Multivariate Time Series Analysis

Size: px
Start display at page:

Download "Multivariate Time Series Analysis"

Transcription

1 Mulvre me Sere Anl

2 Le { : } be Mulvre me ere. Denon: () = men vlue uncon o { : } = E[ ] or. (,) = Lgged covrnce mr o { : } = E{[ - ()][ - ()]'} or,

3 Denon: e me ere { : } onr e jon drbuon o,,, e me e jon drbuon o,,, or ll ne ube,,..., o nd ll coce o.

4 In ce en μ( ) nd ( ) E μ (,) = E{[ - ][ - ]'} = E{[ + - ][ + - ]'} = E{[ - - ][ 0 - ]'} = ( - ) or,. or.

5 Denon: e me ere { : } wel onr : or. nd or,. μ() μ (,) = ( - )

6 In ce () = E{[ + - ][ - ]'} = Cov( +, ) clled e Lgged covrnce mr o e proce { : }

7 e Cro Correlon Funcon nd e Cro Specrum

8 Noe: j () = (,j) elemen o (), cov, j nd clled e cro covrnce uncon o j nd. j j 0 jj clled e cro correlon uncon o j nd. 0

9 ) Denon: j e clled e cro pecrum o j j nd. Noe: nce j () j (-) en j () comple. ) I j () = c j () - q j () en c j () clled e Copecrum (Concden pecrl den) nd q j () clled e qudrure pecrum

10 ) I j () = A j () ep{ j ()} en A j () clled e Cro Amplude Specrum nd j () clled e Pe Specrum.

11 Denon: clled e Specrl Mr pp p p p p j p p F

12 e Mulvre Wener-Kncn Relon (p-vre) nd p p p p e Σ F d e p p p p F Σ

13 Lemm: Aume en F() : j ) Pove emdene: *F() 0 * 0, were n comple vecor. ) Hermn:F() = F*() = e Adjon o F() = e comple conjuge rnpoe o F()..e. j () =.

14 Corrollr: e c F() pove emdene lo men ll qure ubmrce long e dgonl ve pove deermnn Hence j j jj 0 nd or j jj j * j j j jj

15 Denon: K j j jj = Squred Coerenc uncon Noe: K j

16 Denon: j j rner uncon oced w j nd.

17 Applcon nd Emple o Mulvre Specrl Anl

18 Emple I - Lner Fler

19 denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow:

20 e me ere { : } d o be conruced rom { : } b men o Lner Fler. E ' ' ' E E ' ' ' E ' ' '

21 connung ' ' ' d e ' ' ' d e ' ' ' d e e e ' ' ' d e e e ' ' '

22 connung e e d e A d u e pecrl den o e me ere { : } : e A

23 Commen A: A e clled e rner uncon o e lner ler. A clled e Gn o e ler wle rg A clled e Pe S o e ler.

24 Alo E E E

25 connung d e d e d A e

26 u cro pecrum o e bvre me ere : : A e

27 Commen B: K = Squred Coerenc uncon. A A

28 Emple II - Lner Fler w ddve noe e oupu

29 denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow: v e noe {v : } ndependen o e ere { : } (m be we)

30 E v v E v E E ' ' ' v v E v E ' ' ' vv ' ' ' d e d e e vv

31 connung e A were A e vv d u e pecrl den o e me ere { : } : A vv

32 Alo E v E v E E

33 connung d e d e d A e

34 u cro pecrum o e bvre me ere : : A e

35 u K = Squred Coerenc uncon. A A A vv vv Noe o Sgnl Ro

36 Mulvre me Sere Anl

37 e Cro Correlon Funcon nd e Cro Specrum

38 Noe: j () = (,j) elemen o (), cov, j nd clled e cro covrnce uncon o j nd. j j 0 jj clled e cro correlon uncon o j nd. 0

39 ) Denon: j e clled e cro pecrum o j j nd. Noe: nce j () j (-) en j () comple. ) I j () = c j () - q j () en c j () clled e Copecrum (Concden pecrl den) nd q j () clled e qudrure pecrum

40 ) I j () = A j () ep{ j ()} en A j () clled e Cro Amplude Specrum nd j () clled e Pe Specrum. Noe: nd j j e j j e

41 now j j cov, cov, j cov, j j nd j j j e e j e * j

42 Denon: K j j jj = Squred Coerenc uncon Noe: K j

43 Denon: j j rner uncon oced w j nd.

44 Emple I - Lner Fler

45 denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow:

46 u e pecrl den o e me ere { : } : e A Commen : A e clled e rner uncon o e lner ler. A clled e Gn o e ler wle rg A clled e Pe S o e ler.

