6.5 Improper integrals

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "6.5 Improper integrals"

Transcription

1 Eerpt from "Clulus" 3 AoPS In IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y = f () long the intervl [, ]. By definition, these integrls n only e used to ompute res of ounded regions. In some situtions, however, we re interested in unounded regions these re regions tht etend towrds infinity in t lest one diretion. Yet, mny unounded regions still hve finite re. We strt with si emple of this phenomenon: Prolem 6.6: Wht is the re of the region ordered y the urve y =, the line =, nd the -is? Solution for Prolem 6.6: We sketh piture of this region t right. Notie tht this region is unounded: the region etends towrds + s grows lrge. Even though this region is unounded, we n ttempt to determine its re. We ertinly n ompute the re of the portion of the region to the left of = (for ny > ) s the definite integrl y d. As grows lrger, we epet tht the re under the urve on [, ] pprohes the re of the entire region under the urve on [, +). Speifilly, this re is y =! d. The integrl is esy to evlute: d = = Thus, when we tke the it, we get tht the re of the region is. d =!! = =. Note the prdo here: even though the region is unounded, it hs finite re. Prolem 6.6 suggests logil definition: Definition: integrl Let f e ontinuous funtion nd R suh tht (, ) Dom( f ). We define the improper f () d = f () d,! provided the it is defined. If the it is defined nd is not ±, we sy tht the improper integrl onverges. Otherwise, we sy tht the improper integrl diverges. There s n oviously similr definition for improper integrls in the other diretion: 7 Copyrighted Mteril

2 Eerpt from "Clulus" 3 AoPS In. CHAPTER 6. INFINITY Definition: integrl Let f e ontinuous funtion nd R suh tht (, ) Dom( f ). We define the improper f () d = f () d,! provided the it is defined. If the it is defined nd is not ±, we sy tht the improper integrl onverges. Otherwise, we sy tht the improper integrl diverges. Let s generlize Prolem 6.6: Prolem 6.7: Let r e rel numer. Compute r d. Solution for Prolem 6.7: hve: This equls By definition, we ompute the improper integrl y writing it. If r,, then we d =! r!! r. (r ) r. r If r >, then the term pprohes s pprohes. Thus, in this se, the improper integrl onverges r to r. If r <, then the term grows without ound s pprohes. Thus, the integrl diverges. We might lso r write d = if r <. r Our originl integrtion ws not vlid for r =, so we hve to do tht se seprtely:! d =! (log ) =! (log ). As goes towrds infinity, this grows without ound, so the integrl diverges. In summry: r d = 8 >< r if r >, >: diverges if r pple. The net prolem is nother ommon emple of n improper integrl: Prolem 6.8: Compute e d, where is rel numer. Solution for Prolem 6.8: We ompute, for, (we ll investigte = t the end):! e d =! (e ) =! (e ). 8 Copyrighted Mteril

3 Eerpt from "Clulus" 3 AoPS In IMPROPER INTEGRALS If is positive, then e =, so the integrl diverges. If is negtive, then e =, so the integrl equls!!. (Note this is positive numer when is negtive, so this nswer mkes sense.) Finlly, if =, then the integrl is R d, whih lerly diverges. Thus, the integrl diverges for nonnegtive eponents, nd onverges for negtive eponents. The result of Prolem 6.8 is typilly written s follows: if r >, then e r d = r. Prolem 6.9: Suppose f nd g re ontinuous funtions on [, ) nd f () pple g() for ll. () Show tht, if R f nd R g oth onverge, then Show tht if oth funtions re positive, nd R () Show tht if oth funtions re positive, nd R Solution for Prolem 6.9: () For ny, we hve (g f )() for ll [, ], thus Therefore, f pple g. g onverges, then R f onverges. f diverges, then R g diverges. (g f )() d. f () d pple g() d, nd sine its preserve non-strit inequlities, we onlude tht f () d = f () d pple g() d = g() d.!! Define funtion F() = f (t) dt. Note tht F is n inresing funtion (sine f () for ll ), nd tht R eists. Also, sine pple f () pple g() for ll, we hve f () d =! F(), if this it pple F() = f (t) dt pple g(t) dt pple g(t) dt. Thus F is inresing nd hs n upper ound (nmely, R g(t) dt, whih y ssumption onverges), so y the result of Prolem 6.5, the it F() = f (t) dt! eists, so the integrl onverges. 9 Copyrighted Mteril

