Subjects of this chapter - Propagation harmonic waves - Harmonic waves on an interface (Boundary condition) - Introduction of phasor

Size: px
Start display at page:

Download "Subjects of this chapter - Propagation harmonic waves - Harmonic waves on an interface (Boundary condition) - Introduction of phasor"

Transcription

1 CHAPTR 8. LCTROMAGNTIC HARMONIC WAV Maxwell s equatns Dffeental wave equatn Tavelng wave A hamnc wave An abtay wave A lnea cmbnatn f hamnc waves. Supepstn pncple. Lnea meda, ( ε, μ ae cnstant) Hamnc waves A cnstant ampltude Tme-nvaant Snusdal steady-state Tme-vayng and H Hamnc waves n 3D-space. cs ( k ± ωt ), cs ( ω t ± k ) Maxwell s eqs. Subjects f ths chapte - Ppagatn hamnc waves - Hamnc waves n an nteface (Bunday cndtn) - Intductn f phas Tme-nvaant pat f the cmplex fm f a hamnc wave. + phase change, phase lead - phase change, phase lag 8- TH PHASOR In a medum f ρ = v 0, J = 0 and cnstant ε and μ Maxwell s equatns H = μ t (8-a) H =ε t (8-b) = 0 (8-c) H = 0 (8-d) Cmbnng tw cul equatns = με (8-) t Its slutn j j t (, t) Re e k = + ω Unfm plane wave (8-3) Hamnc wave M Hamnc Wave 8- Ppetay f Pf. Lee, Yen H

2 whee, vect cmplex ampltude k =ω μεa, wavevect (8-4) k q. (8-) k, but n a k Fm suce bunday cndtn In a medum f fnte extent The same dffeental wave eq. Unfm plane waves Bunday cndtn Lnea cmbnatn (Dffeent k 's ) A wave n a bunday A patal eflectn Ttal wave = ncdent wave + eflected wave, Re j j j t t e k e k = + e ω (8-5) ( ) ( ) Slutn f wave equatn f k = k =ω με. In geneal fm j t (, t) Re ( x, y, ) e ω (8-6) = Phas, tme nvaant. It assumes snusdal steady-state cndtn. It shws elatve phases, tme delays, n space. It s useful n cmbnng multple hamnc waves. It s vald n lnea meda. Dffeental wave eq. f H has the same fm as j t H (, t) Re H( x, y, ) e ω (8-7) = Phas f H xample 8- jk3 Reslve a hamnc wave = a y cs ( kx) e nt tw unfm plane waves and sketch the wavefnts. Slutn Usng ule fmula, we ewte jkx jkx jk3 = a y e + e e = ay e + a + j ( kx + k 3 ) j ( kx + k 3 ) y e M Hamnc Wave 8- Ppetay f Pf. Lee, Yen H

3 The ght sde s the sum f tw unfm plane waves f wavevects = k x + k3 and k = kax + k3 a, espectvely. Bth waves have the same wave numbe k = k = k + k 3 k a a The black( blue) paallel lnes epesent plane wavefnts, vewed fm the tp, f the wave f k ( k ). They cespnd t phases π n, whee n ae nteges. The dts n x axs ae the pnts at whch wavefnts f the same phase meet, and theefe the ttal electc feld ntensty has the maxmum ampltude. The ampltude vaes snusdally alng x axs as s ndcated by the tem cs ( kx ). 8- MAXWLL S QUATIONS IN PHASOR FORM Insetng qs. (8-6) and (8-7) n q. (8-a) Re (,, ) j ω xy e t Re ( xy,, ) e j ω = μ t t H (8-8) Re j ω t (,, ) Re j ω e xy = μ e t jωh ( xy,, ) Cul, tme devatve and eal pat ae mutually exclusve Igne Re and exp ( jω t ) Faaday s law n phas fm = jωμh Maxwell s equatns n phas fm wth cnstant ε and μ = jωμh (8-9a) H = jωε (8-9b) = 0 (8-9c) H = 0 (8-9d) and H ae tme-nvaant cmplex vects M Hamnc Wave 8-3 Ppetay f Pf. Lee, Yen H

