Generation of Crowned Parabolic Novikov gears

Size: px
Start display at page:

Download "Generation of Crowned Parabolic Novikov gears"

Transcription

1 Engneerng Leers, 5:, EL_5 4 Generon o Crowned Prol Novkov gers Somer M. Ny, Memer, IAENG, Mohmmd Q. Adullh, nd Mohmmed N.Mohmmed Asr - The Wldher-Novkov ger s one o he rulr r gers, whh hs he lrge on re eween he onvex nd onve proled mng eeh. In (June 8, 999), new geomery o W-N ger wh prol prole n norml seon hs een developed. Ths pper sudes he generon o rk-uers or prol rowned proles wh s generon n order o sele he requremens o W- N gers. where u s vrle prmeer h deermnes he loon o he urren pon n he norml seon nd s he prol oeen. Index Terms- rowned prol prole, generon o gers, Novkov gers I. INTRODUCTION Crulr r hell gers were proposed y Wldher nd Novkov. However, here s sgnn derene eween he des proposed y he prevously menoned nvenors. Wldher s de [] s sed on generon o he pnon nd ger y he sme mgnry rk-uer h provdes onjuge ger ooh sures h re n lne on every nsn. Novkov [] proposed he pplon o wo msmhed mgnry rk-uers h provde onjuged ger ooh sures h re n pon on every nsn. Pon on o Novkov gers hs een heved y pplon o wo msmhed rk-uers or generon o he pnon nd ger, respevely. There re wo versons o Novkov gers (wh rulrr prole), he rs hvng one zone o meshng, nd he oher hvng wo zones o meshng. The desgn o gers wh wo zones o meshng ws n emp o redue hgh endng sresses used y pon on. The proposed new verson o hell gers s sed on he ollowng des [3]:. The erng on s lolzed nd he on sresses re redued euse o he ngeny o onveonvex ooh sures o he mng gers.. The norml seon o eh rk-uer s prol s shown n Fg.. A urren pon o he prol s deermned n n uxlry oordne sysem y he equons u x = u y = () Mnusrp reeved Jnury 7, 007. S. M. Ny s wh Al-Khwrzm College o Engneerng, Unversy o Bghdd, Bghdd, Irq. Phone e-ml: smny@elernngq.ne M. Q. Adullh s wh he College o Engneerng, Unversy o Bghdd, Bghdd, Irq. M. N. Mohmmed s wh Al-Khwrzm College o Engneerng, Unversy o Bghdd, Bghdd, Irq. S Fg. - Prol prole o rk-uer n norml seon. II. DERIVATION OF PINION TOOTH SURFACE A. Pnon Rk-Cuer Sure The dervon o rk-uer sure s sed on he ollowng proedure:. The norml prole o s prol nd s represened n oordne sysem equons h re smlr o (): [ u u 0 ] T S, Fg. -, y r ( u ) = () where s he prol oeen; u s he vrle prmeer.. The norml prole s represened n y mrx equon r u ) = M r ( u ) (3) ( M ndes he 4 4 mrx used or he oordne rnsormon rom oordne sysem S o S [4]: 3. Consder h rk-uer sure s ormed n S whle oordne sysem S wh he norml prole perorms rnslonl moon n he dreon - o he skew eeh o he rk-uer, Fg. 3. Sure s S (Advne onlne pulon: 5 Augus 007)

