Testing Digital Systems. CPE/EE 428, CPE 528 Testing Combinational Logic (3) Testing Digital Systems: Detection. Testing Digital Systems: Detection

Size: px
Start display at page:

Download "Testing Digital Systems. CPE/EE 428, CPE 528 Testing Combinational Logic (3) Testing Digital Systems: Detection. Testing Digital Systems: Detection"

Transcription

1 Tstin iit Systms CPE/EE 428, CPE 528 Tstin Comintion Loi (3) Comintion vs Squnti Systms W sh ovr omintion first Squnti iruits n tst usin omintion tst nrtion n sn hins Th stt FF sr onnt in shift ristr. Any vu n shift in (sttin n ritrry stt), th nt stt o, n thn shift out. Thus tsts n irty ppi to th omintion oi. FF s prtmnt of Etri n Computr Eninrin Univrsity of Am in Huntsvi Comintion oi Q Q o n/shift Q sn hin shiftin/out /4/23 VLSI sin II: VHL 2 Tstin iit Systms: ttion Tstin iit Systms: ttion N () A oo iruit N prous funtion () Assum 4 s-- (stuk-t, s) 2 3 ttin fut N f A tst vtor t is n ssinmnt of input vus. It tts fut f iff (t) f (t) f () A iruit with fut f prous iffrnt funtion f () Goo Ciruit Th st of tsts {T} tht tts f is foun y Futy Ciruit f () f () = /4/23 VLSI sin II: VHL 3 /4/23 VLSI sin II: VHL 4

2 Tstin iit Systms: ttion Tstin iit Systms: ttion tst for 4 s () f () = = (2 + 3) + 4 f = (2 + 3) > 4 = (+) =? = (+) + (+) = + + ( ) = = ((2+3)) 4 = () 4 = ( + ) 4 = = s-- / / / tst for 4 s -- Th omin oo/ iruit n rwn vus shown r for v/v f tht is, vus in th oo iruit / vus in th futy iruit v/ v f shows isrpny twn oo/futy iruit vus This sys tht ny input vtor with = n 4 = is tst vtor for 4 s--. 2 n 3 r on t-rs. /4/23 VLSI sin II: VHL 5 /4/23 VLSI sin II: VHL 6 Fut Ativtion n Proption Pth Snsitiztion s-- / / / tst for 4 s-- Two si onpts in fut ttion iustrt A tst must tivtth fut y rtin iffrnt v/v f vus t th fut sit thus 4 is ssin to. If it ry is stuk t zro, w know thr wi hn in iruit vus. A tst must propt th rror to primry output othr iruit vus must st to ow th oo/futy vu to sn t n output s-- / / / Snsitiz pth tst for 4 s-- Pth snsitiztion A in whos vu (with th tst t) hns in th prsn of fut f is si to snsitizto fut f y tst t ths ins r init y hvin iffrnt v/ v f vus A pth ompos of snsitiz ins is snsitiz pth /4/23 VLSI sin II: VHL 7 /4/23 VLSI sin II: VHL 8 2

3 Anothr mp Controin n Invrtin Vus Tst s s-- Asi Primitiv oi ts (AN, OR, NAN, NOR) n hrtriz y two prmtrs ontroin vu invrsion i Controin vu th vu whn on ny on input wi trmin th t s output rrss of th othr inputs (.. on ny AN t input) If on input hs th ontroin vu, th t s output wi i, whr n i om from th foowin t i AN OR NAN NOR /4/23 VLSI sin II: VHL 9 /4/23 VLSI sin II: VHL Controin n Invrtin Vus Controin n Invrtin Vus Aon th snsitiz pth ny input snsitiz to th fut wi hv vu, it othr inputs wi hv (ompmnt of ontroin vu) non-ontroin, or nin, vu th output wi hv vu i i AN OR NAN NOR / s-- / / i AN OR NAN NOR ou / / or or / / Whih r ontroin, whih r nin? /4/23 VLSI sin II: VHL /4/23 VLSI sin II: VHL 2 3