4 Cmbne tw cul equatns = jωμ H =ωμε (8-0) Usng a vect dentty, =, and q. (8-9c), + k = 0 : Vect Helmhlt s equatn (8-) ω π k =ω με= = : Wavenumbe (8-) v λ whee ω, angula fequency μ, pemeablty ε, pemttvty v, velcty λ, wavelength. 8-3 PLAN WAV IN LOSSLSS DILCTRIC In Catesan cdnates, vect Helmhlt s equatn a + a + a + k a + a + a = 0 (8-3) ( x x y y ) ( x x y y ) Mutually exclusve x + k x = 0 (8-4a) y + k y = 0 (8-4b) + k = 0 (8-4c) Rewtng q. (8-4a) x x x k 0 x = x y (8-5) Its slutn jkx ˆ ( x ky y k ) = e = ˆ e ± + + ± jk x x x (8-6) k k = k kx + ky + k Scala cmplex ampltude Smlaly ˆ y = e y = ˆ e jk jk k a a, wavevect (8-7) (8-8a) (8-8b) Helmhlt s equatns n q. (8-4) The same k n qs. (8-6), (8-8a) and (8-8b) But n estctn n a k M Hamnc Wave 8-4 Ppetay f Pf. Lee, Yen H

5 The same a k Thee slutns nt a sngle wave ˆ ˆ ˆ jk ( ) = a + a + a = a + a + a e = whee x x y y x x y y e j k = ˆ a + ˆ a + ˆ a ˆ j = a e ϕ a x x y y Scala cmplex ampltude Vect cmplex ampltude (8-9) (8-0), ampltude ϕ, phase angle = e jk, a unfm plane wave n 3D space. k, wavevect ppagatn dectn and wavelength, vect cmplex ampltude dectn and ampltude f, pstn vect k, tme-phase f the feld ˆ a ˆx, ˆy and ˆ have the same ϕ phase angle A sngle wave n an nfnte medum ϕ= 0 Tansvese wave Insetng q. (8-9) n q. (8-9c) j j ( e = k k ) = j( k ) e = 0 k = 0 (8-) Ppagatn dectn Oscllatn dectn s n the wavefnt M Hamnc Wave 8-5 Ppetay f Pf. Lee, Yen H

6 H fm q. (8-9a) x y x y = = jkx jky jk = j k e x y ˆ jk ˆ jk ˆ jk ˆ jk ˆ jk ˆ jk e e e e e e x y x y = jωμh a a a a a a jk (8-) H = ( a ) (8-3) k = μ ε : Intnsc mpedance (8-4) Rewtng (8-3) ( ) e j k j k k e H = a H Insetng ˆ = ˆ a (8-5) Same fm as H = ( a a ) Hˆ a (8-6) k H = ˆ / ˆ H, n hms [ Ω ] = μ / ε = 0π 377[ Ω ] Lssless delectcs s eal and H ae n phase Lssy delectcs s cmplex and H ae ut f phase H ( and k ), fm q. (8-5) k, fm q. (8-), H and k ae mutually thgnal Tansvese wave! Real nstantaneus expessn (, t) = a cs( ωt k + ϕ) (8-7a) H (, t) = a cs( ωt k + ϕ) (8-7b) H Unt vects a = a a (8-8) k H M Hamnc Wave 8-6 Ppetay f Pf. Lee, Yen H

7 xample 8- jk A plane wave, = a x ( + j) e, has a fequency f GH and ppagates n a delectc f ε = 4 and μ =. Fnd (a) and H (b) wavelength Slutn (a) Rewtng the phas /4 e jπ = a e jk (8-9) x The eal nstantaneus expessn = = ω + 4 jπ/4 jk jωt Re π ax e e e ax cs t k Insetng q. (8-9) n q. (8-3) jπ/4 H = ( a ) = ( a a ) whee ak = a. k x = a Intnsc mpedance μ = = 88.5[ Ω] εε e e jπ/4 jk y e e. jk Real nstantaneus expessn jπ/4 jk jωt π H = Re ay e e e = ay cs ωt k + 4 M Hamnc Wave 8-7 Ppetay f Pf. Lee, Yen H