2 Engneerng Leers, 5:, EL_5 4 omponens; k s he un veor o xs z. The rnsverse seon o rk-uer s shown n Fgs. 4- nd. Fg. 4- Rk-uer rnsverse proles. () Mng proles. () Pnon rk-uer prole. () Ger rk-uer prole. Fg. 3- For dervon o pnon rk-uer sure deermned n oordne sysem n wo-prmeer orm y he ollowng mrx equon r u, θ ) = M ( θ ) r ( u ) ( (4) 4. The norml N o rk-uer sure s deermned y mrx equon, [4] N u ) = L L N ( u ) ( S r N ( u ) = k u (6) nd he un norml o he sure s N N ( u ) n ( u ) = = (7) N + 4 u where o M L (5) ndes he 3 3 mrx h s he su-mrx nd s used or he rnsormon o veor B. Deermnon O Pnon Tooh Sure The deermnon o s sed on he ollowng onsderons:. Movle oordne sysems nd S, Fg. 5, re S rgdly onneed o he pnon rk-uer nd he pnon, respevely. The xed oordne sysem s rgdly onneed o he ung mhne.. The rk-uer nd he pnon perorm reled moons, s shown n Fg. 5, where s = rp ψ s he dsplemen o he rk-uer n s rnslonl moon, nd ψ s he ngle o roon o he pnon. 3. A mly o rk-uer sures s genered n oordne sysem nd s deermned y he mrx equon r u, θ, ψ ) = M S ( ( ψ ) r ( u, θ ) (8) M ( ψ ) = Mm M m (9) The pnon ooh sure s genered s he envelope o he mly o sure r ( u, θ, ψ ).Sure s deermned y,, ψ ) 0 (0) p ( u θ = smulneous onsderon o veor unon r,, ) nd he so-lled equon o meshng. ( u θ ψ S m (Advne onlne pulon: 5 Augus 007)

3 Engneerng Leers, 5:, EL_ To derve he equon o meshng (0), pply he heorem o [5] nd [4] o on,. The norml prole o s prol represened Fg. 5- Generon o pnon y rk-uer O O = rp + rp j () ψ () () v = ω rp j where ω = k () () () = ω r + O O ω v (3) The relve veloy s v = v v = ω [( rp ψ y ) + x ] (4) Thus, he equon o meshng s N v = 0 (5) Th yelds u, θ, ψ ) ( rp ψ y ) N + x N 0 (6) ω ( = x y = where ( x, y, z ) re he oordnes o urren pon o ; ( N ) s he norml o he sure ; ω s he ngulr veloy; v nd v re he veloes o he rkuer nd pnon respevely; represen he relve veloy (sldng veloy) eween he rkuer nd pnon, Fg. 5. Equons (8) nd (6) represen he pnon ooh sure y hree reled prmeers. Tkng no oun h he equons ove re lner wh respe o θ, hene θ my e elmned nd represen he pnon ooh sure y veor unon r, ). v ( u ψ III. DERIVATION OF GEAR TOOTH SURFACE n e S e, reerrng o Fg. -, [ u u 0 ] T r ( u ) = (7) whh s smlr o (). Use oordne sysems, Fg. -, nd S h re smlr o S nd S, Fg. 3, o represen sure y mrx equon, S r u, θ ) = M ( θ ) M r ( u ) (8) ( k ke e The norml o he sure s deermned y equons smlr o (5) o (7). The derene n he represenon o s he hnge n he susrp o. B. Deermnon O Ger Tooh Sure The generon o y rk-uer sure s represened shemlly n Fg. 6. The rk-uer nd he ger perorm reled rnslonl nd roonl moons desgned s s = rpψ nd ψ. The ger ooh s represened r = r,, ) ( u θ ψ (9) ( u, θ, ψ ) = 0 (0) Equon (0) represens n S S k he mly o rk-uer sures deermned s, r u, θ, ψ ) = M ( ψ ) r ( u, θ ) () ( M ψ ) = M ( ψ ) M ( ) () ( m m ψ A. Ger Rk-Cuer Sure The dervon o rk-uer sure s sed on he proedure smlr o h ppled or dervon o Fg. 6- Generon o ger y rk-uer (Advne onlne pulon: 5 Augus 007)

