12 Chapter 6 Review AP Clculus AB Unit 5 (Ch. 6): The Definite Integrl: Dy Nme o Are Approximtions Riemnn Sums: LRAM, MRAM, RRAM Chpter 6 Review Trpezoidl Rule: T = h ( y + y + y +!+ y + y 0 n n) **Know how to find rectngle

More information

5.1 How do we Measure Distance Traveled given Velocity? Student Notes

5.1 How do we Measure Distance Traveled given Velocity? Student Notes . How do we Mesure Distnce Trveled given Velocity? Student Notes EX ) The tle contins velocities of moving cr in ft/sec for time t in seconds: time (sec) 3 velocity (ft/sec) 3 A) Lel the x-xis & y-xis

More information

Chapter 5. Numerical Integration

Chapter 5. Numerical Integration Chpter 5. Numericl Integrtion These re just summries of the lecture notes, nd few detils re included. Most of wht we include here is to be found in more detil in Anton. 5. Remrk. There re two topics with

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

JDEP 384H: Numerical Methods in Business

JDEP 384H: Numerical Methods in Business BT 3.4: Solving Nonliner Systems Chpter 4: Numericl Integrtion: Deterministic nd Monte Crlo Methods Instructor: Thoms Shores Deprtment of Mthemtics Lecture 20, Februry 29, 2007 110 Kufmnn Center Instructor:

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1 AMSC/CMSC 46/466 T. von Petersdorff 1 umericl Integrtion 1 Introduction We wnt to pproximte the integrl I := f xdx where we re given, b nd the function f s subroutine. We evlute f t points x 1,...,x n

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas Mth 19 Chpter 5 Lecture Notes Professor Miguel Ornels 1 M. Ornels Mth 19 Lecture Notes Section 5.1 Section 5.1 Ares nd Distnce Definition The re A of the region S tht lies under the grph of the continuous

More information

cos 3 (x) sin(x) dx 3y + 4 dy Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves

cos 3 (x) sin(x) dx 3y + 4 dy Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves Mth 126 Clculus Sec. 5.6: Substitution nd Are Between Curves I. U-Substitution for Definite Integrls A. Th m 6-Substitution in Definite Integrls: If g (x) is continuous on [,b] nd f is continuous on the

More information

Numerical Integration

Numerical Integration Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information