4 Tstin iit Ciruits: Runny Tstin iit Ciruits: Runny Fut f is tt if thr ists tst t tht tts it i.. (t) f (t) Howvr, f is untt if X Y F () = f () for Coo! Thr r som iruits whr vn if thr is fut in rtin ps, thy sti work! A iruit tht ontins n untt fut is runnt iruit. Th fut sit oviousy hs no fft on th iruit funtion Th iruit n simpifi you n rmov somthin! Emp: F = + + Is th fut Y s-- tt? Ativt n propt Y s-- /4/23 VLSI sin II: VHL 3 /4/23 VLSI sin II: VHL 4 Y s-- is untt F = + + = + Runny Th trm is runnt ovr in th Kmp it s not n ssnti impint of th funtion th othr two r Chn to iruit Gt Y n rmov from th iruit without fftin th oi funtion. Or you n kp it n hv som fut torn X Y trm is runnt /4/23 VLSI sin II: VHL 5 Runny Pro n Con Pro n Con Th fut is untt. This n oo! Th iruit sti works vn if thr r rtin futs in it. Ar othrs untt too? or hrr to tt Th runnt iruit rquirs tr hrwr tr r on th IC /4/23 VLSI sin II: VHL 6 4

5 Runny Pro n Con Th iruit is hzr fr on trnsition > Hzr th vu of th funtion tks on n intrmit vu iffrnt from th fin vu With non-runnt iruit, thr is hn of - - hzr With th runnt iruit, if th inputs hn from >, th output wi not o to zro. Ar thr othr suh trnsitions? Tstin iit Ciruits: Runny Rmovin runnt ovrs Untt fut Simpifition Ru AN (NAN) input s -- Rmov input AN (NAN) input s -- Rmov t, rp y () OR (NOR) input s- - Rmov input OR (NOR) input s- - Rmov t, rp y () z X Y Othr runnis Trip mour runny mtho for hivin fut torn. futs r orrt y ition oi mny futs wou untst thy utomtiy orrt n oi synthsis wou optimiz th runny wy! N tst mo to is orrtion /4/23 VLSI sin II: VHL 7 /4/23 VLSI sin II: VHL 8 Tstin: is it so simp? -Cuus Tst ninrs = Shrok Homs of th inustry Mthos for utomtiy nrtin tsts wr nssry Cotivy known s ATPG => Automti Tst Pttrn Gnrtion (tt) = / - rprsnts oi in th oo iruit n oi in th iruit (r ) = / - rprsnts oi in th oo iruit n oi in th iruit Fiv -vu oi:,,, r, X (on t r) /4/23 VLSI sin II: VHL 9 /4/23 VLSI sin II: VHL 2 5

6 -Cuus Truth ts for AN, OR, NAN, n NOR ts finitions Tst nrtion orithms work in trms of: Primry inputs (PI) ontro input to iruit. E.., pin on n IC, or n output of n FF in sn systm Primry outputs (PO) n osrv output of th iruit. E.., pin on n IC, or input to n FF in sn systm Justify, justifition th pross of stin PIs to for rtin in to hv spifi vu Propt, proption th pross of stin pproprit PIs tht ow isrpny to push to PO Tst nrtion orithms r out finin th pproprit PIs to ontro to tivt fut finin th pproprit PIs to ontro to propt th fut to on of th POs. /4/23 VLSI sin II: VHL 2 /4/23 VLSI sin II: VHL 22 Mor finitions Forwr impition f: Knowin on or mor t inputs, impy th output vu. Assum t inputs r th sm vu ithr or Thn th output is output = vu i W n rfin this if w know th ontroin vu i.. ony on of th inputs ns to hv to know output Bkwr impition f: Knowin th output n possiy som inputs, impy on or mor of th inputs Assum t inputs r th sm ithr or Thn th inputs r: inputs = output i W n rfin this if w know th ontroin vu If th input n to prou th output is, thn ony on input ns to hv it. /4/23 VLSI sin II: VHL 23 Justify Aorithm Justify (, v) Rursiv orithm to justify in to vu v = v if is primry input rturn you r on on this pth st n i to ontroin/invrsion vus of t rivin inv = v i if (inv == ) st on input j of t Justify (j, inv ) s for vry input j of t Justify (j, inv ) /4/23 VLSI sin II: VHL 24 6