4 Engneerng Leers, 5:, EL_5 4 The dervon o he equon o meshng (0) my e omplshed smlrly o h o (6), u, θ, ψ ) ( rp ψ y ) N + x N 0 (3) ( = x x = Equons () nd (3) represen he ger ooh sure y hree reled prmeers. The lner prmeer θ n e elmned nd he ger ooh sure represened n wo-prmeer orm y veor unon r, ). ( u ψ IV. MATHEMATICAL SIMULATION OF RACK FILLET A lle pr s rulr r whh hs oordnes x nd y, k nd h ener oordnes nd rdus r. Ths r les eween pons A nd B, where pon A represen he mng pon, whh ssy smoohng on, eween he rulr-r or prol urve nd he lle urve, pon B represen he meeng pon, whh ssy smoohng on, eween he lle urve nd he horzonl srgh lne, s shown n Fg. 7. Thereore, o nd he x nd y-oordnes o pons A nd B, nglesθ A nd θ B whh ssy smoohng on mus e ound. To ssy smoohng on pon B, ngleθ my o equl o 90 euse he rdus o lle my e perpendulr on he ngen, whh s he horzonl srgh lne hs pon, lso o ssy smoohng on pon A he lle rdus my e perpendulr on he ngen hs pon, or n oher words he slope o rulr-r or prol urve mus e equl o he slope o he lle urve hs pon, [6]. Thus, o nd he slope o prol urve ny pon, usng (3), o ge, dx dx du os( α n ) u sn( α n ) = * = (4) dy du dy sn( α ) + u os( α ) n n B Also o nd he slope o lle urve ny pon, he rle equon s:- ( y h) y + ( x k) h y + h + x = r k x + k = r (5) derenng (5) wh respe o y s ollows: dx dx dx dx y h + x k = 0 h = y + x k (6) dy dy dy dy y susung (3), (4) nd (6) n (5), hus onng non-lner equon whh s solved numerlly usng Sen Mehod o ge he oordnes o smoohng pon (A). For he rowned prol prole, he lle urve n e represened s ollows: x r sn ( θ ) + xo r = = y r os( θ ) + yo (7) z 0, r s he lle rdus; x o, y ) re he r ener oordnes; ( o θ s he vrle prmeer. Usng oordnes sysems smlr o S nd S, Fg. 3, o represen sure S, he susrp mens he lle sure, hus r θ, θ ) = M ( θ ) r ( θ ) (8) ( The un norml o he sure n e ound s r r N N = nd n = (9) θ θ N The represenon o he pnon ooh lle sure y equons smlr o (8) nd (6), nd lso he represenon o he ger ooh lle sure y equons smlr o () nd (3). Then he generon o pnon nd ger or prol proles wh lle rdus n e oned s shown n Fg. 8. Fg. 7- Flle pr o rk-uer. Fg. 8- Generon o prol ooh wh lle rdus. (Advne onlne pulon: 5 Augus 007)

