Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as:

Size: px
Start display at page:

Download "Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as:"

Transcription

1 Sbl Anlss for VAR ssems For se of n me seres vrbles (,,, n ', VAR model of order p (VAR(p n be wren s: ( A + A + + Ap p + u where he A s re (nxn oeffen mres nd u ( u, u,, un ' s n unobservble d zero men error erm I Sbl of he Sonr VAR ssem: (Glser, Mheml Mehods for Eonomss The sbl of VAR n be exmned b lulng he roos of: ( I A L A L A( L n The hrers polnoml s defned s: Π( ( I A z A z z n The roos of Π (z wll gve he neessr nformon bou he sonr or nonsonr of he proess The neessr nd suffen ondon for sbl s h ll hrers roos le ousde he un rle Then Π s of full rnk nd ll vrbles re sonr In hs seon, we ssume hs s he se Ler we llow for less hn full rnk mres (Johnsen mehodolog Clulon of he egenvlues nd egenveors Gven n (nxn squre mrx A, we re lookng for slr nd veor suh h A hen s n egenvlues (or hrers vlue or len roo of A Then here wll be up o n egenvlues, whh wll gve up o n lnerl ndependen ssoed egenveors suh h or A I [ A I] For here o be nonrvl soluon, he mrx [ A I ] mus be sngulr Then mus be suh h A I Ex: A

2 Expndng he deermnn of hs mrx gves he hrers equon: 7,, 7 ( ( + Noe: n egenveor s onl deermned up o slr mulple: If s n egenveor, hen µ s lso n egenveor where µ s slr: ( ( ( ( μ μ μ μ µ µ µ A A The ssoed egenveors re hose h ssf he equons for he hree dsn vlues of he egenvlues The egenveor ssoed wh, whh ssfes he equon for hs mrx s found s Noe h onl olumns nd re lnerl ndependen (rnk so we n hoose he frs elemen of he mrx rbrrl Se nd he oher wo elemens re Smlrl, he egenveor ssoed wh 7, whh ssfes he equon for hs mrx s found s Noe h rk(a gn beuse hs me he ls wo rows re lnerl dependen Thus onl he x mrx on he LHS s nonsngulr We n delee he ls row nd move mulpled b he ls olumn o he RHS Now he frs wo elemens wll be Remnder: For hrers equon of he pe + + b b b β α ± ±, Rel roos: β α ±, Imgnr roos: β α ±, where Modulus β α +

3 expressed n erms of he ls elemen We n fx rbrrl nd solve for he wo ohers: ssume Then (9,, ' s n egenveor orrespondng o he egenvlue 7 We n fnd smlrl he ls egenveor o be (7,,' Jordn Cnonl Form: Form new mrx C whose olumns re he hree egenveors 9 7 C You n lule o fnd h he mrx produ Q AQ Λ C AC 7 Thus, for n squre mrx A, here s nonsngulr mrx C suh h ( C AC s dgonl wh he egenvlues on he dgonl ( The egenveors orrespondng o dsn egenvlues of smmer mrx re orhogonl (lnerl ndependen II Sbl Condons for Sonr nd Nonsonr VAR Ssems (Johnson nd DNrdo, Ch 9+Appdx To dsuss hese ondons we sr wh smple models nd generlze We wll see: VAR( wh vrbles: VAR( wh k vrbles (ex: VAR( wh vrbles VAR(p wh k vrbles VAR( wh wo vrbles (p, k ( b +, +, + ε ( b or: ε ( b + A + ε, whh n be wren wh he lg operor ( ( I AL b + ε Eh vrble s expressed s lner ombnon of self nd ll oher vrbles (plus nereps, dummes, me rends The dnms of he ssem wll depend on he properes of he A mrx