8 (b) Fm q. (8-) ω ε π k =ω εμ= = / με 3 0 π = λ λ= m = cm POYNTING VCTOR AND POWR FLOW negy denstes n statc felds D and B H negy s sted n and H f an electmagnetc wave. Same velcty and dectn as the wave. Pwe delvey Tw cul equatns B = t D = + t (8-30a) H J (8-30b) A vect dentty ( ) = ( ) ( ) H H H (8-3) Insetng q. (8-30) n q. (8-3) ( ) = D B H J H + H (8-3) t t Assumng ε, μ and σ ae cnstant D ε = ( ) = ( D ) (8-33a) t t t B μ t t t H = ( H H ) = ( B H ) (8-33b) Fm qs. (8-3) and (8-33) = + t t ( H ) J H ( D ) ( B H ) : Pyntng s theem (8-34) Integatng bth sdes ve a vlume and applyng dvegence theem = + t t ( H ) d s J d v H ( D ) d v ( B H ) d v (8-35) S V V V Ohmc pwe-lss n V Inceased enegy n V pe unt tme. Net pwe flwng nt V. Ttal nstantaneus pwe flwng nt V. (Integand = pwe densty) M Hamnc Wave 8-8 Ppetay f Pf. Lee, Yen H

9 Pyntng vect s defned by = S and H. S H : W / m S k Tme-aveage pwe densty S ~, a nnlnea functn f and H cannt be expessed by phass n S (8-36) Usng cmplex expnental and ts cmplex cnjugate. jϕe k jϕe = a cs ( ωt k + ϕ e) = ( ) ( ) a e e + a e e * ( ˆ jk jω t ) ( ˆ + jk jωt = a e e + a) e e jk jωt * + jk jωt = e e e e + jωt * jωt e + e jωt j jω t+ jk (8-37a) jωt * jωt H = a H cs ( ωt k +ϕ ) = He + H e (8-37b) H h whee, phas, vect cmplex ampltude ˆ, scala cmplex ampltude, ampltude ϕ e, phase angle *, cmplex cnjugate. Insetng q. (8-37) n q. (8-36) jωt * jωt jωt * jωt S = e + e e e H + H j ωt * * j ωt * * = e + e H H H H (8-38) Tme aveage f S s defned by T / S = dt T S : T, tempal ped f the wave T / Tme-aveage Pyntng vect S Re * = H (8-39) M Hamnc Wave 8-9 Ppetay f Pf. Lee, Yen H

10 xample 8-3 Gven an electmagnetc wave, (, t) = a cs( ωt k) and H (, t) = a cs( ωt k), fnd S usng (a) b and H (b) and H Slutn (a) Fm q. (8-36) y ε μ ε S = H = a cs ωt k μ Usng tgnmety ( ) ε S = a + cs ( ωt k) μ Afte tme-aveage x ε S = a (8-40) μ (b) Phass f and H jk = a e x H = a y ε e μ jk Fm q. (8-39) * * jk ε jk S = Re = Re ( xe ) y e H a a μ Rewtng t ε = Re μ jk jk ( axe ) ( aye ) ε S = a (8-4) μ The esult s the same as q. (8-40). M Hamnc Wave 8-0 Ppetay f Pf. Lee, Yen H

11 8-5 POLARIZATON OF PLAN WAV Phas f a unfm plane wave = exp ( jk ) k fm Maxwell N lmts n and a ˆx, ˆy and ˆ f In phase scllates wth tme alng a staght lne Out f phase changes magntude and dectn wth tme Oentatn f s called the plaatn H s just gven by q. (8-3) Lnea Plaatn A plane wave n + -dectn shuld be n xy -plane jk = e = ˆ a + ˆ a jk e (8-4) ( ) x x y y Scala cmplex ampltudes. If ˆx = x and ˆy y =, eal values jk jωt Re ( x x y y ) e e a a ( xax y ay ) cs ( t k) = + = + ω (8-43) It scllates wth tme alng a lne paallel t xax + ya y Lnealy plaed n the dectn xax + ya y. Lnealy plaed alng x -axs + Lnealy plaed alng y -axs Tw cmpnent waves ae n phase. M Hamnc Wave 8- Ppetay f Pf. Lee, Yen H