5 Engneerng Leers, 5:, EL_5 4 M, Mres o oordne rnsormon rom V. CONCLUSIONS The developed pproh o desgn nd generon o he rowned prol Novkov ger drves hs suessully een ppled. The onjugon o ger ooh sures wh prole rownng s heved y pplyng wo rk-uers wh rowned prole n norml seon. REFERENCES [] Wldher, E., "Hell Gerng", U.S. Pen No.,60,750, 96. [] Novkov, M.L., U.S.S.R., Pen No. 09,750, 956. [3] Lvn, F.L., Feny, P., nd Serge A. L., "Compuerzed Generon nd Smulon o Meshng o New Type o Novkov-Wldher Hell Gers", NASA/CR , 000. [4] Lvn, F.L., "Ger Geomery nd Appled Theory", Prene-Hll, Englewood Cls, NJ, 994. [5] Lvn, F.L, "Theory o Gerng", NASA RP- (AVSCOM 88- C-035), 989. [6] Mohmmed Qsm Adullh, "Compuer Aded Grphs o Cylodl Ger Tooh Prole", Unversy o Bghdd, Fh Engneerng Conerene, 003. Nomenlure Prol oeens o proles o pnon rk uer (=) nd ger rk uer (=). j Equon o meshng eween ooh sure () nd rkuer (j). l Prmeer o loon o pon ngeny Q or pnon (=) or ger (=). j Lj S o oordne sysem S j. ( j) ( j) n, N Un norml nd norml o sure n oordne sysem S j. r Poson veor o pon n oordne sysem S. r Flle rdus. rp s (=). Rdus o ylnder o pnon (=) or or ger (=). Dsplemen o rk-uer or pnon (=) or or ger S (O,x,y,z ) Coordne sysem (=,,p,g,,,m,,,,s,,r,k,e) α n β Helx ngle. φ Pressure ngle n Norml seon. Sures (=,,p,g,,). Angle o roon o he pnon (=) or he ger (=) n he proess o generon or rulr-r prole. ψ Angle o roon o proled-rowned pnon (=), he doule rowned- prole (=p) or or ger (=) n he proess o generon or rulr-r prole. ( u, θ ) Prmeers o sure. θ A, θ B Angles whh ssy smoohng on urves. ρ Prole rd (=p,g,,,,). (Advne onlne pulon: 5 Augus 007)

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Direct Current Circuits

Direct Current Circuits Eler urren (hrges n Moon) Eler urren () The ne moun of hrge h psses hrough onduor per un me ny pon. urren s defned s: Dre urren rus = dq d Eler urren s mesured n oulom s per seond or mperes. ( = /s) n

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

BLOWUPS IN GAUGE AND CONSTRAINT MODES. Bernd Reimann, AEI in collaboration with M. Alcubierre, ICN (Mexico)

BLOWUPS IN GAUGE AND CONSTRAINT MODES. Bernd Reimann, AEI in collaboration with M. Alcubierre, ICN (Mexico) BLOWUPS IN GAUGE AND CONSTRAINT MODES Bernd Remnn, AEI n ollboron M. Aluberre, ICN (Mexo) Jen, Jnury 30, 006 1 Tops Pologes ( soks nd bloups ) n sysems of PDEs Te soure rer for vodng bloups Evoluon Sysem:

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

Pen Tip Position Estimation Using Least Square Sphere Fitting for Customized Attachments of Haptic Device

Pen Tip Position Estimation Using Least Square Sphere Fitting for Customized Attachments of Haptic Device for Cuomed Ahmen of Hp Deve Mno KOEDA nd Mhko KAO Deprmen of Compuer Sene Ful of Informon Sene nd Ar Ok Elero-Communon Unver Kok 30-70, Shjonwe, Ok, 575-0063, JAPA {koed, 0809@oeu.jp} Ar In h pper, mehod

More information

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

Electromagnetic Transient Simulation of Large Power Transformer Internal Fault

Electromagnetic Transient Simulation of Large Power Transformer Internal Fault Inernonl Conference on Advnces n Energy nd Envronmenl Scence (ICAEES 5) Elecromgnec Trnsen Smulon of rge Power Trnsformer Inernl Ful Jun u,, Shwu Xo,, Qngsen Sun,c, Huxng Wng,d nd e Yng,e School of Elecrcl

More information

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces Compuer nd Informion Siene The Forming Theory nd Compuer Simulion of he Rory Cuing Tools wih Helil Teeh nd Comple Surfes Hurn Liu Deprmen of Mehnil Engineering Zhejing Universiy of Siene nd Tehnology Hngzhou

More information

The Characterization of Jones Polynomial. for Some Knots

The Characterization of Jones Polynomial. for Some Knots Inernon Mhemc Forum,, 8, no, 9 - The Chrceron of Jones Poynom for Some Knos Mur Cncn Yuuncu Y Ünversy, Fcuy of rs nd Scences Mhemcs Deprmen, 8, n, Turkey m_cencen@yhoocom İsm Yr Non Educon Mnsry, 8, n,