4 Eerpt from "Clulus" 3 AoPS In. CHAPTER 6. INFINITY () This is just the ontrpositive sttement to prt, so there is nothing dditionl to prove. WARNING!! j We n only use the omprison tests in prts nd () of Prolem 6.9 if oth funtions re positive. As trivil emple, if f () = nd g() =, then for ny R, R g =, so R g onverges, ut R f diverges. Thus fr in this setion, we hve looked t improper integrls tht ompute res of regions tht re unounded in the -diretion. There is nother type of improper integrl tht ours when the region tht we re emining is unounded in the y-diretion, s in the following emple: Prolem 6.: Compute p d. Solution for Prolem 6.: Skething the grph will immeditely show the issue. We hve! + p =. So the re under y = p is potentilly infinite (nd in ft the funtion is not even defined t ). We n do essentilly the sme thing we did for improper integrls with it of integrtion of ±. We define y y = p p d =! + p d. Note the + sine we only re out the intervl (,], we only re out wht hppens to the right of. This integrl is now esy to ompute: p d = p = p. As! +, this pprohes. Hene p d =. One gin, seemingly infinite re turns out to e finite. We n generlize the definition from Prolem 6.: Definition: integrl Suppose f is funtion, ontinuous on (, ], suh tht f () = ±. We define the improper! + f () d = f () d,! + provided this it is defined. If the it is defined, we sy tht this improper integrl onverges, nd if it is undefined, we sy tht the improper integrl diverges. Of ourse, we n do the sme thing if the funtion hs it of ± t the end of [, ). (We will omit writing out the forml definition.) Copyrighted Mteril

5 Eerpt from "Clulus" 3 AoPS In IMPROPER INTEGRALS Sidenote: Note tht the ove definition is onsistent with our usul (non-improper) integrls. In prtiulr, if R f is defined, then y the Fundmentl Theorem of Clulus, the funtion g() = is di erentile, hene ontinuous, nd thus f (t) dt f (t) dt = g() = g() = f (t) dt.! +! + We know tht for regulr (not improper) integrls, we n rek them prt t ny point into two seprte integrls. Speifilly, if (, ), then f = f + f. This is lso how we evlute integrls tht re improper t oth ends, s in the following emple: Prolem 6.: Compute d for ll r > (or determine when it diverges). r Solution for Prolem 6.: The orret thing to do with n integrl tht is improper t oth ends is to split it somewhere in the middle. For emple, we n write r d = r d + r d. (We didn t hve to pik = s the point t whih to split them, ut it seems onvenient sine r is niely ehved t =.) We lredy know y Prolem 6.7 tht R d onverges if nd only if r >. The other integrl is r! d = d = = r!+ r!+ (r ) r r.!+ r If r >, then the frtion gets ritrrily lrge, so the it is infinite. Thus R d diverges for r >. r Hene our originl douly-improper integrl is never onvergent: the integrl on (, ] diverges for r >, nd the integrl on [, ) diverges for r pple. Importnt: If (, ) Dom( f ) nd f (t) dt is improper t oth ends of (, ), then for ny (, ). f (t) dt = f (t) dt + f (t) dt,! +! As noted in the solution to Prolem 6., it doesn t mtter t whih point we rek up the douly-improper integrl. Copyrighted Mteril