12 xample 8-4 Gven a lnealy plaed wave, = ( x + 3 y) jk a a e, ppagatng n fee space, fnd (a) tatn angle f the plaatn vect wth espect t x -axs (b) tme-aveage pwe densty Slutn (a) The tatn angle θ= tan = 60 3 (b) Fm q. (8-3) ε ( 3 ) ( 3 ) jk H ε a a a e a a e = x + y = y x μ μ Fm q. (8-39) S Re ( 3 jk ε = ax + ay) e μ ( ay 3 ax) e ε = ( ax + 3ay) ( ay 3ax) μ ε = + μ ( 3) a The tme-aveage pwe densty s the sum f thse f the waves that ae plaed n x and y -dectns, espectvely. jk jk * 8-5. Ccula Plaatn y -cmpnent lags behnd x -cmpnent by 90 n tme dmensn / ( x y) ( x y) jk j jk = a j a e = a + e π a e (8-44) whee ˆ = ˆ =. x y Instantaneus expessn = a cs ( ωt k) + a cs ( ωt k π/ ) (8-45) x y At = 0 ( ) a ( ) ( ) a sn ( ) = a cs ω t + cs ωt π/ x y = a cs ω t + ωt x y (8-46) At ω t = 0, = ax At ω t = π /, = ay Rght-hand cculaly plaed wave A ccula lcus n xy -plane M Hamnc Wave 8- Ppetay f Pf. Lee, Yen H

13 Fg. 8-4, ght-hand ccula plaatn y - cmp. lags behnd x -cmp. by 90 n tme phase y -cmp. aves at p at a late tme than x -cmp. by a quate f the tempal ped. y -cmp. s dsplaced backwad by a quate wavelength wth espect t the x -cmp. The phase elatnshp s mantaned thughut the space at all tmes. y -cmp. leads x -cmp. by 90 n tme phase Left-hand cculaly plaed wave When the left fnges fllw the tatn f the electc feld vect, the left thumb pnts t the ppagatn dectn f the wave. / ( x y) ( x y) jk j jk = a + j a e = a + e π a e (8-47) Instantaneus expessn = a cs ( ωt k) + a cs ( ωt k + π/ ) (8-48) x y At = 0 ( ) a ( ) ( ) a sn ( ) = a cs ω t + cs ω t + π/ x y = a cs ωt ωt x y (8-49) At ω t = 0, = ax At ω t = π /, = ay Clckwse tatn A ccula lcus n xy plane M Hamnc Wave 8-3 Ppetay f Pf. Lee, Yen H

14 Fg. 8-5, left-hand ccula plaatn y - cmp. leads x -cmp. by 90 n tme phase y -cmp. aves at p at an eale tme than x -cmp. by a quate f the tempal ped. y -cmp. s dsplaced fwad by a quate wavelength wth espect t the x -cmp. xample 8-5 A lnealy plaed wave can be expessed by the sum f tw cculaly plaed waves. Fnd tw cculaly plaed waves cntaned n jk (a) = a xe jk = a + a e (b) ( x x y y ) Slutn (a) By addng and subtactng ( /) j a y jk jk = a xe = ( x j y) + ( x + j y) e a a a a (8-50) On the ght sde, the fst tem s a ght-hand cculaly plaed wave and the secnd s a left-hand cculaly plaed wave. Thus, the answe s jk ( ax j a y) e jk and ( ax + j a y) e The lnealy plaed wave n x -dectn s the sum f tw cculaly plaed waves, wth a half the ampltude f the lnea plaatn, whch tate n the ppste dectns and meet each the at x -axs nce n evey cycle f the tatns. (b) Magntude f the ampltude = + x y Phase angle f the ampltude θ= tan y x M Hamnc Wave 8-4 Ppetay f Pf. Lee, Yen H