7 An mp of justifition Tst Gnrtion: Propt Aorithm = v Prop (, rr) Propt vu rr from in if is primry input rturn you r on on this pth = rr st n i to ontroin/invrsion vus of t rivin if in is primry output rturn you r hom inv = v i if (inv == ) s st on input j of t Justify (j, inv ) for vry input j of t Justify (j, inv ) justify to B PO k = fnoutt of in,i = ontroin/invrsion vu of t k for vry input j of k othr thn Justify (j, ) Propt (k, rr i) Justify nin vus onto othr inputs k Propt furthr /4/23 VLSI sin II: VHL 25 /4/23 VLSI sin II: VHL 26 Tstin iit Ciruits Wht you know Fut mos wht n o wron n how w mo it physi n oi Bsi i of ttion tivt fut n propt to output Wht you on t know how to fiur out, systmtiy, whthr th who thin works how to ru th numr of futs to onsir whn nrtin tsts Toy Rviw quivn n fut opsin Bin tst nrtion orithms Bsi pproh sn so fr St in n fut in s--v Ativt th fut riv in to v stin th inputs n to st n intrn in to known vu is known s in justifition Ativtion rts isrpny Propt th fut isrpny Propt th isrpny on snsitiz pth to ny primry output / s-- ttion / Nottion: oo vu/ vu /4/23 VLSI sin II: VHL 27 /4/23 VLSI sin II: VHL 28 7

8 Fut ominn Equivn n ominn Summry Equivn vs. ominn ominn is spi s of fut quivn Fut quivn, if f () = () for thn th futs r funtiony quivnt. If this is tru for sust of, thn thr is ominn r tion ominn Lt T th st of tsts tht tt fut. A fut f omints th fut iff f n r funtiony quivnt unr T. Wht r th quivn sss? s-- s-- s-- s-- s-- s-- Equivn A, B, ominn omints A, B f (t) = (t) T is sust of T f for t in T,, /4/23 VLSI sin II: VHL 29 /4/23 VLSI sin II: VHL 3 Asi: Fut Lotion Ovr pross ttion ot us own to thr tsts W r ft with thr tsts for this t if w r intrst in fut ttion. If w r intrst in fut otion, w n mor To isot y s-- N to ppy oth n, on, tts th quivnt futs y s-- n z s--, on, tts th quivnt futs s-- n z s-- Tothr, thy n isot th thr futs (ssumin ony on fut tiv). fin fut mo st trt fut nrt tst for trt fut simut st of futs for iruit no mor futs: on s s y z s T isr tt futs T f /4/23 VLSI sin II: VHL 3 /4/23 VLSI sin II: VHL 32 8

9 Tst Gnrtion Towr n orithmi mns to nrt tst vtors Wht o w wnt in tst vtor? fut tivtion n proption if th isrpny wis (i.. from oo to ), thn so os th output how o w trmin if funtion hns with rspt to vri Us Automti Tst Gnrtion orithms (ATG) Primry inputs n outputs Tst nrtion orithms work in trms of: Primry inputs (PI) ontro input to iruit. E.. A pin on n IC, or n output of n FF in sn systm Primry outputs (PO) n osrv output of th iruit. E.. A pin on n IC, or input to n FF in sn systm Thy oprt in trms of: finin th pproprit PIs to ontro to tivt fut finin th pproprit PIs to ontro to propt isrpny to on of th POs. /4/23 VLSI sin II: VHL 33 /4/23 VLSI sin II: VHL 34 Propt, Justify A fw finitions justify, justifition th pross of stin PIs to for rtin in to hv spifi vu th vr justify on th input of t B th noun justifition is th pross of justifyin propt, proption th pross of stin pproprit PIs tht ow isrpny to push to PO propt th to ny output proption is th pross invovs justifition Impy you n Forwr impition f: Knowin on or mor t inputs, impy th output vu. Assum t inputs r th sm vu ithr or Thn th output is output = vu i W n rfin this if w know th ontroin vu i.. ony on of th inputs ns to hv to know output PIs B PO /4/23 VLSI sin II: VHL 35 /4/23 VLSI sin II: VHL 36 9