6 Eerpt from "Clulus" 3 AoPS In. CHAPTER 6. INFINITY Conept: We n rek n integrl prt s f = f + f t ny (, ) tht we hoose. Thus, hoose to e s onvenient s possile. We will leve it s n eerise to prove this. Also, it is not orret to try to tke shortut nd del with oth ends of doule-improper integrl t one. In prtiulr: WARNING!! j f () d is not the sme s f () d.! The orret wy to evlute n integrl over ll of R is to hoose R, nd then ompute f () d = f () d + f () d = f () d + f () d.!!+ We will leve it s n eerise to eplore this further. We lso hve to e it utious when deling with funtions with domins tht re not ll of R. Integrls of suh funtions might e improper ut not immeditely pper so. For emple: 3 Prolem 6.: Compute d. Solution for Prolem 6.: If you weren t pying lose ttention, you might do this: Bogus Solution: 3 d = 3 = 3 + = 6. We n t do this, euse the funtion is not defined t! To e little more preise, the funtion does not hve n ntiderivtive on the intervl [, 3], euse it is not defined t =, so we nnot pply the Fundmentl Theorem of Clulus. In order to evlute the integrl, we need to rek it up into sum of two improper integrls t the point t whih the funtion is undefined: 3 d = 3 d + d. As we sw in Prolem 6., oth of these diverge. Thus, the originl integrl itself diverges. d More generlly, when omputing something like, it might e tempting to sy is n odd funtion, so the integrl from to will nel out the integrl from to, nd thus the overll integrl is. This is lso the result tht nive lultion will give: Bogus Solution: d = log = log() log() =. Copyrighted Mteril

7 Eerpt from "Clulus" 3 AoPS In. REVIEW PROBLEMS But this is not orret! The only wy leglly to evlute this integrl is to rek it up into its improper prts. Neither prt onverges, so the integrl diverges. Eerises 6.5. Compute the following improper integrls: () 6.5. () 3 d ( ) Compute + d. Compute Compute + d. e d. (log ) d d = d + d. () e d (d) 4 d Show tht it doesn t mtter t whih point we rek up douly-improper integrl. Speifilly, show tht, for ny, d (, ), if R f nd R f onverge, then R d f nd R f lso onverge, nd d d f + f = f + f. d Hints: 3, ? () Show tht if f () d onverges, then f () d = f () d. Hints: 65! Show tht the onverse of prt () is not true; tht is, it is possile tht f () d diverges. Hints: 8, 5! f () d onverges ut tht Review Prolems 6.3 Compute the following: ()! log os! 3! () e 4 (Soure: Rie) 6.4 sin t tn t Suppose nd re nonzero rel numers. Find nd. Hints: 3 t! sin t t! tn t 6.5 Compute () e d 3 d () d Hints: Copyrighted Mteril

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let

More information

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals. MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k The Double Integrl De nition of the Integrl Iterted integrls re used primrily s tool for omputing double integrls, where double integrl is n integrl of f (; y) over region : In this setion, we de ne double

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that Mth 43 Section 6 Question : If f d nd f d, find f 4 d π c π- d e - Question 33: Choose the correct sttement given tht 7 f d 8 nd 7 f d3 7 c d f d3 f d f d f d e None of these Mth 43 Section 6 Are Under

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

Lesson 1: Quadratic Equations

Lesson 1: Quadratic Equations Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

7. Indefinite Integrals

7. Indefinite Integrals 7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 + Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Type 2: Improper Integrals with Infinite Discontinuities

Type 2: Improper Integrals with Infinite Discontinuities mth imroer integrls: tye 6 Tye : Imroer Integrls with Infinite Disontinuities A seond wy tht funtion n fil to be integrble in the ordinry sense is tht it my hve n infinite disontinuity (vertil symtote)

More information

The Riemann-Stieltjes Integral

The Riemann-Stieltjes Integral Chpter 6 The Riemnn-Stieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0

More information

5.2 Exponent Properties Involving Quotients

5.2 Exponent Properties Involving Quotients 5. Eponent Properties Involving Quotients Lerning Objectives Use the quotient of powers property. Use the power of quotient property. Simplify epressions involving quotient properties of eponents. Use