15 The plaatn vect s paallel t a efeence lne that s tated by θ wth espect t x -axs. Refeng t the esult f (a), we can expess the lnealy plaed wave by the sum f tw cculaly plaed waves, whch tate n the ppste dectns and meet at the efeence lne nce n evey cycle f the tatns. We add a phase θ t the ght-hand cculaly plaed wave n q. (8-44), and add a phase θ t the left-hand cculaly plaed wave n q. (8-47), s that the plaatn vects becme paallel t the efeence lne at = 0 and t = 0, a j a e θ e, (8-5a) j jk ( x y) ( j j jk x y) e θ e + a a, (8-5b) Reducng the ampltude f the waves n q. (8-5) by half and addng tw waves j jk j jk = ( ax j ay) e θ e + ( ax + j a y) e θ e (8-5) whch s cetanly a sum f tw cculaly plaed waves Let us check the esult n q. (8-5). Reaangng t = ( e e ) x j( e e ) y + a a e jk = cs θ ax + sn θa ye jθ jθ jθ jθ jk Snce cs θ= x and sn θ = tated by θ wth espect t x -axs. y, t s a lnealy plaed wave n the dectn that s llptcal Plaatn jϕ jk = a + e a e : llptcally plaed wave (8-53) ( x x y y ) Lnealy and cculaly plaed waves ae specal cases f an ellptcally plaed wave Instantaneus expessn = a cs ( ωt k ) + a cs ( ωt k + ϕ) (8-54) x x y y M Hamnc Wave 8-5 Ppetay f Pf. Lee, Yen H

16 At = 0 plane x = x cs ( ω t) (8-55a) = cs ( ω t + ϕ ) (8-55b) y y F 0 <ϕ<π / At ω t = 0, x = x and y y cs = ϕ ( n fst quadant) ω = π, = 0 and = sn ϕ ( paallel t y -axs) At t / x llptcal lcus by n q. (8-54) New cdnate system, x ' and y ' Paallel t the maj and mn axes y y s tatng clckwse n xy -plane Left-hand ellptcally plaed. llptcal lcus n geneal fm x = x cs ( ω t + ϕ ') = x cs ( ω t + ϕ' ) (8-56a) y = y sn ( ω t + ϕ ') = y sn ( ω t +ϕ' ) (8-56b) ccw tatn n x ' y ' -plane Cd. tansfmatn f q. (8-55) t pmed cd. x x cs ( t) cs y cs ( t ) sn cs ( t) sn cs ( t ) cs = ω θ+ ω + ϕ θ (8-57a) = ω θ+ ω +ϕ θ (8-57b) y x y By equatng q. (8-57) wth q. (8-56) xy csϕ tan ( θ ) = ( ) ( ) x y (8-58) tan θ= / f ϕ= 0, lnealy plaed wave. y x M Hamnc Wave 8-6 Ppetay f Pf. Lee, Yen H

17 xample 8-6 jϕ Fnd tme-aveage pwe densty f a unfm plane wave, = ( x x + y y ) ppagatng n fee space. Slutn Vect cmplex ampltude = a + e ϕ a j x x y y Fm q. (8-3) ( ) ( j ϕ H = a ) jk k = a xax + ye ay e jk H e Vect cmplex ampltude j = x y y x ( e ϕ ) H a a Tme-aveage Pyntng vect S * * = Re Re H = H = Re = ( x + y ) + jϕ jϕ ( xax ye ay ) ( xay ye a x ) jk a e a e, The pwe delveed by an ellptcally-plaed wave s equal t the sum f the ndvdual pwes f tw lnealy-plaed waves. 8-6 PLAN WAV IN LOSSY MDIA An electmagnetc wave n a lssy delectc. Induced electc dples Pwe lss (Same feq. ω) Dampng fce (Cllsn) Cnductn cuent als causes pwe lss. In a lssy medum, ˆ ε=ε jε Pwe lss Magnetc nteactn s neglgble μ s eal M Hamnc Wave 8-7 Ppetay f Pf. Lee, Yen H

