5.5 The Substitution Rule


 Luke Pierce
 4 years ago
 Views:
Transcription
1 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n ntiderivtive is not esily recognizble, then we re in difficulty. So how, for instnce, do we find n integrl such s sin( ) d? If it cn be done, there re two possible pproches: Guess nd differentite Mke guess, differentitte it to check, nd modify your guess until you get it right! Use rule Reclling differentil clculus, we might try to formulte some helpful rules bsed on the chin nd product rules. The product rule will be resurrected lter (s integrtion by prts). This section, on the substitution rule, eplins how the chin rule my be pplied to integrl clculus. Returning to our emple, suppose tht we re unble to mke sensible guess. The net pproch is to try to subtitute wy the ugliest epression. In this cse, sin( ) is ugly so we define u =. The epression sin u is certinly less dunting thn sin( ). Wht s more, we know how to ntidifferentite sin u. But how do we del with the in the originl integrl? And wht bout the differentil d? These problems re delt with simultneously by differentiting our substitution du d = = d = du We cn now replce ll the pieces in the originl integrl, integrte nd substitute bck t the end: sin( ) d = sin u du = cos u + c = cos( ) + c This process is merely the chin rule written in different wy. Indeed we hve the following Theorem: Theorem (Substitution Rule). If u = g() is differentible function whose rnge is n intervl I, nd f is continuous on I, then f ( g() ) g () d = f (u) du Proof. Let u = g(), nd let F be n ntiderivtive of f on the intervl I, so tht F (u) = f (u). The chin rule sys tht d d F(g()) = F ( g() ) g () = f ( g() ) g () Any epression for derivtive my instntly be rephrsed using indefinite integrls. Thus, s required. f ( g() ) g () d = F(g()) = F(u) = f (u) du
2 You should eplicitly write out your substitutions nd their derivtives until you re comfortble with the method (nd lwys when the clcultion is long!). Obviously, there is no need to use substitution if you re cpble of mking sensible guess. The first emple tht follows is in the mster tble of ntiderivtives so you should be ble to stte the nswer without resorting to substitution.. To compute cos d we let u =. Then du d = = d = du. Therefore cos d = cos u du = sin u + c = sin + c. In the integrl d 4, the ugliest epression is in the squre root. Therefore we let u = 4, from which du = 4 d. It follows tht d 4 = du 4 u = 4 u / du = u/ + c = 4 + c Mking the wrong susbtitution It is very esy to mke n unhelpful substitution. With some prctice, you will quickly recognize when substitution is going wrong, nd try nother! For emple, suppose you hd forgotten tht d = sin + c nd you wnted to compute the integrl. Perhps your first ttempt is s follows: Try the substitution u =. Then = u, nd du d = = d = du = u du. Applying the substituion rule, we obtin d = u u du = u u du This looks even worse thn the intergl we strted with! Insted, different substitution previls: We hope to remove the squre root in the integrnd by using the identity sin θ = cos θ. We therefore try the substitution = sin θ. Then d dθ = cos θ = d = cos θ dθ. Applying the substituion rule, we obtin d = cos θ dθ = sin θ cos θ cos θ dθ = dθ = θ + c = sin + c s epected. Note tht the squreroot gives + cos θ. This is since the rnge of θ = sin is the intervl π < θ < π, on which cos θ >. Substitutions cn use ny letter, not just u!
3 Substitutions in Definite Integrls The substitution rule cn be pplied directly to definite integrls. The importnt point is tht you must chnge the limits! Theorem. If g is continuous on [, b] nd f is continuous on the rnge of u = g(), then b f ( g() ) g () d = g(b) g() f (u) du Emple To evlute 4 + d we substitute u = +. Then du = d, u() =, u(4) = 9 It follows tht d = u du (substitute nd chnge limits) = 9 u/ (find ntiderivtive) = ( 9 / /) = (evlute nd simplify) Notice tht once we substitute nd chnge the limits, we never see gin. An lterntive to chnging the limits is to first compute the indefinite integrl then substitute bck. For emple: Therefore + d = 4 + d = ( + )/ 4 u du = u/ + c = ( + )/ + c = ( 9 / /) = Both of these methods re cceptble. Wht is incorrect is to mi them. In wht follows, the errors re in red d = u du (substitute without chnging limits) = 9 u/ (find ntiderivtive) = ( + 9 )/ (substitute bck) = ( 9 / /) = (evlute nd simplify) Since you obtined the correct solution (), you d likely ssume you did the clcultion correctly. Don t mke this mistke!