More information

Kinematical Simulation

Kinematical Simulation Kneaal Sulaon of Fae Hong Indexng and Tooh Surfae Generaon of Spral Bevel and Hypod Gears Dr. Q Fan Dr. Q Fan s a evel gear heorean a The Gleason Works of Roheser, NY. Pror o ha, he orked n he Gear Researh

More information

Recap Shape Functions

Recap Shape Functions Seon : ISOPARAMETRIC FORMULATIO Whkewz College o Engneerng Rep Shpe Fnon Th good ple o op nd remnd orele where we re n he proe o ormlng nmerl olon ng ne elemen mehod. For omponen we re olng he glol ore

More information

Electromagnetic waves in vacuum.

Electromagnetic waves in vacuum. leromagne waves n vauum. The dsovery of dsplaemen urrens enals a peular lass of soluons of Maxwell equaons: ravellng waves of eler and magne felds n vauum. In he absene of urrens and harges, he equaons

More information

ME 160 Introduction to Finite Element Method. Chapter 5 Finite Element Analysis in Heat Conduction Analysis of Solid Structures

ME 160 Introduction to Finite Element Method. Chapter 5 Finite Element Analysis in Heat Conduction Analysis of Solid Structures San Jose Sae Unvers Deparmen o Mehanal Engneerng ME 6 Inroduon o Fne Elemen Mehod Chaper 5 Fne Elemen Analss n Hea Conduon Analss o Sold Sruures Insruor a-ran Hsu Proessor Prnpal reerenes: ) he Fne Elemen

More information

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1) Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 141

TOPICAL PROBLEMS OF FLUID MECHANICS 141 TOPIL PROBLEMS OF FLUID MEHNIS 4 DOI: h://dx.do.org/.43/tpfm.6.9 BIPLNE ERODYNMIS REISITED E. Morsh ollege of Engneerng nd Desgn, Shur Insue of Tehnology, 37, Fuksku, Mnum-ku, Sm-sh, 337 857, Sm, Jn sr

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations. Soluons o Ordnary Derenal Equaons An ordnary derenal equaon has only one ndependen varable. A sysem o ordnary derenal equaons consss o several derenal equaons each wh he same ndependen varable. An eample

More information

Motion in One Dimension

Motion in One Dimension Moon n One Dmenson CHAPTER OUTLINE Poson, Veloy, nd Speed Insnneous Veloy nd Speed 3 Aeleron 4 Moon Dgrms 5 One-Dmensonl Moon w Consn Aeleron 6 Freely Fllng Objes 7 Knem Equons Dered rom Clulus ANSWERS

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as:

Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as: Sbl Anlss for VAR ssems For se of n me seres vrbles (,,, n ', VAR model of order p (VAR(p n be wren s: ( A + A + + Ap p + u where he A s re (nxn oeffen mres nd u ( u, u,, un ' s n unobservble d zero men

More information

MODELLING AND EXPERIMENTAL ANALYSIS OF MOTORCYCLE DYNAMICS USING MATLAB

MODELLING AND EXPERIMENTAL ANALYSIS OF MOTORCYCLE DYNAMICS USING MATLAB MODELLING AND EXPERIMENTAL ANALYSIS OF MOTORCYCLE DYNAMICS USING MATLAB P. Florn, P. Vrání, R. Čermá Fculy of Mechncl Engneerng, Unversy of Wes Bohem Asrc The frs pr of hs pper s devoed o mhemcl modellng

More information

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681 Revew: Trnsforons Trnsforons Modelng rnsforons buld cople odels b posonng (rnsforng sple coponens relve o ech oher ewng rnsforons plcng vrul cer n he world rnsforon fro world coordnes o cer coordnes Perspecve

