# 10 Vector Integral Calculus

Size: px
Start display at page:

Transcription

1 Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve sic engineering pplictions in solid mechnics, fluid flow nd het prolems. These different kinds of integrls cn e trnsformed into one nother. This is done to simplify evlutions or to gin useful generl formuls, for instnce, in potentil theory (see Sec..8).. Line integrls The concept of line integrl is simple nd nturl generliztion of definite integrl, f ( xdx ), (..) known from clculus. In eqn (..) the integrnd f ( x ) is integrted from x long the x - xis to x. In line integrl given function (lso clled the integrnd) is integrted long curve in spce (or in the plne). Hence, curve integrl would e etter nme, ut line integrl is stndrd. Represent the curve y prmetric representtion (see Sec. 9.5), r() t x() t i y() t j z() t k, ( t ). (..) The curve is clled the pth of integrtion, A: r ( ) its initil point, nd B : r ( ) its terminl point. urve is now oriented. The direction from A to B, in which t increses, is clled the positive direction on nd cn e mrked y n rrow (Fig. 7). The points A nd B my coincide (Fig. 7) in which cse the curve is clled closed pth. The curve is clled smooth curve if it hs t ech point unique tngent whose direction vries continuously long curve. This mens tht r() t in eqn (..) is differentile nd the derivtive r ( t) dr/ dt is continuous nd different from the zero vector t every point of curve. Generl ssumption: In this chpter nd ll other chpters every pth of integrtion of line integrl is ssumed to e piecewise smooth, i.e., consists of finitely mny smooth curves... Definition nd evlution of line integrls A line integrl of vector function Fr ( ) over curve : r( t) (s in eqn (..)) is defined y, Fr () dr= Fr (()) t r () t dt, (..3) June 5,.-/6

2 where r ( t) dr ( t) / dt. In terms of components, with dr( t) dx i dy j dz k s in Sec. 9.5 nd () d()/ dt, eqn (..3) ecomes, Fr () dr= ( F dx + F dy + F dz), 3 ( Fx Fy Fz 3 ) dt. = + + (..3*) If the pth of integrtion is eqn (..3) is closed curve, then insted of we lso write. Note tht the integrnd Fr (()) t r () t in eqn (..3) is sclr nd indeed F r / r is the tngentil component of F. The integrl in eqn (..3) on the right-hnd side is definite integrl of function of t tken over the intervl t on the t -xis in the positive direction (the direction of incresing t ). This definite integrl exists for continuous F nd piecewise smooth, ecuse this mkes F r piecewise continuous. Line integrls eqn (..3) rise nturlly in mechnics, where they give the work done y force F in displcement long (see exmples elow). Hence, the line integrl eqn (..3) my lso e clled the work integrl. Other forms of the line integrl will e discussed lter in this section. Exmple : Evlution of line integrl in the plne Find the vlue of the line integrl eqn (..3) when Fr ( ) y i xy j nd is the circulr rc in Fig. 8 from A to B. Solution: Represent the circulr rc y r( t) costi sin tj, where t / x() t cos, t y() t sint nd. Then Fr ( ()) t y() t i x() t y() t j sinti costsintj. By differentition, r ( t) sinti costj, so tht y eqn (..3) [use eqn () in Appendix 3., set cos t u in the second term], / Fr ( ) dr= (-sin ti- costsin tj) (-sin ti+ cos tj) dt, / (sin t cos tsin t) dt, = - = = - = 4 3 / ( cos tdt ) u( du).45. June 5,.-/6