10 Look hin yoursf too Bkwr impition f: Knowin th output n possiy som inputs, impy on or mor of th inputs Assum t inputs r th sm ithr or Thn th inputs r: inputs = output i W n rfin this if w know th ontroin vu If th input n to prou th output is, thn ony on input ns to hv it. Justify Aorithm Justify (, v) Rursiv orithm to justify in to vu v = v if is primry input rturn you r on on this pth st n i to ontroin/invrsion vus of t rivin inv = v i if (inv == ) s st on input j of t Justify (j, inv ) for vry input j of t Justify (j, inv ) /4/23 VLSI sin II: VHL 37 /4/23 VLSI sin II: VHL 38 An mp of justifition Tst Gnrtion: Propt Aorithm = v if is primry input rturn you r on on this pth st n i to ontroin/invrsion vus of t rivin inv = v i if (inv == ) st on input j of t Justify (j, inv ) s for vry input j of t Justify (j, inv ) justify to Prop (, rr) Propt vu rr from in = rr if in is primry output rturn you r hom k = fnoutt of in,i = ontroin/invrsion vu of t k for vry input j of k othr thn Justify (j, ) Propt (k, rr i) k B PO Justify nin vus onto othr inputs Propt furthr /4/23 VLSI sin II: VHL 39 /4/23 VLSI sin II: VHL 4

11 Wi this wys work? Tst Gnrtion: Bsi Aorithm Wi justify n propt wys work? Ciruits without ronvrnt fnout st on n justify r h inpnnt of ny prvious justifition you r urnt tht proption n justify wi not intrfr Aorithm to tst in s--v in n st vus to (unknown) Justify in to vu v if (v == ) s Propt on in Propt on in Wi rquir mor justifition s-- /4/23 VLSI sin II: VHL 4 /4/23 VLSI sin II: VHL 42 Automti Tst-Pttrn Gnrtion (ATPG) Ronvrnt Fnout Tst U2.N for s-- ) Ativt (it) fut => U2.N = 2) Work kwr => A = 3) Work forwr (snsitiz th pth to PO) => U3.A2 =, U5.A2 = 4) Work kwr (justify outputs) => ABC = Fut U4.A s- -? Fut B s- -? Sin B rnhs n thn ronvrs t oi t U5. ATPG works. W rt two snsitiz pths tht prvnt fut from proptin to th PO. Th prom n sov y hnin A to, ut this rks rus of th ATPG! Th POEM orithm sovs th prom. /4/23 VLSI sin II: VHL 43 /4/23 VLSI sin II: VHL 44

12 Tst Gnrtion mp With ronvrnt fnout Fnout pths from t ronvr t som tr t Inputs n for proption my inonsistnt with ons n for justifition G2 G G3 G4 G5 s-- Prour: justify G to > === propt to G4 > rquirs G2 = ut = mks G2= Inonsistny rsh n urn Koom! /4/23 VLSI sin II: VHL 45 Tst nrtion mp, ont N to ktrk propt on othr pth G2 G G3 G4 G5 s-- Prour: justify G to > === propt to G4 > rquirs G2 = ut = mks G2= Inonsistny propt to G5 > ktrk justify G3 to this works with = /4/23 VLSI sin II: VHL 46 Bktrkin Mintinin th ision tr Bktrkin rquirs tht ision tr mintin Eh no sris sin s stt vus prviousy justifi on ins impitions, forwr n kwr Eh r sris nw ision justify in, tivt fut N to to o k to formr stt Stt A fi Stt A Stt Stt A2 fi Stt B win /4/23 VLSI sin II: VHL 47 Prop. to G4 Stt G2=, A = inonsistny fi Stt s justify G to Stt === A Prop. to G5 G3 = Stt = A2 win Prour: justify G to > === propt to G4 > rquirs G2 = ut = mks G2= Inonsistny propt to G5 > ktrk justify G3 to this works with = Bktrk, G2= no onr prt of sin stt. Rvrt to prvious stt. /4/23 VLSI sin II: VHL 48 2