More information

6.1 Definition of the Riemann Integral

6.1 Definition of the Riemann Integral 6 The Riemnn Integrl 6. Deinition o the Riemnn Integrl Deinition 6.. Given n intervl [, b] with < b, prtition P o [, b] is inite set o points {x, x,..., x n } [, b], lled grid points, suh tht x =, x n

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Chapter 9 Definite Integrals

Chapter 9 Definite Integrals Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

CALCULUS STUDY MATERIAL. B.Sc. MATHEMATICS III SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

CALCULUS STUDY MATERIAL. B.Sc. MATHEMATICS III SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALCULUS STUDY MATERIAL BS MATHEMATICS III SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY PO MALAPPURAM, KERALA, INDIA - 67 65 5 UNIVERSITY OF CALICUT SCHOOL OF DISTANCE

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Topics Covered AP Calculus AB

Topics Covered AP Calculus AB Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

More information

Logarithms LOGARITHMS.

Logarithms LOGARITHMS. Logrithms LOGARITHMS www.mthletis.om.u Logrithms LOGARITHMS Logrithms re nother method to lulte nd work with eponents. Answer these questions, efore working through this unit. I used to think: In the

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

Section 7.1 Area of a Region Between Two Curves

Section 7.1 Area of a Region Between Two Curves Section 7.1 Are of Region Between Two Curves White Bord Chllenge The circle elow is inscried into squre: Clcultor 0 cm Wht is the shded re? 400 100 85.841cm White Bord Chllenge Find the re of the region

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Improper Integrls MATH 2, Clculus II J. Robert Buchnn Deprtment of Mthemtics Spring 28 Definite Integrls Theorem (Fundmentl Theorem of Clculus (Prt I)) If f is continuous on [, b] then b f (x) dx = [F(x)]

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

Evaluating Definite Integrals. There are a few properties that you should remember in order to assist you in evaluating definite integrals.

Evaluating Definite Integrals. There are a few properties that you should remember in order to assist you in evaluating definite integrals. Evluting Definite Integrls There re few properties tht you should rememer in order to ssist you in evluting definite integrls. f x dx= ; where k is ny rel constnt k f x dx= k f x dx ± = ± f x g x dx f

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd h : I C writing h = u + iv where u, v : I C, we n extend ll lulus 1 onepts

More information

Part I: Study the theorem statement.

Part I: Study the theorem statement. Nme 1 Nme 2 Nme 3 A STUDY OF PYTHAGORAS THEOREM Instrutions: Together in groups of 2 or 3, fill out the following worksheet. You my lift nswers from the reding, or nswer on your own. Turn in one pket for

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

Linear Inequalities. Work Sheet 1

Linear Inequalities. Work Sheet 1 Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges $ 15 per week plus $ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

More information

Applications of Definite Integral

Applications of Definite Integral Chpter 5 Applitions of Definite Integrl 5.1 Are Between Two Curves In this setion we use integrls to find res of regions tht lie between the grphs of two funtions. Consider the region tht lies between

More information

Trigonometry Revision Sheet Q5 of Paper 2

Trigonometry Revision Sheet Q5 of Paper 2 Trigonometry Revision Sheet Q of Pper The Bsis - The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Lecture Solution of a System of Linear Equation

Lecture Solution of a System of Linear Equation ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

Mathematics Number: Logarithms

Mathematics Number: Logarithms plce of mind F A C U L T Y O F E D U C A T I O N Deprtment of Curriculum nd Pedgogy Mthemtics Numer: Logrithms Science nd Mthemtics Eduction Reserch Group Supported y UBC Teching nd Lerning Enhncement

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Infinite Geometric Series

Infinite Geometric Series Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to

More information

Integration. antidifferentiation

Integration. antidifferentiation 9 Integrtion 9A Antidifferentition 9B Integrtion of e, sin ( ) nd os ( ) 9C Integrtion reognition 9D Approimting res enlosed funtions 9E The fundmentl theorem of integrl lulus 9F Signed res 9G Further

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information