3 Exmple : Line integrl in spce The evlution of line integrls in spce is prcticlly the sme s it is in the plne. To illustrte this, find the vlue of eqn (..3) when Fr () zi xj yk nd is the helix (Fig. 9), r() t costi sintj 3 tk, t. (..4) Solution: From eqn (..4), we hve x() t cos, t y() t sin t, z() t 3t. Thus, ( ( )) ( ) (3 cos sin ) ( sin cos 3 ) Frt r t ti tj tk ti tj k. Hence, eqn (..3) gives, ( ) dr= (- 3tsin t+ cos t+ 3sin t) dt= 7 =.99. Fr Simple generl properties of the line integrl eqn (..3) follow directly from corresponding properties of the definite integrl in clculus, nmely, kf dr= k F dr, ( k constnt) (..5) d ( F+ G) dr= F dr+ G r, (..5) F dr= F dr+ F dr, (see Fig. ) (..5c) where in eqn (..5c) the pth is sudivided into two rcs nd tht hve the sme orienttion s (Fig. ). In eqn (..5) the orienttion of is the sme in ll three integrls. If the sense of integrtion long is reversed, the vlue of the integrl is multiplied y. However, we note the following independence if the sense is preserved. June 5,.-3/6

4 Theorem : Direction-preserving prmetric trnsformtions Any representtions of tht give the sme positive direction on lso yield the sme vlue of the line integrl eqn (..3). Proof: A proof follows y the chin rule, where r () t is the given representtion, t (*) t with positive derivtive dt / dt * is the trnsformtion, with * t* * corresponding to t, in eqn (..3), nd we write r() t r ( ( t*)) r*(*) t. Then dt ( dt / dt*) dt * nd, * dr dt Fr (*) dr* = Fr (((*))) t dt*, * dt dt * dr = Fr (()) t dt= Fr () r. dt d.. Motivtion of the line integrl eqn (..3): Work done y force The work W done e constnt force F in the displcement long stright segment d is W F d; see Ex. in Sec. 9.. This suggests tht we define the work W done y vrile force F in the displcement long curve : r( t) s the limit of sums of work done in displcements long smll chords of. It will e shown tht this definition mounts to defining W y the line integrl eqn (..3). For this we choose points t( ) t... tn( ). Then the work Wm done y Fr ( ( t m )) in the stright displcement from ( ) to r ( ) is, r t m tm W Fr (( t )) [( rt ) r( t )] Fr (( t )) r ( t ) t, m m m m m m m where tm tm t m. The sum of these n works is Wn W... W n. if we choose points nd consider W for every n ritrrily ut so tht the gretest pproches zero s n, n then the limit of Wn s n is the line integrl eqn (..3). This integrl exists ecuse of our generl ssumption tht F is continuous nd is piecewise smooth; this mkes r ( t) continuous, except t finitely mny points where my hve corners or cusps. Exmple 3: Work done y vrile force If F in Exmple is force, the work done y F in the displcement long the qurter-circle is.45, mesured in suitle units, sy Newton-meters ( nt m, Nm, lso clled joules, revition J). Similrly in Exmple. t m Exmple 4: Work done equls the gin in kinetic energy Let F e force, so tht eqn (..3) is work. Let t e time, so tht velocity. Then we cn write eqn (..3) s, dr/ dt v, W = F dr= F(()) r t v() t dt By Newton's second lw ( force mss ccelertion ), F mr () t mv () t,. (..6) June 5,.-4/6

5 where m is the mss of the ody displced. Sustitution into eqn (..5) gives, æv vö m W = mv vdt= m ç dt= v çè ø t=. t= On the right, m v / is the kinetic energy. Hence the work done equls the gin in kinetic energy. This is sic lw in mechnics...3 Other forms of line integrls The line integrls, Fdx,, Fdy 3 re specil cses of eqn (..3) when F F i or F j or Fdz, (..7) F3 k, respectively. Furthermore, without tking dot product s in eqn (..3) we cn otin line integrl whose vlue is vector rther thn sclr, nmely, Fr () dt = Fr (()) t dt = [ F (()) rt i+ F (()) rt j+ F (()) rt k] dt. (..8) Another form of line integrl is, 3 f () r dt = f (()) r t dt, (..8*) with s in eqn (..). The evlution is similr to tht efore. Exmple 5: A line integrl of the form eqn (..8) Integrte Fr () xyi yzj zk long the helix in Exmple. Solution: Fr (()) t cossin t ti 3sin t tj 3 tk, integrted with respect to t from to gives,..4 Pth dependence 3 Frt dt ti t t t t ( ( )) =- [ cos + (3sin - 3 cos ) j+ k] = [i- 6 j+ 6 k]. Pth dependence of line integrls is prcticlly nd theoreticlly so importnt tht we formulte it s theorem. A whole section (Sec..) will e devoted to conditions under which pth dependence does not occur. Theorem : Pth dependence The line integrl eqn (..3) generlly depends not only on F nd on the endpoints A nd B of the pth, ut lso on the pth itself long which the integrl is tken. Proof: Almost ny exmple will show this. Tke the stright segment : r( t) ti tj k nd the prol : r ( t) ti t j k with t (Fig. ) nd integrte June 5,.-5/6