13 Osrvtions on pproh Enumrtion us justify orithm ws rursiv Whn t hs ontroin vu on input, on pth st my n to ktrk n foow nothr vntuy, my n to foow Propt orithm ws rursiv Whn thr is fnout t proption point, on pth st towr output my n to ktrk n foow nothr vntuy, my n to foow Th ktrkin, in, is u to ronvrnt fnouts n prvious vus justifi on thm No soution? runnt wrt th fut As it turns out Th ntur stt mintnn in rursiv prorms n kp trk of th ision tr /4/23 VLSI sin II: VHL 49 Mor trminooy Whn proptin isrpny Oftn, u to fnout, thr r svr options Propt ns to pik on for th snsitiz pth - frontir Th -frontir is th st of ts with or on on or mor inputs n n on its output (no othr inputs r ontroin) This is th st from whih you st proption (snsitiztion) pth /4/23 VLSI sin II: VHL 5 -frontir -Frontir J-Frontir Bk to our mp G2 G G4 s-- In in justifition Th J-frontir is th st of ts whos output vus r known, ut th outputs r not impi (yt) y th inputs Som inputs my known, ut th urrnt output vu is not impi Simir to -frontir, ut ookin kwr G3 G5 Aftr th tivtion of th fut, n forwr impition, th - frontir is? If -frontir = Ø, thn no pth to primry output fiur, ktrk prvious justifitions hv m this pth impossi J-frontir /4/23 VLSI sin II: VHL 5 /4/23 VLSI sin II: VHL 52 3

14 J-Frontir Impition Rvisit Bk to th Emp G2 G G4 s-- Impition Pross Comput vus uniquy trmin y impition,,,, ookin forwr n kwr mor rssiv thn prvious impition mintin th n J frontir G3 G5 Th fut is tivt n forwr impition is on A t is st from th -frontir for proption In this s, G5 is th ony hoi Th J-frontir is thn? /4/23 VLSI sin II: VHL 53 /4/23 VLSI sin II: VHL 54 Bfor impition front Bkwr Impition nw impition front Aftr Bfor > > Forwr Impition > > Aftr < < < < < < J-frontir = { } J-frontir = {, } < < < > > > > > J-front={, } J-front={, } -front={, } -front={, } < > J-front={ } J-front={ } -front={ } > -front={ } /4/23 VLSI sin II: VHL 55 /4/23 VLSI sin II: VHL 56 4

15 Whr r w now? Pis of tst nrtion orithms sn justify, propt proms with ronvrnt fnout n to ktrk mks for mssir orithm n to kp trk of stt, n wht omintions hv n tri for. huristis to uss t st nt pth to foow To om orithm n vntuy Pom Impition Pross Rvisit Uniqu -riv If thr is ony on t on th frontir, thn impition propts throuh th t. It s th ony irtion ou propt for -frontir = {} < ftr -frontir = { } > /4/23 VLSI sin II: VHL 57 /4/23 VLSI sin II: VHL 58 A Pis in P Pis Controin n invrtin vus Fut tivtion Justifition Proption Forwr/kwr impition n J frontirs ision tr mintnn isussion of th orithm not tht this is vrsion of th orithm numr of situtions hv n ft opn,.. st n input, st t whih on? Initiiztion st in vus to X -Aorithm tivt th trt fut y ssinin oi vu to tht in. Propt to PO 2. Justify vus Impy_n_hk() os ony nssry impitions, no hois if -() == SUCCESS thn rturn SUCCESS s uno ssinmnts n its impitions /4/23 VLSI sin II: VHL 59 /4/23 VLSI sin II: VHL 6 5

16 Tst Gnrtion: Th Aorithm A iruit n fut to tst if (impy_n_hk() == FAIL) rturn FAIL if (rror not t primry output) { if (-frontir == Ø) rturn FAIL rpt { st n untri t (G) from -frontir = ontroin vu of G ssin to vry input of G with vu if (-A() == SUCCESS) rturn SUCCESS } unti ts from -frontir tri rturn FAIL} if (J-frontir == Ø) rturn SUCCESS st t G from th J-frontir = ontroin vu of G rpt { st n input (j) of G with vu, ssin to j if (-A() == SUCCESS) rturn SUCCESS ssin to j/* rvrs ision*/ } unti inputs of G r spifi rturn FAIL ort sin with known vus. Chk for inonsistnis. Push to primry output On t primry output, justify vus n to hv on th primry output s-- f f h i j k m n /4/23 VLSI sin II: VHL 6 /4/23 VLSI sin II: VHL 62 Trin throuh n mp Trin throuh n mp s-- f f h i j k m n s =, = = s-- f f h i j k m n s =, = = = isions Impitions Commnts = Ativt th fut h = = Uniqu -riv throuh = (th uniqu pth for ) = -frontir oms {i,k,m} isions Impitions Commnts = Propt throuh i i = = -frontir oms {k, m, n} /4/23 VLSI sin II: VHL 63 /4/23 VLSI sin II: VHL 64 6