47 e cro pecrum o e bvre me ere : : A e

48 Commen B: K = Squred Coerenc uncon. A A

49 Emple II - Lner Fler w ddve noe e oupu

50 denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow: v e noe {v : } ndependen o e ere { : } (m be we)

51 e e pecrl den o e me ere { : } : A e cro pecrum o e bvre me ere : e A vv

52 Alo nd or = 0,,,..., m. ) co( ) n( I X X X b ) co( ) n( I Y Y Y b

53 Fnll b b Y X I b b b b b b X Y I b b b b I comple conjuge o

54 Noe: nd ) ep( I ) ep( C ) ep( I ) ep( C

55 Alo nd ) ep( I ) ep( C ) ep( I ) ep( C

56 Alo nd ) ep( I ) ep( C ) ep( I ) ep( C

57 e mple cro-pecrum, copecrum & qudrure pecrum

58 Recll e perodogrm ) co( ) n( I mpoc epecon 4 (). I Smlrl e mpoc epecon o 4 (). An mpoc unbed emor o () cn be obned b dvdng b 4. I

59 e mple cro pecrum ) ep( ˆ C I

60 e mple copecrum cˆ ˆ Re C co( )

61 e mple qudrure pecrum qˆ C Im ˆ n( )

62 e mple Cro mplude pecrum, Pe pecrum & Squred Coerenc

63 A Recll Cro Amplude Specrum c q Pe Specrum n q c K Squred Coerenc uncon c q

64 u er mple couner pr cn be dened n mlr mnner. Nmel ˆ A mple Cro Amplude Specrum ˆ mple Pe Specrum n cˆ q ˆ qˆ cˆ \ Kˆ ˆ ˆ ˆ cˆ ˆ qˆ ˆ mple Squred Coerenc uncon

65 Conen Emon o e Cro-pecrum ()

66 Dnell Emor

67 = e Dnell Emor o e Copecrum d d r r d c d c ˆ ˆ, = e Dnell Emor o e qudrure pecrum d d r r d q d q ˆ ˆ,

68 Weged Covrnce Emor

69 ˆ,, c q were w m wm C co ˆ,, w m wm C n : 0,,, w m weg uc w 0 ) 0 w ) w m m m w m re equence o ) w m 0 or m.

70 Agn once e Copecrum nd Qudrure Specrum ve been emed, e Cro pecrum, Amplude Specrum, Pe Specrum nd Coerenc cn be emed generll ollow ung eer e ) Dnell Emor or b) e weged covrnce emor o c () nd q ():

71 Nmel Aˆ cˆ qˆ ˆ n ˆ Kˆ cˆ qˆ qˆ cˆ ˆ cˆ ˆ ˆ ˆ qˆ ˆ

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

RL for Large State Spaces: Policy Gradient. Alan Fern

RL for Large State Spaces: Policy Gradient. Alan Fern RL for Lrge Se Spce: Polcy Grden Aln Fern RL v Polcy Grden Serch So fr ll of our RL echnque hve red o lern n ec or pprome uly funcon or Q-funcon Lern opml vlue of beng n e or kng n con from e. Vlue funcon

More information

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA Tn Corn DOSESCU Ph D Dre Cner Chrsn Unversy Buchres Consnn RAISCHI PhD Depren of Mhecs The Buchres Acdey of Econoc Sudes ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES

More information

rank Additionally system of equation only independent atfect Gawp (A) possible ( Alb ) easily process form rang A. Proposition with Definition

rank Additionally system of equation only independent atfect Gawp (A) possible ( Alb ) easily process form rang A. Proposition with Definition Defiion nexivnol numer ler dependen rows mrix sid row Gwp elimion mehod does no fec h numer end process i possile esily red rng fc for mrix form der zz rn rnk wih m dcussion i holds rr o Proposiion ler