4 Ω s The error erm s veor whe nose proess wh E( ε nd E( ε ε ' s s where he ovrne mrx Ω s ssumed o be posve defne he errors re serll unorreled bu n be onemporneousl orreled Soluon o : ( Homogenous equon: Om he error erm b + A smples soluon: Then, (5 Π b f Π s nonsngulr ( Π I A As soluon r d Subsung n he homogenous (rvl soluon equon (5: ( I A d ---egenvlues The nonrvl soluon requres he deermnn o be zero: I A Ge he egenvlues ( ' s ( Subsue he egenvlues no he homogenous ssem, o ge he orrespondng egenveors ( C' s ( Afer lulng he nonhomogenous soluon nd ddng o he homogenous equon, we obn he omplee soluon (n mrx form: (6 + + (LR vlue s rses f he wo egenvlues hve he modulus< We n rewre ( I AL b n ( s polnoml o see he sbl ondons n erms of he egenvlues: B( L b where B(LI-AL, B L ( L( ( L The sbl ondon: ( Modulus s < Π nonsngulr, he deermnn no, he ssem s sonr In (6 onverges o ( Modulus > Π nonsngulr, bu he ssem s explosve, no onvergene Ths s beuse one or more of he ' s grows whou bound s nreses, so does from (6 No pl proess observed n he mro/fnne seres, herefore we do no onsder hs se ( Modulus un roo, Π s sngulr, he deermnn s s nonsonr, we need o look no he VECM spefon A lo of he mro/fnne models fll no hs egor (v Modulus I( vrbles, VAR s I( In generl A s no smmer Look for onegrng veors

5 Relon beween VAR vrbles nd egenvlues Defne he egenvlues nd he orrespondng egenveors of he mrx A s: Λ nd C If he egenvlues re dsn hen he egenveors re lnerl ndependen, nd C s nonsngulr C AC Λ nd A CΛC Theorem: ( for n squre mrx A, here s nonsngulr mrx C suh h C AC s dgonl wh he egenvlues on he dgonl ( The egenveors orrespondng o dsn egenvlues of smmer mrx re orhogonl (lnerl ndependen Defne new veor of vrbles w suh h Cw or w C eh s lner ombnon of w s (or eh w s lner ombnon of s Mulpl ( b + + ε b C : C C A b + AC + C ε w b * +Λw + e, b* C b, Λ C AC, e C ε or: (7 w b * + w, + e w b * + w + e, ( < for, Boh egenvlues hve modulus < Eh w s herefore I(, nd sne s re lner ombnons of w s, eh s I( You n herefore ppl he sndrd nferene proedures nd esme eh equon seprel As we sw bove, Π I A s nonsngulr, s full rnk ( here, nd unque s equlbrum exss: ( I A b Π b The vlues of re suh h n shok de ou qukl nd devons from equlbrum re rnsor ( > for or One of he egenvlues hs modulus > Sne eh s lner ombnon of boh w s, s unbounded nd he proess s explosve ( nd < Now w s rndom wlk wh drf, or I(, w s I( Eh s I( sne eh s lner ombnon of boh w s, herefore VAR s nonsonr Is here lner ombnon of nd h removes he sohs rend nd mkes I(, e boh vrbles re onegred?

6 Consder gn w he C * *,, + + * *,, where * represen he oeffens n C mrx We know h w s I(, hus [ * *] s onegrng veor Look for Relon beween he CI veor * *] nd he Π mrx suh h * * [ ] Π [] [ Reprmeerze equon ( o gve: ( b Π + ε where Π I A The egenvlues of Π re he omplemens of he egenvlues of A: µ Sne he egenvlues of Π re nd Thus, s sngulr mrx wh rnk Le us deompose Π Sne Π I A nd A CΛC, we n wre Π I C AC ( CI CΛ C C( I Λ C Thus: (9 Π C C * * * * ( ( [ * *] αβ ' So Π, whh hs rnk, s forzed no he produ of row veor β nd olumn veor α, lled n ouer produ: The row veor β he onegrng veor The olumn veor α he lodng mrx he weghs wh whh he CI veor eners no eh equon of he VAR Noe: ompre (9 o he se where Π s full rnk wh : Π C C sd o be of redued rnk ( ( ( * * * * ( You n see wh αβ ' s Combnng ( nd (9 we ge he veor error orreon model of he VAR: ( b b ( ( ( ( * *,, + + * *,, + ε + ε b b ( w ( w,, + ε + ε All vrbles here re I(: s n frs dfferenes nd w s