6 4 F i xy j k. Then Fr ( ()) t r () t t, Fr ( ()) t r () t t, so tht integrtion gives / 3 nd /5, respectively. June 5,.-6/6

### We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

### Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Jim Lmbers MAT 28 Spring Semester 29- Lecture 7 Notes These notes correspond to Section 3.2 in Stewrt nd Section 7.2 in Mrsden nd Tromb. Line Integrls Recll from single-vrible clclus tht if constnt force

### Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

### Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

### MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

### Section 4: Integration ECO4112F 2011

Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

### Chapter 6 Techniques of Integration

MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

### Week 10: Line Integrals

Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

### Math 8 Winter 2015 Applications of Integration

Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

### University of. d Class. 3 st Lecture. 2 nd

University of Technology Electromechnicl Deprtment Energy Brnch Advnced Mthemtics Line Integrl nd d lss st Lecture nd Advnce Mthemtic Line Integrl lss Electromechnicl Engineer y Dr.Eng.Muhmmd.A.R.Yss Dr.Eng

### Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

### Section 17.2 Line Integrals

Section 7. Line Integrls Integrting Vector Fields nd Functions long urve In this section we consider the problem of integrting functions, both sclr nd vector (vector fields) long curve in the plne. We

### 7. Indefinite Integrals

7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find

### Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

### Line Integrals. Chapter Definition

hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xy-plne. It

### Polynomials and Division Theory

Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

### Indefinite Integral. Chapter Integration - reverse of differentiation

Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

### x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

### Section 6.1 Definite Integral

Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

### Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

### Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

### Conservation Law. Chapter Goal. 5.2 Theory

Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

### Mathematics. Area under Curve.

Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

### Topics Covered AP Calculus AB

Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

### 2. VECTORS AND MATRICES IN 3 DIMENSIONS

2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

### Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

### Review of Gaussian Quadrature method

Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

### A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

### Interpreting Integrals and the Fundamental Theorem

Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

### u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

Mth 348 Fll 7 Lecture 3: Curves in Clculus Disclimer. As we hve textook, this lecture note is for guidnce nd supplement only. It should not e relied on when prepring for exms. In this lecture we set up

### Notes on length and conformal metrics

Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

### Thomas Whitham Sixth Form

Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

### 1 Line Integrals in Plane.

MA213 thye Brief Notes on hpter 16. 1 Line Integrls in Plne. 1.1 Introduction. 1.1.1 urves. A piece of smooth curve is ssumed to be given by vector vlued position function P (t) (or r(t) ) s the prmeter

### Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

### 1 The fundamental theorems of calculus.

The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Theorem Suppose f is continuous

### Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

### ODE: Existence and Uniqueness of a Solution

Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

Mth 452 - Advnced Clculus II Line Integrls nd Green s Theorem The min gol of this chpter is to prove Stoke s theorem, which is the multivrible version of the fundmentl theorem of clculus. We will be focused

### Integrals along Curves.

Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the

### a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

### 5: The Definite Integral

5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

### Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

### Mapping the delta function and other Radon measures

Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support

### Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

### 1 The fundamental theorems of calculus.

The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

### 1 The Riemann Integral

The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

### Section 6: Area, Volume, and Average Value

Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

### Final Exam - Review MATH Spring 2017

Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

### MATH , Calculus 2, Fall 2018

MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

### Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

### ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

### df dt f () b f () a dt

Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

### Math 32B Discussion Session Session 7 Notes August 28, 2018

Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

### CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx

CHAPTER 0 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS 0.. PARAMETRIC FUNCTIONS A) Recll tht for prmetric equtions,. B) If the equtions x f(t), nd y g(t) define y s twice-differentile function of x, then t

### Improper Integrals, and Differential Equations

Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

### 1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

### 7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

### Review of basic calculus

Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

### k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

Stndrd Eqution of Prol with vertex ( h, k ) nd directrix y = k p is ( x h) p ( y k ) = 4. Verticl xis of symmetry Stndrd Eqution of Prol with vertex ( h, k ) nd directrix x = h p is ( y k ) p( x h) = 4.