More information

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES wwwrresscom/volmes/vol7isse/ijrras_7 df UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOIAL OPERATOR ON DOAINS IN COPLEX PROJECTIVE SPACES D Feng & L Ynl * Scool of emcs nd Pyscs Scence

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D . If * is the opertion defined by *b = b for, b N, then ( * ) * is equl to (A) 8 (B) 5 (C) 6 (D) 64 (E) 4. The domin of the function ( 9)/( ),if f( ) = is 6, if = (A) (0, ) (B) (-, ) (C) (-, ) (D) (, )

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Algebra Of Matrices & Determinants

Algebra Of Matrices & Determinants lgebr Of Mtrices & Determinnts Importnt erms Definitions & Formule 0 Mtrix - bsic introduction: mtrix hving m rows nd n columns is clled mtrix of order m n (red s m b n mtrix) nd mtrix of order lso in

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Estimation Theory Notes: Set1

Estimation Theory Notes: Set1 . Lner tmton Mot mportnt ecton (from premble).,.4,.6 nd.a tmton heor ote: Set. orml quton.. Affne tmton Conder zero men ector lued rndom rble nd. p, q column ector A lner (ffne) etmtor would be formed

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

RL for Large State Spaces: Policy Gradient. Alan Fern

RL for Large State Spaces: Policy Gradient. Alan Fern RL for Lrge Se Spce: Polcy Grden Aln Fern Movon for Polcy Serch So fr ll of our RL echnque hve red o lern n ec or pprome vlue funcon or Q-funcon Lern opml vlue of beng n e or kng n con from e. Vlue funcon

More information

Chapter 6 Continuous Random Variables and Distributions

Chapter 6 Continuous Random Variables and Distributions Chpter 6 Continuous Rndom Vriles nd Distriutions Mny economic nd usiness mesures such s sles investment consumption nd cost cn hve the continuous numericl vlues so tht they cn not e represented y discrete

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Anly of Vrne Degn of Experment-II MODULE VI LECTURE - 8 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr Shlbh Deprtment of Mthemt & Sttt Indn Inttute of Tehnology Knpur Tretment ontrt: Mn effet The uefulne of hvng

More information

CHAPTER 6b. NUMERICAL INTERPOLATION

CHAPTER 6b. NUMERICAL INTERPOLATION CHAPTER 6. NUMERICAL INTERPOLATION A. J. Clrk School o Engineering Deprtment o Civil nd Environmentl Engineering y Dr. Irhim A. Asskk Spring ENCE - Computtion s in Civil Engineering II Deprtment o Civil

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

A Demand System for Input Factors when there are Technological Changes in Production

A Demand System for Input Factors when there are Technological Changes in Production A Demand Syem for Inpu Facor when here are Technologcal Change n Producon Movaon Due o (e.g.) echnologcal change here mgh no be a aonary relaonhp for he co hare of each npu facor. When emang demand yem

More information

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN) EE 537-635 Microwve Engineering Fll 7 Prof. Dvid R. Jcson Dep. of EE Noes Wveguides Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model Our gol is o come up wih rnsmission line model for

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

THIS PAGE DECLASSIFIED IAW EO 12958

THIS PAGE DECLASSIFIED IAW EO 12958 THIS PAGE DECLASSIFIED IAW EO 2958 THIS PAGE DECLASSIFIED IAW EO 2958 THIS PAGE DECLASSIFIED IAW E0 2958 S T T T I R F R S T Exhb e 3 9 ( 66 h Bm dn ) c f o 6 8 b o d o L) B C = 6 h oup C L) TO d 8 f f

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Differential Geometry: Conformal Maps

Differential Geometry: Conformal Maps Differentil Geometry: Conforml Mps Liner Trnsformtions Definition: We sy tht liner trnsformtion M:R n R n preserves ngles if M(v) 0 for ll v 0 nd: Mv, Mw v, w Mv Mw v w for ll v nd w in R n. Liner Trnsformtions

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Matrix reconstruction with the local max norm

Matrix reconstruction with the local max norm Marx reconrucon wh he local max norm Rna oygel Deparmen of Sac Sanford Unvery rnafb@anfordedu Nahan Srebro Toyoa Technologcal Inue a Chcago na@cedu Rulan Salakhudnov Dep of Sac and Dep of Compuer Scence