7 The w (EC erm mesures he exen o whh s deve from her equlbrum LR vlues Alhough ll he vrbles re I(, he sndrd nferene proedures re no vld (smlr o he unvre se where n order o es wheher seres s I(, we hve o use n ADF es nd no he sss on he AR oeffen --See exmple below (v Repeed unr egenvlues: We n no longer hve dgonl egenvlue mrx s before Bu s possble o fnd nonsngulr mrx P suh h P AP J nd A PJP where J (he Jordn mrx The problem wh hs se s h lhough Π s sll rnk, he rnsformon of s no w s leds o I( vrbles, he onegron veor gves lner ombnon of I( vrbles nd s hus I( nd no I( Thus s CI(,, he vrbles n he VAR re ll I( bu he nferene proedures re nonsndrd Exmple of se wh nd < Fnd he mres α nd β from VAR( wh k: (,, + e, ( e,,, Reprmerzng he VAR no VECM gves us: + e,,, 6, 6, + e, n mrx form: e ( e or: Y ΠY + u Bu we nno nfer he lodng mrx nd he onegrng mrx seprel from hs To fnd α nd β seprel, we need o lule he egenveor mrx: Ge he egenvlues from he soluon o A I A I Egenveors orrespondng o :, 6 6

8 6 6 So se [ ]' 6 here s lner dependen Egenvlues orrespondng o 6 6 here s lner dependen So se 6 [ ]' The egenveor mrx nd s nverse re: 5 5 C C 5 5 Now we n wre he VAR n VECM b deomposng Π : C C + u Y ΠY + u Y +,, [ 5 5] u Ths s he sme expresson s n ( bu now we hve boh he lodng nd he onegrng mres: α nd β ' [ 5 5] VAR( wh k vrbles: ( b + A + A + ε Noe: ou n lso dd n deermns erms suh s rend, breks b spefng he model s: A + A + ΦD + ε Se he error erm nd exmne he properes of he ssem We sll hve he LR soluon (or he prulr soluon s n (5 Π b bu now Π I A A exss f Π s nonzero To see hs, look he egenvlues We gn r he sme soluon for he homogenous equon nd subsue n o ge he hrers equon

9 I A A The number of roos pk where porder of he VAR nd k#vrbles Here we wll hve k roos If ll egenvlues hve modulus< hen Π s non sngulr nd he soluon k + wll onverge o s grows The nlss wr he modulus of he roos (<,, > s he sme s n he VAR( se If he proess s sonr hen we n nver he VAR model nd express s funon of presen nd ps shoks, nd he exogenous (deermns omponensimpulse Responses: Ex: Clule he roos of -dmensonl VAR(: np nd fnd he effe of shok on dependen vrble: (Juselus Ch The hrers funon of Π ( z I A z A z where z s,,,, Π( z I z z,,,, I z z z z,,,,,z,,z,z z ( (,, z z z,,z ( (,, z z,, z z Therefore Π ( z (,z,z (,z,z (,z +,z (,z +,z Regroupng smlr erms: Π ( z z z z z ( z( z ( z ( z The deermnn s h order polnoml n z gvng hrers roos: z / ; z / ; z / ; z / Effes of shok (or sruurl hnge dumm on dependen vrble: If Π s nverble (ll roos n he un rle, we n wre Π ε We n hen lule he effe of shok on :