4 Odd nd Even Functions When functions hve symmetry, we cn often use the symmetry to compute integrls very quickly. Functions which re odd or even re prticulr strightforwrd, if integrted over symmetric intervl [, ]. Theorem. Suppose tht f is continuous on [, ].. If f is even ( f ( ) = f ()) then. If f is odd ( f ( ) = f ()) then y f () d = f () d = f () d y An Even Function An Odd Function Proof. Let f be odd nd substitute u =. Then du = d, u() = nd u() =. Therefore f () d = = = = f ( u)( du) = f ( u) du f (u) du f () d f ( u)( du) Therefore f () d = = f () d =. The proof for f even is similr: substitute u = for the integrl. ( ) is even, hence ( ) d = (swp limits) (cncel negtive signs) (since f is odd) (since u is dummy vrible) f () d. ( ( ) d = 4 + d = 5 ) + = π π sin( 4 + sin ) d = π/ π/ 4 sin + cos d = π/ cos d = sin π/ = 4
5 Suggested Problems. Evlute the following integrls: () s cos(ln s) ds. (b) cos( ) + ( ) d.. () Evlute the integrl t sin(t ) cos 8 (t ) dt. (b) Use the chnge of vribles u = to evlute the integrl. () Evlute the integrl d + + (strt with u = +... ). (b) Let c be nonzero constnt. For ny integrble function f, prove tht b f (c) d = c bc c f (u) du. d. 5
6 Advnced: misusing the substitution rule Suppose we wnted to evlute ( ) d = 4 du u ( ) d. We substitute u = to get du = (6 ) d: = 4 u = + = There seems to be nothing wrong with this. Now try the sme thing with different limits: ( ) d = 4 du u = u = + 4 = This second clcultion is incorrect: why? One understnd this immeditely by thinking bout the grph of the integrnd ( ). ( ) 5 5 The integrnd is discontinuous (indeed does not eist!) t both = nd =, both of which re in the intervl of integrtion [, ]. We cnnot pply the fundmentl theorem of clculus to evlute the integrl. The re under the curve looks confusingly like, which doesn t mke sense. Indeed ( ) d = DNE. But why then did the subtitution rule trnsform noneistnt integrl into something tht we cn evlute correctly? u is certinly continuous on the intervl [, 4] so everything fter the first equlity is correct. The nswer comes from creful reding of the Substitution Rule Theorem. We wish to compute b f ( g() ) g () d with [, b] = [, ], g() = nd f (u) = u. Given the domin [, ], the rnge of u = g() is the intervl [, 4]. f is not continuous on this intervl, so the hypotheses of the substitution rule re not stisfied. 6
The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationn f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1
The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the
More informationMATH , Calculus 2, Fall 2018
MATH 362, 363 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly
More informationAntiderivatives/Indefinite Integrals of Basic Functions
Antiderivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second
More informationProperties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums  1 Riemnn
More informationINTRODUCTION TO INTEGRATION
INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide
More informationMA 124 January 18, Derivatives are. Integrals are.
MA 124 Jnury 18, 2018 Prof PB s oneminute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More informationMath 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED
Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type
More informationUnit #9 : Definite Integral Properties; Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationHow can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?
Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those
More informationF (x) dx = F (x)+c = u + C = du,
35. The Substitution Rule An indefinite integrl of the derivtive F (x) is the function F (x) itself. Let u = F (x), where u is new vrible defined s differentible function of x. Consider the differentil
More informationMATH1013 Tutorial 12. Indefinite Integrals
MATH Tutoril Indefinite Integrls The indefinite integrl f() d is to look for fmily of functions F () + C, where C is n rbitrry constnt, with the sme derivtive f(). Tble of Indefinite Integrls cf() d c
More informationand that at t = 0 the object is at position 5. Find the position of the object at t = 2.
7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we
More informationBefore we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!
Nme: Algebr II Honors PreChpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More informationIndefinite Integral. Chapter Integration  reverse of differentiation
Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the
More informationx = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b
CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick
More informationChapter 6 Techniques of Integration
MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln
More informationChapter 8.2: The Integral
Chpter 8.: The Integrl You cn think of Clculus s doulewide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in
More informationImproper Integrals. Type I Improper Integrals How do we evaluate an integral such as
Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph
More informationSection 4: Integration ECO4112F 2011
Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic
More informationSYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus
SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties
More informationThe Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.
Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct
More informationACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019
ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil
More informationReversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b
Mth 32 Substitution Method Stewrt 4.5 Reversing the Chin Rule. As we hve seen from the Second Fundmentl Theorem ( 4.3), the esiest wy to evlute n integrl b f(x) dx is to find n ntiderivtive, the indefinite
More informationImproper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.
Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:
More information5.7 Improper Integrals
458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the
More informationImproper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
More informationChapter 8: Methods of Integration
Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln
More informationThe practical version
Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht
More information7. Indefinite Integrals
7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find
More information7.2 The Definite Integral
7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where
More informationMath Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove xxis) ( bove f under xxis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
More information1 Techniques of Integration
November 8, 8 MAT86 Week Justin Ko Techniques of Integrtion. Integrtion By Substitution (Chnge of Vribles) We cn think of integrtion by substitution s the counterprt of the chin rule for differentition.
More informationf(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral
Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one
More informationapproaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More informationChapters 4 & 5 Integrals & Applications
Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO  Ares Under Functions............................................ 3.2 VIDEO  Applictions
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationChapter 0. What is the Lebesgue integral about?
Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous
More informationMAT137 Calculus! Lecture 28
officil wesite http://uoft.me/mat137 MAT137 Clculus! Lecture 28 Tody: Antiderivtives Fundmentl Theorem of Clculus Net: More FTC (review v. 8.58.7) 5.7 Sustitution (v. 9.19.4) Properties of the Definite
More informationOverview of Calculus I
Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,
More informationMath 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π5 d. 0 e. 5. Question 33: Choose the correct statement given that
Mth 43 Section 6 Question : If f d nd f d, find f 4 d π c π d e  Question 33: Choose the correct sttement given tht 7 f d 8 nd 7 f d3 7 c d f d3 f d f d f d e None of these Mth 43 Section 6 Are Under
More informationMath 113 Exam 2 Practice
Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number
More informationReview of Calculus, cont d
Jim Lmbers MAT 460 Fll Semester 200910 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some
More information1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
More informationMain topics for the Second Midterm
Min topics for the Second Midterm The Midterm will cover Sections 5.45.9, Sections 6.16.3, nd Sections 7.17.7 (essentilly ll of the mteril covered in clss from the First Midterm). Be sure to know the
More informationSTEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
More informationSection 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationObjectives. Materials
Techer Notes Activity 17 Fundmentl Theorem of Clculus Objectives Explore the connections between n ccumultion function, one defined by definite integrl, nd the integrnd Discover tht the derivtive of the
More informationA REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
More informationThe Fundamental Theorem of Calculus
Chpter The Fundmentl Theorem of Clculus In this chpter we will formulte one of the most importnt results of clculus, the Fundmentl Theorem. This result will link together the notions of n integrl nd derivtive.
More informationMain topics for the First Midterm
Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 23, Sections 4.14.8, nd Sections 5.15.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the
More informationIntegrals  Motivation
Integrls  Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is nonliner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but
More informationMath Lecture 23
Mth 8  Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of
More informationMATH 144: Business Calculus Final Review
MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives
More informationMath 113 Exam 1Review
Mth 113 Exm 1Review September 26, 2016 Exm 1 covers 6.17.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between
More information5.3 The Fundamental Theorem of Calculus
CHAPTER 5. THE DEFINITE INTEGRAL 35 5.3 The Funmentl Theorem of Clculus Emple. Let f(t) t +. () Fin the re of the region below f(t), bove the tis, n between t n t. (You my wnt to look up the re formul
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationFundamental Theorem of Calculus
Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under
More informationUnit 5. Integration techniques
18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd
More informationMath& 152 Section Integration by Parts
Mth& 5 Section 7.  Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible
More informationImproper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Improper Integrls MATH 2, Clculus II J. Robert Buchnn Deprtment of Mthemtics Spring 28 Definite Integrls Theorem (Fundmentl Theorem of Clculus (Prt I)) If f is continuous on [, b] then b f (x) dx = [F(x)]
More informationTopics Covered AP Calculus AB
Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.
More informationThe Riemann Integral
Deprtment of Mthemtics King Sud University 20172018 Tble of contents 1 Antiderivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Antiderivtive Function Definition Let f : I R be function
More information4.4 Areas, Integrals and Antiderivatives
. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order
More informationP 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)
1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this
More informationChapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...
Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting
More information2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).
AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following
More informationIf u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du
Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find ntiderivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible
More informationDefinite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
More information11 An introduction to Riemann Integration
11 An introduction to Riemnn Integrtion The PROOFS of the stndrd lemms nd theorems concerning the Riemnn Integrl re NEB, nd you will not be sked to reproduce proofs of these in full in the exmintion in
More information13.4. Integration by Parts. Introduction. Prerequisites. Learning Outcomes
Integrtion by Prts 13.4 Introduction Integrtion by Prts is technique for integrting products of functions. In this Section you will lern to recognise when it is pproprite to use the technique nd hve the
More informationDefinite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function
More informationNUMERICAL INTEGRATION
NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls
More informationDefinition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim
Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)
More informationMAA 4212 Improper Integrals
Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly welldefined, is too restrictive for mny purposes; there re functions which
More informationLogarithmic Functions
Logrithmic Functions Definition: Let > 0,. Then log is the number to which you rise to get. Logrithms re in essence eponents. Their domins re powers of the bse nd their rnges re the eponents needed to
More informationContinuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom
Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationReview on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.
Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5.  5.3) Remrks on the course. Slide Review: Sec. 5.5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description
More informationNow, given the derivative, can we find the function back? Can we antidifferenitate it?
Fundmentl Theorem of Clculus. Prt I Connection between integrtion nd differentition. Tody we will discuss reltionship between two mjor concepts of Clculus: integrtion nd differentition. We will show tht
More informationUsing integration tables
Using integrtion tbles Integrtion tbles re inclue in most mth tetbooks, n vilble on the Internet. Using them is nother wy to evlute integrls. Sometimes the use is strightforwr; sometimes it tkes severl
More informationp(t) dt + i 1 re it ireit dt =
Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)
More informationAQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions
Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic
More informationInterpreting Integrals and the Fundamental Theorem
Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of
More informationHOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016
HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M
More informationBernoulli Numbers Jeff Morton
Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More informationODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =
More information1 1D heat and wave equations on a finite interval
1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion
More informationLesson 1: Quadratic Equations
Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More information5.2 Volumes: Disks and Washers
4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of crosssection or slice. In this section, we restrict
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More information