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

Section 11.5 Estimation of difference of two proportions

Section 11.5 Estimation of difference of two proportions ection.5 Estimtion of difference of two proportions As seen in estimtion of difference of two mens for nonnorml popultion bsed on lrge smple sizes, one cn use CLT in the pproximtion of the distribution

More information

Continuous Random Variable X:

Continuous Random Variable X: Continuous Rndom Vrile : The continuous rndom vrile hs its vlues in n intervl, nd it hs proility distriution unction or proility density unction p.d. stisies:, 0 & d Which does men tht the totl re under

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

Numerical Methods using the Successive Approximations for the Solution of a Fredholm Integral Equation

Numerical Methods using the Successive Approximations for the Solution of a Fredholm Integral Equation ece Advce Appled d eorecl ec uercl eod u e Succeve Approo or e Soluo o Fredol Ierl Equo AIA OBIŢOIU epre o ec d opuer Scece Uvery o Peroş Uvery Sree 6 Peroş OAIA rdorou@yoo.co Arc: pper pree wo eod or

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence CS344: Introduction to Artiicil Intelligence Lecture: 22-23 Herbrnd s Theorem roving stisibilit o logic ormule using semntic trees rom Smbolic logic nd mechnicl theorem proving B Runk ilni Under the guidnce

More information

OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITHM

OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITHM 3rd Europen Sgnl Processng Conference EUSIPCO OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITM P. O. Amblrd GIPSAlb/CNRS UMR 583 Unversé de Grenoble Grenoble, Frnce. Kdr LIF/CNRS UMR 779 Ax-Mrselle

More information

7. Indefinite Integrals

7. Indefinite Integrals 7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

Chapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables

Chapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables Copyright 013 Peron Eduction, Inc. Tble nd Formul for Sullivn, Sttitic: Informed Deciion Uing Dt 013 Peron Eduction, Inc Chpter Orgnizing nd Summrizing Dt Reltive frequency = frequency um of ll frequencie

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

Hidden Markov Models. A Specific Form of Process.. Doubly Stochastic Processes. What a sensible agent must do. A Common Trait

Hidden Markov Models. A Specific Form of Process.. Doubly Stochastic Processes. What a sensible agent must do. A Common Trait -755 Mchne Lernng for Sgnl roceng Hdden Mrkov Model 04 Oc 0 redcon : holy grl hycl recore Auooble rocke hevenly bode Nurl phenoen Weher Fnncl d Sock rke World ffr Who gong o hve he ne prng? Sgnl Audo vdeo..

More information

STRAND B: NUMBER THEORY

STRAND B: NUMBER THEORY Mthemtics SKE, Strnd B UNIT B Indices nd Fctors: Tet STRAND B: NUMBER THEORY B Indices nd Fctors Tet Contents Section B. Squres, Cubes, Squre Roots nd Cube Roots B. Inde Nottion B. Fctors B. Prime Fctors,

More information

Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as:

Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as: Sbl Anlss for VAR ssems For se of n me seres vrbles (,,, n ', VAR model of order p (VAR(p n be wren s: ( A + A + + Ap p + u where he A s re (nxn oeffen mres nd u ( u, u,, un ' s n unobservble d zero men

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units! Knemtc Quntte Lner Phyc 11 Eyre Tme Intnt t Fundmentl Tme Interl t Dened Poton Fundmentl Dplcement Dened Aerge g Dened Aerge Accelerton g Dened Knemtc Quntte Scler: Mgntude Tme Intnt, Tme Interl nd Speed

More information

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114 Lner Accelerton nd Freell Phyc 4 Eyre Denton o ccelerton Both de o equton re equl Mgntude Unt Drecton (t ector!) Accelerton Mgntude Mgntude Unt Unt Drecton Drecton 4/3/07 Module 3-Phy4-Eyre 4/3/07 Module

More information

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS Lesson Ten What role does energy play in chemical reactions? Science Asking Questions, Developing Models, Investigating, Analyzing Data and Obtaining, Evaluating, and Communicating Information ENGLISH

More information

Chapter 3 The Schrödinger Equation and a Particle in a Box

Chapter 3 The Schrödinger Equation and a Particle in a Box Chpter 3 The Schrödinger Eqution nd Prticle in Bo Bckground: We re finlly ble to introduce the Schrödinger eqution nd the first quntum mechnicl model prticle in bo. This eqution is the bsis of quntum mechnics

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

I I I I. NOBLm NOBLE NOBLE S1 JAMES CLAIMS MINING CORPORATION LTD GRID TOPOGRAPHY GEOLOGY 9 MINERAL CLAIMS LEGEND SYMBOL. 00 i. lo 0f 0 Iv SO.