10 Π ( L ε j Π( z Π ( L ε j for, T ( z( z( z ( z We re ssumng h ll roos hve modulus less hn The hrers roos gve nformon bou he dnm behvor of he proess To see how he shok s propged, expnd he ls omponen: ( ε ( + L + L ε j + j You wll hve o do he sme hng wh eh roo Thus, eh shok wll ffe urren nd fuure vlues of The perssene of he shok depends on he mgnude of he roos The lrger he re he more perssen wll be he shoks -If he roos re rel nd <, he shok wll exponenll de ou -If one or more roo s mgnr hen shok wll be ll bu exponenll delnng -If one or more roos les on he un rle, he shok wll be permnen nd nd wll show nonsonr behvor VAR s no nverble, hen we need o look no VECM We n lso lule he roos b reformulng he VAR(p no he ompnon mrx VAR( form nd solve for he wo egenvlues: Alernve pproh: ompnon mrx A VAR(p n be rnsformed no VAR( Consder he equon (6 gn We n rewre s: + u A + A In mrx form: A A I p u + Clule he egenvlues from he oeffen mrx: I A A A A I A A A I I I ( ( Now we ge he roos drel nsed of he z s, whh were he nverse of he roos, obned b solvng he hrers polnoml Johnsen nd Juselus refer o he s s egenvlues roos nd o z s hrers roos

11 In he se of he ompnon mrx, here re wo roos If he roos o he hrers polnoml re ousde he un rle, hen he egenvlues of he ompnon mrx re nsde he un rle nd he ssem s sble To rep: -The soluon o I za gves he sonr roos (hrers roos ousde he un rle -The soluon o I A gves he sonr roos (egenvlues nsde he un rle -If he roos of Π (z re ll ousde he un rle or he egenvlues of he ompnon mrx re nsde he un rle, he proess s sonr -If one or more of he roos of Π (z or hose of he ompnon mrx re on he un rle hen he proess s nonsonr -If one or more roos of Π (z s nsde he un rle or he egenvlues of he ompnon mrx re ousde he un rle, he proess s explosve

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1) Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

More information

BLOWUPS IN GAUGE AND CONSTRAINT MODES. Bernd Reimann, AEI in collaboration with M. Alcubierre, ICN (Mexico)

BLOWUPS IN GAUGE AND CONSTRAINT MODES. Bernd Reimann, AEI in collaboration with M. Alcubierre, ICN (Mexico) BLOWUPS IN GAUGE AND CONSTRAINT MODES Bernd Remnn, AEI n ollboron M. Aluberre, ICN (Mexo) Jen, Jnury 30, 006 1 Tops Pologes ( soks nd bloups ) n sysems of PDEs Te soure rer for vodng bloups Evoluon Sysem:

More information

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION MACROECONOMIC THEORY T. J. KEHOE ECON 85 FALL 7 ANSWERS TO MIDTERM EXAMINATION. (a) Wh an Arrow-Debreu markes sruure fuures markes for goods are open n perod. Consumers rade fuures onras among hemselves.

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2 COMPUTE SCIENCE 49A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PATS, PAT.. a Dene he erm ll-ondoned problem. b Gve an eample o a polynomal ha has ll-ondoned zeros.. Consder evaluaon o anh, where e e anh. e e

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

Direct Current Circuits

Direct Current Circuits Eler urren (hrges n Moon) Eler urren () The ne moun of hrge h psses hrough onduor per un me ny pon. urren s defned s: Dre urren rus = dq d Eler urren s mesured n oulom s per seond or mperes. ( = /s) n

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions II The Z Trnsfor Tocs o e covered. Inroducon. The Z rnsfor 3. Z rnsfors of eleenry funcons 4. Proeres nd Theory of rnsfor 5. The nverse rnsfor 6. Z rnsfor for solvng dfference equons II. Inroducon The

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681 Revew: Trnsforons Trnsforons Modelng rnsforons buld cople odels b posonng (rnsforng sple coponens relve o ech oher ewng rnsforons plcng vrul cer n he world rnsforon fro world coordnes o cer coordnes Perspecve

More information

Lecture Notes 4: Consumption 1

Lecture Notes 4: Consumption 1 Leure Noes 4: Consumpon Zhwe Xu (xuzhwe@sju.edu.n) hs noe dsusses households onsumpon hoe. In he nex leure, we wll dsuss rm s nvesmen deson. I s safe o say ha any propagaon mehansm of maroeonom model s

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Electromagnetic waves in vacuum.