### Section 14.3 Arc Length and Curvature

Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

### NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

### Overview of Calculus I

Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

### Today in Physics 122: work, energy and potential in electrostatics

Tody in Physics 1: work, energy nd potentil in electrosttics Leftovers Perfect conductors Fields from chrges distriuted on perfect conductors Guss s lw for grvity Work nd energy Electrosttic potentil energy,

### Calculus of Variations

Clculus of Vritions Com S 477/577 Notes) Yn-Bin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function

### The Wave Equation I. MA 436 Kurt Bryan

1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

### INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

### 5.7 Improper Integrals

458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

### INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

Lecture 6: Line Integrls INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Anlysis Autumn 2012 August 8, 2012 Lecture 6: Line Integrls Lecture 6: Line Integrls Lecture 6: Line Integrls Integrls of complex

### 1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

### The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

### MA 124 January 18, Derivatives are. Integrals are.

MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

### Review of Calculus, cont d

Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

### Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

### Review: Velocity: v( t) r '( t) speed = v( t) Initial speed v, initial height h, launching angle : 1 Projectile motion: r( ) j v r

13.3 Arc Length Review: curve in spce: r t f t i g t j h t k Tngent vector: r '( t ) f ' t i g ' t j h' t k Tngent line t t t : s r( t ) sr '( t ) Velocity: v( t) r '( t) speed = v( t) Accelertion ( t)

### x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According

### Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

### Taylor Polynomial Inequalities

Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

### Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

### DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

### 4.4 Areas, Integrals and Antiderivatives

. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

### Review Exercises for Chapter 4

_R.qd // : PM Pge CHAPTER Integrtion Review Eercises for Chpter In Eercises nd, use the grph of to sketch grph of f. To print n enlrged cop of the grph, go to the wesite www.mthgrphs.com... In Eercises

### Further integration. x n nx n 1 sinh x cosh x log x 1/x cosh x sinh x e x e x tan x sec 2 x sin x cos x tan 1 x 1/(1 + x 2 ) cos x sin x

Further integrtion Stndrd derivtives nd integrls The following cn be thought of s list of derivtives or eqully (red bckwrds) s list of integrls. Mke sure you know them! There ren t very mny. f(x) f (x)

### Definite integral. Mathematics FRDIS MENDELU

Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

### SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus

SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is

### Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

### Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

### 7.6 The Use of Definite Integrals in Physics and Engineering

Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

### Line and Surface Integrals: An Intuitive Understanding

Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

### 5.4. The Fundamental Theorem of Calculus. 356 Chapter 5: Integration. Mean Value Theorem for Definite Integrals

56 Chter 5: Integrtion 5.4 The Fundmentl Theorem of Clculus HISTORICA BIOGRAPHY Sir Isc Newton (64 77) In this section we resent the Fundmentl Theorem of Clculus, which is the centrl theorem of integrl

### Math Calculus with Analytic Geometry II

orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

### 63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

### Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

Edexcel GCE Core Mthemtics (C) Required Knowledge Informtion Sheet C Formule Given in Mthemticl Formule nd Sttisticl Tles Booklet Cosine Rule o = + c c cosine (A) Binomil Series o ( + ) n = n + n 1 n 1

### STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

### Surface Integrals of Vector Fields

Mth 32B iscussion ession Week 7 Notes Februry 21 nd 23, 2017 In lst week s notes we introduced surfce integrls, integrting sclr-vlued functions over prmetrized surfces. As with our previous integrls, we

### The Regulated and Riemann Integrals

Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

### n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

### 4. Calculus of Variations

4. Clculus of Vritions Introduction - Typicl Problems The clculus of vritions generlises the theory of mxim nd minim. Exmple (): Shortest distnce between two points. On given surfce (e.g. plne), nd the