More information

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels nvenon Jounl o Reseh Tehnoloy n nneen & Mnemen JRTM SSN: 455-689 wwwjemom Volume ssue 0 ǁ Ooe 08 ǁ PP 9-45 Cuo uons n he me o onl oeos wh M-ele enels on Qn Chenmn Hou* Ynn Unvesy Jln Ynj 00 ASTRACT: n

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

Chapter 2 Linear Mo on

Chapter 2 Linear Mo on Chper Lner M n .1 Aerge Velcy The erge elcy prcle s dened s The erge elcy depends nly n he nl nd he nl psns he prcle. Ths mens h prcle srs rm pn nd reurn bck he sme pn, s dsplcemen, nd s s erge elcy s

More information

Bandlimited channel. Intersymbol interference (ISI) This non-ideal communication channel is also called dispersive channel

Bandlimited channel. Intersymbol interference (ISI) This non-ideal communication channel is also called dispersive channel Inersymol nererence ISI ISI s a sgnal-dependen orm o nererence ha arses ecause o devaons n he requency response o a channel rom he deal channel. Example: Bandlmed channel Tme Doman Bandlmed channel Frequency

More information

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2 COMPUTE SCIENCE 49A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PATS, PAT.. a Dene he erm ll-ondoned problem. b Gve an eample o a polynomal ha has ll-ondoned zeros.. Consder evaluaon o anh, where e e anh. e e

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014 MODEL SOLUTIONS TO IIT JEE ADVANCED Pper II Code PART I 6 7 8 9 B A A C D B D C C B 6 C B D D C A 7 8 9 C A B D. Rhc(Z ). Cu M. ZM Secon I K Z 8 Cu hc W mu hc 8 W + KE hc W + KE W + KE W + KE W + KE (KE

More information

Superstructure-based Optimization for Design of Optimal PSA Cycles for CO 2 Capture

Superstructure-based Optimization for Design of Optimal PSA Cycles for CO 2 Capture Supersruure-asedOpmaonforDesgnof OpmalPSACylesforCO 2 Capure R. S. Kamah I. E. Grossmann L.. Begler Deparmen of Chemal Engneerng Carnege Mellon Unversy Psurgh PA 523 Marh 2 PSA n Nex Generaon Power Plans

More information

r 0 ( ) cos( ) r( )sin( ). 1. Last time, we calculated that for the cardioid r( ) =1+sin( ),

r 0 ( ) cos( ) r( )sin( ). 1. Last time, we calculated that for the cardioid r( ) =1+sin( ), Wrm up Recll from lst time, given polr curve r = r( ),, dx dy dx = dy d = (r( )sin( )) d (r( ) cos( )) = r0 ( )sin( )+r( ) cos( ) r 0 ( ) cos( ) r( )sin( ).. Lst time, we clculted tht for crdioid r( )

More information

Method of Characteristics for Pure Advection By Gilberto E. Urroz, September 2004

Method of Characteristics for Pure Advection By Gilberto E. Urroz, September 2004 Mehod of Charaerss for Pre Adveon By Glbero E Urroz Sepember 004 Noe: The followng noes are based on lass noes for he lass COMPUTATIONAL HYDAULICS as agh by Dr Forres Holly n he Sprng Semeser 985 a he

More information

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola. Stndrd Eqution of Prol with vertex ( h, k ) nd directrix y = k p is ( x h) p ( y k ) = 4. Verticl xis of symmetry Stndrd Eqution of Prol with vertex ( h, k ) nd directrix x = h p is ( y k ) p( x h) = 4.

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand he Seond Inernonl Symposum on Sohs Models n Relbly Engneerng Lfe Sene nd Operons Mngemen Obnng he Opml Order unes hrough Asympo Dsrbuons of he Sokou Duron nd Demnd Ann V Kev Nonl Reserh omsk Se Unversy

More information

WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssign HW Due 11:59PM Tuesday Clicker Information WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

More information

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Output equals aggregate demand, an equilibrium condition Definition of aggregate demand Consumption function, c

Output equals aggregate demand, an equilibrium condition Definition of aggregate demand Consumption function, c Eonoms 435 enze D. Cnn Fall Soal Senes 748 Unversy of Wsonsn-adson Te IS-L odel Ts se of noes oulnes e IS-L model of naonal nome and neres rae deermnaon. Ts nvolves exendng e real sde of e eonomy (desred

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180.