I I I I. NOBLm NOBLE NOBLE S1 JAMES CLAIMS MINING CORPORATION LTD GRID TOPOGRAPHY GEOLOGY 9 MINERAL CLAIMS LEGEND SYMBOL. 00 i. lo 0f 0 Iv SO. j R m F me km P NDY R j MGNET DEN TN P v Q c P ME 8 c RBNTE d c PERMN ND PENNYVNN HE REEK GR P GEG EGEND e HGHY FTED RBNEU RGTE d GREY TE GREEN N EERVED FRM N T E FW TERED GREENTNE G v NBE NBE NBm c REEK

More information

THE DISCRIMINANT & ITS APPLICATIONS

THE DISCRIMINANT & ITS APPLICATIONS THE DISCRIMINANT & ITS APPLICATIONS The discriminnt ( Δ ) is the epression tht is locted under the squre root sign in the qudrtic formul i.e. Δ b c. For emple: Given +, Δ () ( )() The discriminnt is used

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

H = d d q 1 d d q N d d p 1 d d p N exp

H = d d q 1 d d q N d d p 1 d d p N exp 8333: Sacal Mechanc I roblem Se # 7 Soluon Fall 3 Canoncal Enemble Non-harmonc Ga: The Hamlonan for a ga of N non neracng parcle n a d dmenonal box ha he form H A p a The paron funcon gven by ZN T d d

More information

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section.

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section. wwwskshieducioncom PARABOLA Le S be given fixed poin (focus) nd le l be given fixed line (Direcrix) Le SP nd PM be he disnce of vrible poin P o he focus nd direcrix respecively nd P SP moves such h PM

More information

Method of stationary phase

Method of stationary phase Physics 4 Spring 16 Method of sttionry phse Lecture notes by M. G. Rozmn Lst modified: April 13, 16 There is n immedite generliztion of the Lplce integrls f t)e φt) dt 1) which we obtin by llowing the

More information

ELEC 201 Electric Circuit Analysis I Lecture 9(a) RLC Circuits: Introduction

ELEC 201 Electric Circuit Analysis I Lecture 9(a) RLC Circuits: Introduction //6 All le courey of Dr. Gregory J. Mazzaro EE Elecrc rcu Analy I ecure 9(a) rcu: Inroucon THE ITADE, THE MIITAY OEGE OF SOUTH AOINA 7 Moulre Sree, harleon, S 949 V Sere rcu: Analog Dcoery _ 5 Ω pf eq

More information

ES.182A Topic 32 Notes Jeremy Orloff

ES.182A Topic 32 Notes Jeremy Orloff ES.8A Topic 3 Notes Jerem Orloff 3 Polr coordintes nd double integrls 3. Polr Coordintes (, ) = (r cos(θ), r sin(θ)) r θ Stndrd,, r, θ tringle Polr coordintes re just stndrd trigonometric reltions. In

More information

Hoeffding, Azuma, McDiarmid

Hoeffding, Azuma, McDiarmid Hoeffding, Azum, McDirmid Krl Strtos 1 Hoeffding (sum of independent RVs) Hoeffding s lemm. If X [, ] nd E[X] 0, then for ll t > 0: E[e tx ] e t2 ( ) 2 / Proof. Since e t is conve, for ll [, ]: This mens:

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

Chapter 3 Single Random Variables and Probability Distributions (Part 2) Chpter 3 Single Rndom Vriles nd Proilit Distriutions (Prt ) Contents Wht is Rndom Vrile? Proilit Distriution Functions Cumultive Distriution Function Proilit Densit Function Common Rndom Vriles nd their

More information

Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2003, Alba Iulia

Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2003, Alba Iulia Proceedings o the Interntionl Conerence on Theor nd Applictions o Mthemtics nd Inormtics ICTAMI 2003, Al Iuli CARACTERIZATIONS OF TE FUNCTIONS WIT BOUNDED VARIATION Dniel Lesnic Astrct. The present stud