18 8-6. Lssy Delectc ( σ= 0) In a smple medum wth n fee chages and cnstant ε and μ Maxwell s equatns = jωμh (8-59a) H = jω( ε jε ) (8-59b) = 0 jωεˆ (8-59c) (8-59d) H = 0 Helmhlt s equatn ˆ + k = 0 (8-60) Cmplex wavenumbe kˆ ˆ ( j ) =ω με=ω μ ε ε (8-6) Plane wave slutn = e jk ˆ a k A wave n + -dectn = e e jk ˆ γ Ppagatn cnstant ( ) γ = jkˆ = jω μ ε jε α+ jβ : a k by the means (8-6) (8-63) (8-64) whee α, attenuatn cnstant β, phase cnstant. με ε α=ω + ε με ε β=ω + + ε / / : Nepes pe mete [Np/m] (8-65a) : Radans pe mete [ad/m] (8-65b) Lss tangent s defned by ε σ tan ξ= = ε ωε : ξ, lss angle (8-66) Insetng q. (8-64) n q. (8-63) j j = e α e β = ( a ) e α e β (8-67a) M Hamnc Wave 8-8 Ppetay f Pf. Lee, Yen H

19 Instantaneus expessn α = ( a ) e cs ( ωt β) (8-67b) Attenuatn. Phase vaatn Phase dffeence s π between tw pnts sepaated by λ βλ = π Rewtng t π β= λ : β and λ depend n ε (8-68) Phase velcty v p ω = β (8-69) F με > με β n medum > k n fee space λ n medum < λ n fee space v p s slwe n medum H fm qs. (8-63) and q. (8-59a) γ γ ( ae ) a ( ae ) = γ = jωμh Rewtng t, wth q. (8-64) εˆ μ ˆ H γ α jβ = ( a a ) e = ( a a ) e e (8-70) Cmplex ntnsc mpedance, = ˆ ˆ / Hˆ μ μ = ˆ = εˆ ε jε (8-7) Cmplex ˆ H and ae ut f phase xample j/ Fm a wave, = a xe e, gven n a lssy delectc f detemne ntnsc mpedance f the medum. μ =μ and ε = ε, Slutn Attenuatn and phase cnstants α= 0.3 β= 0.5 Fm q. (8-65) ε + α ε = β ε + + ε (8-7) M Hamnc Wave 8-9 Ppetay f Pf. Lee, Yen H

20 Insetng α and β n q. (8-7), lss tangent ε =.88 ε Fm q. (8-7), wth μ = ˆ ε j ( ε / ε ) ε = ε and the lss tangent 0π = = 83e j.88 j 0.54 (8-73) (8-74) H lags behnd by 0.54 adan. Nte that α, β and ˆ ae clsely elated t each the Lssy Delectc ( σ 0) Cnductn cuent s the dmnant suce f pwe lss. In a delectc wth σ 0 and n dampng = jωμh (8-75a) H = J + jωε = ( σ+ jωε) (8-75b) = 0 (8-75c) H = 0 (8-75d) and H, geneated utsde D =ρ v = 0, J s nduced N suce chage cuent Rewtng q. (8-75b) σ H = jω ε j ω jω( ε jε ) jωεˆ ˆε s newly defned ε = ε σ ε = ω (8-76) (8-77a) (8-77b) Plane wave slutn = (8-78) e γ Substtutng q. (8-77) n qs. (8-64) and (8-65) σ γ α+ jβ= jω με j ωε (8-79) με σ α=ω + ωε με σ β=ω + + ωε / / (8-80a) (8-80b) M Hamnc Wave 8-0 Ppetay f Pf. Lee, Yen H