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180. SECTION 8-1 11 CHAPTER 8 Setion 8 1. There re n infinite numer of possile tringles, ll similr, with three given ngles whose sum is 180. 4. If two ngles α nd β of tringle re known, the third ngle n e found

More information

425. Calculation of stresses in the coating of a vibrating beam

425. Calculation of stresses in the coating of a vibrating beam 45. CALCULAION OF SRESSES IN HE COAING OF A VIBRAING BEAM. 45. Calulaton of stresses n the oatng of a vbratng beam M. Ragulsks,a, V. Kravčenken,b, K. Plkauskas,, R. Maskelunas,a, L. Zubavčus,b, P. Paškevčus,d

More information

Physics 15 Second Hour Exam

Physics 15 Second Hour Exam hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ------------------------------- ol / I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7.

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

First-order piecewise-linear dynamic circuits

First-order piecewise-linear dynamic circuits Frs-order pecewse-lnear dynamc crcus. Fndng he soluon We wll sudy rs-order dynamc crcus composed o a nonlnear resse one-por, ermnaed eher by a lnear capacor or a lnear nducor (see Fg.. Nonlnear resse one-por

More information

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section.

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section. wwwskshieducioncom PARABOLA Le S be given fixed poin (focus) nd le l be given fixed line (Direcrix) Le SP nd PM be he disnce of vrible poin P o he focus nd direcrix respecively nd P SP moves such h PM

More information

Orgnl on: Wng Mnxn u Ho Hung n hewynd D. G.. (05) omplne nlyss of -SR prllel mehnsm wh onsderon of grvy. Mehnsm Mhne heory 8. ermnen WR url: hp://wrp.wrwk..uk/7805 opyrgh reuse: he Wrwk Reserh rhve orl

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Lecture 2 M/G/1 queues. M/G/1-queue

Lecture 2 M/G/1 queues. M/G/1-queue Lecure M/G/ queues M/G/-queue Posson arrval process Arbrary servce me dsrbuon Sngle server To deermne he sae of he sysem a me, we mus now The number of cusomers n he sysems N() Tme ha he cusomer currenly

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE - 0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

PHUN. Phy 521 2/10/2011. What is physics. Kinematics. Physics is. Section 2 1: Picturing Motion

PHUN. Phy 521 2/10/2011. What is physics. Kinematics. Physics is. Section 2 1: Picturing Motion /0/0 Wh phyc Phy 5 Phyc he brnch o knowledge h ude he phycl world. Phyc nege objec mll om nd lrge glxe. They udy he nure o mer nd energy nd how hey re reled. Phyc he udy o moon nd energy. Phyc nd oher

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r CO-ORDINTE GEOMETR II I Qudrnt Qudrnt (-.+) (++) X X - - - 0 - III IV Qudrnt - Qudrnt (--) - (+-) Region CRTESIN CO-ORDINTE SSTEM : Retngulr Co-ordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr

More information

кафедра математической экономики, Бакинский государственный университет, г. Баку, Азербайджанская Республика

кафедра математической экономики, Бакинский государственный университет, г. Баку, Азербайджанская Республика An exsence heorem or uzzy prl derenl equon Eendyev H Rusmov L Repulc o Azerjn) Теорема о существовании нечеткого дифференциального уравнения в частных производных Эфендиева Х Д Рустамова Л А Азербайджанская