17 s-- Trin throuh n mp h i j k = f f m j=k==m= isions Impitions Commnts Bn j=k= Propt throuh n =m= n= =, = k= But k = Contrition! -frontir rmins {k, m, n} n s =, = = /4/23 VLSI sin II: VHL 65 s-- Trin throuh n mp h i j k = f f m j=k==m= Bn isions Impitions Commnts = Propt throuh k k= = j= -frontir oms {m, n} s =, = = = /4/23 VLSI sin II: VHL 66 n s-- Trin throuh n mp f h i j isions Impitions Commnts =m= propt throuh n n = f = f = m = f k m = j=k==m= Bn But m =, ontrition! -frontir rmins {m, n} s =, = = =m= Bn = /4/23 VLSI sin II: VHL 67 n s-- Trin throuh n mp f h i j isions Impitions Commnts f = Propt throuh m m = f = = n = J-frontir is Nu f k m = j=k==m= Bn s =m= Bn = f =, n = prty! /4/23 VLSI sin II: VHL 68 n =, = = 7

18 Wht out th J-frontir? In this mp, inputs wr siy justifi throuh impition ssntiy,,, n f wr primry inputs if ths wr rivn y othr ts, th rir inputs miht not hv n impi... < J-frontir = { } J-frontir = {, } /4/23 VLSI sin II: VHL 69 Wht out th J-frontir? Th -orithm: piks t from th J-frontir n thn tris to st h input to ontroin vu If tht vu fis u to impy_n_hk, it is invrt n nw input is tri how os it hn th s whr non of th inputs shou ontroin? if (J-frontir == Ø) rturn SUCCESS st t G from th J-frontir = ontroin vu of G rpt { st n input (j) of G with vu, ssin to j if (-A () == SUCCESS) rturn SUCCESS ssin to j /* rvrs ision*/ } unti inputs of G r spifi rturn FAIL it hr if output of t G is justifi, possiy for sttin inputs /4/23 VLSI sin II: VHL 7 J-Frontir Anothr mp s Assum hn to th mp iruit Thn w wou ft with mnts in th J-frontir st J-frontir is {f} If th s r primry inputs, this is sy If thy r not primry inputs, mor ts in to show up in J-frontir you my not to st th input you st to th ontroin vu If thr is runny, th who pross miht fi. s-- f f h i j k m n -s h f j i isions impitions ommnts k ision Tr /4/23 VLSI sin II: VHL 7 /4/23 VLSI sin II: VHL 72 8

19 j -s f h i Anothr mp isions impitions ommnts =,=,=f= /4/23 VLSI sin II: VHL 73 k ision Tr tivt fut, uniqu riv h= i= prop throuh i. j,k= f; h=jf = j=, k= prop throuh j. f = nu. ktrk ( = ) j= =, k= prop throuh i, fut t output = justify h =, = = h= j= s = How os it work Conptuy Ativt fut n propt Summry: orithm Thn justify th rminin ts Whn proptin ssin to othr inputs of th ts on th snsitiz pth o forwr n kwr impition whn oin kwr, spify t inputs if thy r if on input shou, put t into J-frontir /4/23 VLSI sin II: VHL 74 s-- < Summry: orithm Summry: Aorithm Oh, y th wy justify th rst of ths inputs Tht is, th -frontir is pursu with ony prti rr to whthr th vus st r sf onsistnt In th pross, th J- frontir rw r 5 ts shown hihiht pus th ts tht riv thm n thr s ots of ronvrnt fnout to us justifition proms. s-- iruit mss up to mk point pth-first push towr primry output o justifition n onsistny ftrwr s n kwr impition n us proms us ktrkin s nssry Ehustiv, ponnti Th numr of oprtions prform is n ponnti funtion of th numr of ts This is worst s, typiy ony sn whn fut turns out to untt But you on t know it s untt unti you hustivy try vrythin Huristis for stin on of hp ru srh tim of sussfu srhs Tst nrtors r oftn imit in thir srh pth, thus som tt futs on t hv tsts. /4/23 VLSI sin II: VHL 75 /4/23 VLSI sin II: VHL 76 9