Electromagnetic waves in vacuum. leromagne waves n vauum. The dsovery of dsplaemen urrens enals a peular lass of soluons of Maxwell equaons: ravellng waves of eler and magne felds n vauum. In he absene of urrens and harges, he equaons

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand he Seond Inernonl Symposum on Sohs Models n Relbly Engneerng Lfe Sene nd Operons Mngemen Obnng he Opml Order unes hrough Asympo Dsrbuons of he Sokou Duron nd Demnd Ann V Kev Nonl Reserh omsk Se Unversy

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Problem Set 3 EC2450A. Fall ) Write the maximization problem of the individual under this tax system and derive the first-order conditions.

Problem Set 3 EC2450A. Fall ) Write the maximization problem of the individual under this tax system and derive the first-order conditions. Problem Se 3 EC450A Fall 06 Problem There are wo ypes of ndvduals, =, wh dfferen ables w. Le be ype s onsumpon, l be hs hours worked and nome y = w l. Uly s nreasng n onsumpon and dereasng n hours worked.

More information

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files)

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files) . Iroduco Probblsc oe-moh forecs gudce s mde b 50 esemble members mproved b Model Oupu scs (MO). scl equo s mde b usg hdcs d d observo d. We selec some prmeers for modfg forecs o use mulple regresso formul.

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

rank Additionally system of equation only independent atfect Gawp (A) possible ( Alb ) easily process form rang A. Proposition with Definition

rank Additionally system of equation only independent atfect Gawp (A) possible ( Alb ) easily process form rang A. Proposition with Definition Defiion nexivnol numer ler dependen rows mrix sid row Gwp elimion mehod does no fec h numer end process i possile esily red rng fc for mrix form der zz rn rnk wih m dcussion i holds rr o Proposiion ler

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

PHYS 705: Classical Mechanics. Canonical Transformation

PHYS 705: Classical Mechanics. Canonical Transformation PHYS 705: Classcal Mechancs Canoncal Transformaon Canoncal Varables and Hamlonan Formalsm As we have seen, n he Hamlonan Formulaon of Mechancs,, are ndeenden varables n hase sace on eual foong The Hamlon

More information

Calculating Exact Transitive Closure for a Normalized Affine Integer Tuple Relation

Calculating Exact Transitive Closure for a Normalized Affine Integer Tuple Relation Clulg E Trsve Closure for Normlzed Affe Ieger Tuple elo W Bele*, T Klme*, KTrfuov** *Fuly of Compuer See, Tehl Uversy of Szze, lme@wpspl, bele@wpspl ** INIA Sly d Prs-Sud Uversy, ordrfuov@rfr Absr: A pproh

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

HERMITE SERIES SOLUTIONS OF LINEAR FREDHOLM INTEGRAL EQUATIONS

HERMITE SERIES SOLUTIONS OF LINEAR FREDHOLM INTEGRAL EQUATIONS Mhemcl nd Compuonl Applcons, Vol 6, o, pp 97-56, Assocon fo Scenfc Resech ERMITE SERIES SOLUTIOS OF LIEAR FREDOLM ITEGRAL EQUATIOS Slh Ylçınbş nd Müge Angül Depmen of Mhemcs, Fcul of Scence nd As, Cell

More information

Jordan Journal of Physics

Jordan Journal of Physics Volume, Number, 00. pp. 47-54 RTICLE Jordn Journl of Physcs Frconl Cnoncl Qunzon of he Free Elecromgnec Lgrngn ensy E. K. Jrd, R. S. w b nd J. M. Khlfeh eprmen of Physcs, Unversy of Jordn, 94 mmn, Jordn.