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

EEM 486: Computer Architecture

EEM 486: Computer Architecture EEM 486: Compuer Archecure Lecure 4 ALU EEM 486 MIPS Arhmec Insrucons R-ype I-ype Insrucon Exmpe Menng Commen dd dd $,$2,$3 $ = $2 + $3 sub sub $,$2,$3 $ = $2 - $3 3 opernds; overfow deeced 3 opernds;

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL Jourl o See d rs Yer 5, No., pp. 5-, 5 ORIGINL PPER TECHERS SSESS STUDENT S MTHEMTICL CRETIVITY COMPETENCE IN HIGH SCHOOL TRN TRUNG TINH Musrp reeved: 9..5; eped pper:..5; Pulsed ole:..5. sr. ssessme s

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

INF5820 MT 26 OCT 2012

INF5820 MT 26 OCT 2012 INF582 MT 26 OCT 22 H22 Jn Tor Lønnng l@.uo.no Tody Ssl hn rnslon: Th nosy hnnl odl Word-bsd IBM odl Trnng SMT xpl En o lgd n r d bygg..9 h.6 d.3.9 rgh.9 wh.4 buldng.45 oo.3 rd.25 srgh.7 by.3 onsruon.33

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

Section 7.1 Area of a Region Between Two Curves

Section 7.1 Area of a Region Between Two Curves Section 7.1 Are of Region Between Two Curves White Bord Chllenge The circle elow is inscried into squre: Clcultor 0 cm Wht is the shded re? 400 100 85.841cm White Bord Chllenge Find the re of the region

More information

8.3 THE HYPERBOLA OBJECTIVES

8.3 THE HYPERBOLA OBJECTIVES 8.3 THE HYPERBOLA OBJECTIVES 1. Define Hperol. Find the Stndrd Form of the Eqution of Hperol 3. Find the Trnsverse Ais 4. Find the Eentriit of Hperol 5. Find the Asmptotes of Hperol 6. Grph Hperol HPERBOLAS

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

SIMPLE NONLINEAR GRAPHS

SIMPLE NONLINEAR GRAPHS S i m p l e N o n l i n e r G r p h s SIMPLE NONLINEAR GRAPHS www.mthletis.om.u Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer d Model Cvl and Surveyng Soware Dranage Analyss Module Deenon/Reenon Basns Owen Thornon BE (Mech), d Model Programmer owen.hornon@d.com 4 January 007 Revsed: 04 Aprl 007 9 February 008 (8Cp) Ths documen

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur Module 11 Desgn o Jonts or Specal Loadng Verson ME, IIT Kharagpur Lesson 1 Desgn o Eccentrcally Loaded Bolted/Rveted Jonts Verson ME, IIT Kharagpur Instructonal Objectves: At the end o ths lesson, the

More information

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points. Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You

More information

DIFFERENT VIEW ON PQ THEORY USED IN THE CONTROL ALGORITHM OF ACTIVE POWER FILTERS

DIFFERENT VIEW ON PQ THEORY USED IN THE CONTROL ALGORITHM OF ACTIVE POWER FILTERS Dfferen vew on PQ heory sed n he onrol lgorhm DIFFERENT VIEW ON PQ THEORY SED IN THE CONTROL ALGORITHM OF ACTIVE POWER FILTERS R. Pvlnn, M. Mrnell, B. Zgmnd nversy of Zln n Zln, Fly of Elerl Engneerng,

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

Trigonometry Revision Sheet Q5 of Paper 2

Trigonometry Revision Sheet Q5 of Paper 2 Trigonometry Revision Sheet Q of Pper The Bsis - The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Polynomials. Polynomials. Curriculum Ready ACMNA:

Polynomials. Polynomials. Curriculum Ready ACMNA: Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions II The Z Trnsfor Tocs o e covered. Inroducon. The Z rnsfor 3. Z rnsfors of eleenry funcons 4. Proeres nd Theory of rnsfor 5. The nverse rnsfor 6. Z rnsfor for solvng dfference equons II. Inroducon The

More information