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Designing A Uniformly Loaded Arch Or Cable

Designing A Uniformly Loaded Arch Or Cable Dsinin A Unirmy Ar Or C T pr wit tis ssn, i n t Nxt uttn r r t t tp ny p. Wn yu r n wit tis ssn, i n t Cntnts uttn r r t t tp ny p t rturn t t ist ssns. Tis is t Mx Eyt Bri in Stuttrt, Grmny, sin y Si

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Design Optimization Based on Diagnosis Techniques

Design Optimization Based on Diagnosis Techniques Dsign Optimiztion Bs on Dignosis Thniqus Anrs Vnris Mgy S. Air Irhim N. Hjj Univrsity of Toronto Motorol Univrsity of Illinois ECE Dprtmnt 77 W. Prmr ECE Dprtmnt n CSL Toronto, ON M5S 34 Austin, T 78729

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

Overview. Usages of Fault Simulators. Problem and Motivation. Alternatives and Their Limitations. VLSI Design Verification and Testing

Overview. Usages of Fault Simulators. Problem and Motivation. Alternatives and Their Limitations. VLSI Design Verification and Testing VLSI Dsin Vriiction n Tstin Fult Simultion Mohmm Thrnipoor Elctricl n Computr Eninrin Univrsity o Conncticut Ovrviw Prolm n motivtion Fult simultion lorithms Sril Prlll Ductiv Concurrnt Othr lorithms Rnom

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University I TURFGRASS DISEASE RESEARCH REPORT 9 J. M. Vrgs, Jr. n R. Dtwilr Dprtmnt f Btny n Plnt Pthlgy Mihign Stt Univrsity. Snw Ml Th 9 snw ml fungii vlutin trils wr nut t th Byn Highln Rsrt, Hrr Springs, Mihign

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

ECE Experiment #6 Kitchen Timer

ECE Experiment #6 Kitchen Timer ECE 367 - Exprimnt #6 Kithn Timr Sprin 2006 Smstr Introution This xprimnt hs you onstrut iruit intrfin nin I/O lins from th 68HC11 with two svn smnt isplys n mtrix kyp, n writ ssmbly lnu o to rliz prormmbl

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

Who is this Great Team? Nickname. Strangest Gift/Friend. Hometown. Best Teacher. Hobby. Travel Destination. 8 G People, Places & Possibilities

Who is this Great Team? Nickname. Strangest Gift/Friend. Hometown. Best Teacher. Hobby. Travel Destination. 8 G People, Places & Possibilities Who i thi Gt Tm? Exi Sh th foowing i of infomtion bot of with o tb o tm mt. Yo o not hv to wit n of it own. Yo wi b givn on 5 mint to omih thi tk. Stngt Gift/Fin Niknm Homtown Bt Th Hobb Tv Dtintion Robt

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Logic Redundancy Identication. September 14, target specic faults and are sometimes referred to as. \fault-independent methods.

Logic Redundancy Identication. September 14, target specic faults and are sometimes referred to as. \fault-independent methods. Fix-Vlu n Stm Unosrvility Thorms or Loi Runny Intition Sptmr 14, 2003 Astrt { Thr is lss o implition-s mthos tht intiy loi runny rom iruit topoloy n without ny primry input ssinmnt. Ths mthos r lss omplx

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Self-Adjusting Top Trees

Self-Adjusting Top Trees Th Polm Sl-jsting Top Ts ynmi ts: ol: mintin n n-tx ost tht hngs o tim. link(,w): ts n g twn tis n w. t(,w): lts g (,w). pplition-spii t ssoit with gs n/o tis. ont xmpls: in minimm-wight g in th pth twn

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information