21 Smlaly μ = ˆ ε σ ωε ( j / ) (8-8) Lw-lss delectc, ε << ε σ / ωε << Applyng bnmal expansn σ σ γ jω με j + ωε 8 ωε α+ jβ (8-8) Bnmal expansn n geneal fm n n( n ) ( + a) = + na + a +...! whee a <<. Fm q. (8-8) σ μ α ε σ β ω με + 8 ωε (8-83a) (8-83b) whee α ~ σ β ω με, pefect delectc Smlaly μ σ ˆ + j ε ωε Pstve phase angle leads H n tme phase. (8-84) M Hamnc Wave 8- Ppetay f Pf. Lee, Yen H

22 xample j (. ) Gven an electmagnetc wave, = a x 300e [ V / m ], ppagatng n a medum f = ˆ 0 + j [ Ω ], fnd (a) S at = 0.5m (b) tme-aveage hmc pwe-lss pe unt vlume at = 0.5m at steady state Slutn (a) Magnetc feld ntensty 300 H = ( a ) = a ˆ 0 + j 0. j (. ) y e Tme aveage Pyntng vect 0.4 * 300 e S = Re Re H = a 0 j 0.4 = a ( 0.7) e (8-85) At = 0.5m ( 0.7) e 64.3 W / m = = S a a (b) Tme aveagng Pyntng s theem n q. (8-34) at steady state H = J S * = J (8-86) whee J s the eal nstantaneus value and J s the phas. valuatng the left sde f q. (8-86) usng q. (8-85) ( 0.7)( 0.4) S = e = 85.e At = 0.5m, tme-aveage hmc pwe-lss pe unt vlume s S = 85.e = 69.0 W / m (8-87) In the the methd, the pwe lss can be calculated by the use f J Fst, fm qs. (8-79) and (8-8) γ σ = jωε j ˆ ωε Fm the equatn we btan γ 0. + j. 3 σ= Re Re.89 0 [ S / m] ˆ = = 0 + j At = 0.5m = a j (. 0.5) x 300e (. 0.5) ( j ) J = a x e M Hamnc Wave 8- Ppetay f Pf. Lee, Yen H

23 Tme-aveage hmc pwe-lss * ( ) J = e = 69.0 W / m 3 (8-88) Tw esults n qs. (8-87) and (8-88) ae dentcal Gd Cnduct Gd cnduct σ/ ωε >> σ + j γ jω με j = ωμσ j / / j /4 j ωε : j = e e π = π = (8-89) α+ jβ α=β= πf μσ (8-90) Plane wave n a gd cnduct α jβ = e e = ( a ) e e πf μσ j πf μσ (8-9a) f ( ) e π μσ a cs ( t f ) = ω π μσ (8-9b) Attenuatn Depth f penetatn skn depth δ= = = πf μσ α β : [m] (8-9) Fm β= π/ λ λ δ= π (8-93) Phase velcty n a gd cnduct v p = f λ = ωδ = πf μσ 4 : p v =.3 0 m/ s at GH n Cu (8-94) M Hamnc Wave 8-3 Ppetay f Pf. Lee, Yen H

24 xample Fnd the skn depth n cppe f σ= [ S / m] as a functn f fequency Slutn Fm q. (8-93), wth μ μ δ= = πf μ σ π f 4π The answe s δ= [m] f 7 7 At a fequency f GH, skn depth n cppe s nly. μ m. Fm q. (8-8) ˆ = ˆ jωμ σ ( + j ) σδ : leads H by 45 n tme phase (8-95) The eal pat f ˆ R = : Suface esstance pe unt aea (8-96) σδ s Resstance f a gd cnduct f css sectn w δ and length l l R = w δσ (8-97) xample 8-0 ( ) / A plane wave = ( ) j a x e + δ ppagates nt a gd cnductn f cnductvty σ n the egn 0. 3 (a) Fnd tme-aveage pwe lss n a vlume l w [ m ] (b) Fnd ttal cuent, n phas fm, cssng the aea w [ m ] n y -plane (c) Assumng the cuent n (b) flws unfmly n a vlume f css sectn w δ and length l, fnd ts esstance, and tme-aveage pwe lss n the vlume M Hamnc Wave 8-4 Ppetay f Pf. Lee, Yen H