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25 Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management P age NPTEL Proec Economerc Modellng Vnod Gua School of Managemen Module23: Granger Causaly Tes Lecure35: Granger Causaly Tes Rudra P. Pradhan Vnod Gua School of Managemen Indan Insue of Technology Kharagur,

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE - 0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Testing a new idea to solve the P = NP problem with mathematical induction

Testing a new idea to solve the P = NP problem with mathematical induction Tesng a new dea o solve he P = NP problem wh mahemacal nducon Bacground P and NP are wo classes (ses) of languages n Compuer Scence An open problem s wheher P = NP Ths paper ess a new dea o compare he

More information

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations. Soluons o Ordnary Derenal Equaons An ordnary derenal equaon has only one ndependen varable. A sysem o ordnary derenal equaons consss o several derenal equaons each wh he same ndependen varable. An eample

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Multivariate Time Series Analysis

Multivariate Time Series Analysis Mulvre me Sere Anl Le { : } be Mulvre me ere. Denon: () = men vlue uncon o { : } = E[ ] or. (,) = Lgged covrnce mr o { : } = E{[ - ()][ - ()]'} or, Denon: e me ere { : } onr e jon drbuon o,,, e me e jon

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

3 Motion with constant acceleration: Linear and projectile motion

3 Motion with constant acceleration: Linear and projectile motion 3 Moion wih consn ccelerion: Liner nd projecile moion cons, In he precedin Lecure we he considered moion wih consn ccelerion lon he is: Noe h,, cn be posiie nd neie h leds o rie of behiors. Clerl similr

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Algebra Of Matrices & Determinants

Algebra Of Matrices & Determinants lgebr Of Mtrices & Determinnts Importnt erms Definitions & Formule 0 Mtrix - bsic introduction: mtrix hving m rows nd n columns is clled mtrix of order m n (red s m b n mtrix) nd mtrix of order lso in

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Methods of Improving Constitutive Equations

Methods of Improving Constitutive Equations Mehods o mprovng Consuve Equaons Maxell Model e an mprove h ne me dervaves or ne sran measures. ³ ª º «e, d» ¼ e an also hange he bas equaon lnear modaons non-lnear modaons her Consuve Approahes Smple

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

Introduction of Curvilinear Coordinates into Numerical Analysis

Introduction of Curvilinear Coordinates into Numerical Analysis Inroon of Crvlner Coornes no Nmerl Anlss Dee o Professor Emers Yosk Ymmoo Te Unvers of Toko Hros Issk Inse of Meml Anlss Osk Jpn ssk@.-o.ne.jp Dske Kzw Inse of Insrl Sene Te Unvers of Toko k@s.-oko..jp

More information

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for. 4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX Some reliminries: Let A be rel symmetric mtrix. Let Cos θ ; (where we choose θ π for Cos θ 4 purposes of convergence of the scheme)

More information

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria IOSR Journal of Mahemacs (IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume 0, Issue 4 Ver. IV (Jul-Aug. 04, PP 40-44 Mulple SolonSoluons for a (+-dmensonalhroa-sasuma shallow waer wave equaon UsngPanlevé-Bӓclund

More information

EEM 486: Computer Architecture

EEM 486: Computer Architecture EEM 486: Compuer Archecure Lecure 4 ALU EEM 486 MIPS Arhmec Insrucons R-ype I-ype Insrucon Exmpe Menng Commen dd dd $,$2,$3 $ = $2 + $3 sub sub $,$2,$3 $ = $2 - $3 3 opernds; overfow deeced 3 opernds;

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

, t 1. Transitions - this one was easy, but in general the hardest part is choosing the which variables are state and control variables

, t 1. Transitions - this one was easy, but in general the hardest part is choosing the which variables are state and control variables Opmal Conrol Why Use I - verss calcls of varaons, opmal conrol More generaly More convenen wh consrans (e.g., can p consrans on he dervaves More nsghs no problem (a leas more apparen han hrogh calcls of

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current : . A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

Review for the Midterm Exam.

Review for the Midterm Exam. Review for he iderm Exm Rememer! Gross re e re Vriles suh s,, /, p / p, r, d R re gross res 2 You should kow he disiio ewee he fesile se d he udge se, d kow how o derive hem The Fesile Se Wihou goverme

More information