More information

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms Preview Greed Algorithms Greed Algorithms Coin Chnge Huffmn Code Greed lgorithms end to e simple nd strightforwrd. Are often used to solve optimiztion prolems. Alws mke the choice tht looks est t the moment,

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

The Single Particle Path Integral and Its Calculations. Lai Zhong Yuan

The Single Particle Path Integral and Its Calculations. Lai Zhong Yuan Te Sngle Parcle Pa Inegral and Is Calculaons La Zong Yuan Suary O Conens Inroducon and Movaon Soe Eaples n Calculang Pa Inegrals Te Free Parcle Te Haronc Oscllaor Perurbaon Epansons Inroducon and Movaon

More information

The Algebra (al-jabr) of Matrices

The Algebra (al-jabr) of Matrices Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (l-jbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS 6 ORDINARY DIFFERENTIAL EQUATIONS Introducton Runge-Kutt Metods Mult-step Metods Sstem o Equtons Boundr Vlue Problems Crcterstc Vlue Problems Cpter 6 Ordnr Derentl Equtons / 6. Introducton In mn engneerng

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

Precalculus Chapter P.2 Part 1 of 3. Mr. Chapman Manchester High School

Precalculus Chapter P.2 Part 1 of 3. Mr. Chapman Manchester High School Preclculus Chpter P. Prt of Mr. Chpmn Mnchester High School Eponents Scientific Nottion Recll: ( ) () 5 ( )( )( ) ()()()() Consider epression n : Red s to the nth power. is clled the bse n is clled the

More information

PART V. Wavelets & Multiresolution Analysis

PART V. Wavelets & Multiresolution Analysis Wveles 65 PART V Wveles & Muliresoluion Anlysis ADDITIONAL REFERENCES: A. Cohen, Numericl Anlysis o Wvele Mehods, Norh-Hollnd, (003) S. Mll, A Wvele Tour o Signl Processing, Acdemic Press, (999) I. Dubechies,

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Logarithmic Functions

Logarithmic Functions Logrithmic Functions Definition: Let > 0,. Then log is the number to which you rise to get. Logrithms re in essence eponents. Their domins re powers of the bse nd their rnges re the eponents needed to

More information

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued)

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued) V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 6 Plne ending Deformtion. Digrms of nternl Forces (Continued) 1 Construction of ending Moment nd Shering Force Digrms for Two Supported ems n this mode of loding,

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f C H A P T E R I G E N E S I S A N D GROWTH OF G U IL D S C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f i n a v a r i e t y o f f o r m s - s o c i a l, r e l i g i

More information

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation OSR ol o Mec OSR-M e-ssn: 78-578 -SSN: 9-765X Vole e Ve M - A 7 PP 95- wwwojolog Nolocl Bo Vle Poble o Nole lve - Sec egoeece Eo Log Ceg Ceg Ho * Yeg He ee o Mec Yb Uve Yj PR C Abc: A oe ole lve egoeece

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

Physics 101 Lecture 4 Motion in 2D and 3D

Physics 101 Lecture 4 Motion in 2D and 3D Phsics 11 Lecure 4 Moion in D nd 3D Dr. Ali ÖVGÜN EMU Phsics Deprmen www.ogun.com Vecor nd is componens The componens re he legs of he righ ringle whose hpoenuse is A A A A A n ( θ ) A Acos( θ) A A A nd

More information

1. Definition: Order Statistics of a sample.

1. Definition: Order Statistics of a sample. AMS570 Order Statistics 1. Deinition: Order Statistics o a sample. Let X1, X2,, be a random sample rom a population with p.d.. (x). Then, 2. p.d.. s or W.L.O.G.(W thout Loss o Ge er l ty), let s ssu e

More information

Topics Review Fuel Conversion Efficiency Fuel Air Ratio Volumetric Efficiency Road Load Power Relationships between performance parameters

Topics Review Fuel Conversion Efficiency Fuel Air Ratio Volumetric Efficiency Road Load Power Relationships between performance parameters ME 410 Dy 5 Topics Reiew Fuel Conersion Eiciency Fuel Air Rtio Volumetric Eiciency Ro Lo Power Reltionships between perormnce prmeters Fuel Conersion Eiciency This is the rtio o power ctully prouce to

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information