25 Slutn (a) Tme-aveage pwe lss * = * P = Re dv w Re d J = σ l V = 0 = / = σw l e δ d = 0 = σwδl 4 (8-98) (b) Ttal cuent σwδ I = σ d = σ w e d = w = ( + j) / δ y= 0 s = 0 = 0 (8-99) + j (c) The cnduct has a css sectn wδ, length l and cnductvty σ. The esstance l R = w δσ (8-00) Tme-aveage pwe lss, wth qs. (8-99) and (8-00) * P = R Re I I w = σ δl (8-0) 4 The esults n qs. (8-98) and (8-0) ae dentcal, fm whch we can assume that the cuent flws unfmly nly n the egn 0 δ, as fa as the ttal pwe lss s cncened. We can als btan the same pwe lss as q. (8-98) (8-0) fm the vltage l that s appled t the esstance R f q. (8-00). Pwe densty n a cnduct lectc and magnetc feld ntenstes Z a ( j ) / xe + δ σδ HZ ( ak ) Z ay e ˆ + j ( + j) / δ Tme-aveage Pyntng vect * / / / / ( ) / Re δ j δ σδ δ j δ j ( xe e ) y e e Re σδ + δ S = a a = a e + j S σδ / = a e δ 4 : Attenuated (8-0) M Hamnc Wave 8-5 Ppetay f Pf. Lee, Yen H

26 xample 8- Refeng t Fg. 8-0, fnd the ttal pwe tansmtted nt the cnduct thugh an aea w l f the cnduct suface. Slutn Fm q. (8-0), tme-aveage pwe densty at = 0 σδ S = a (8-03) 4 Tme-aveage ttal pwe acss the aea P l w = d = σδ x 0 y 0 4 w = S s l (8-04) = Nte that ds s n a dectn, whch s n the same dectn as S, nt the utwad suface nmal. The pwe acss the suface decays t e at =, as s shwn n q. (8-0), mplyng that the tansmtted pwe s dsspated all n the cnduct. It s vefed by the fact that the esults n qs. (8-04) and (8-98) ae dentcal. 8-7 PLAN WAVS AT BOUNDARY A unfm plane wave Reflectn Tansmssn Inteface (Dffeent ε and μ ) 8-7. Nmal Incdence f Plane Wave M Hamnc Wave 8-6 Ppetay f Pf. Lee, Yen H

27 Incdent wave plaed n x dectn j = a xe (8-05a) j y e β H = a (8-05b) whee β, phase cnstant, ntnsc mpedance, ampltude, assumed eal The bunday cndtn ( k and k t ) a, unfm ( and t ) a x and t at = 0 The eflected plane wave j = a xe (8-06a) j y e β H = a (8-06b) Tavelng n dectn. Same β and as, same medum The tansmtted plane wave t t j = a xe (8-07a) t t j y e β H = a (8-07b) Fm the bunday cndtn at = 0 plane ( 0) + ( 0) = t ( 0) (8-08a) H ( 0) + H ( 0) = H t ( 0) (8-08b) Insetng qs. (8-05)-( 8-07) t + = (8-09a) t = (8-09b) By slvng the equatn = + t = + (8-0a) (8-0b) M Hamnc Wave 8-7 Ppetay f Pf. Lee, Yen H

28 We defne Γ= = + : Reflectn ceffcent (8-a) t τ= = + : Tansmssn ceffcent (8-b) Tue nly f nmal ncdence Γ < 0 f < a = a Γ 0 f Mandaty eflectn Γ= 0 f = N eflectn q. (8-) can be appled even t an nteface between tw lssy meda Cmplex and Cmplex Γ and τ Fm q. (8-) +Γ=τ (8-) Vald nly f nmal ncdence xample 8- F nmal ncdence f a unfm plane wave, pve Γ + ( / ) τ = fm the cnsevatn f enegy Slutn Tme-aveage pwe denstes f the ncdent, eflected and tansmtted waves S * = Re H = a (8-3a) S = a = Γ a (8-3b) S t t = a = τ a (8-3c) Fm the cnsevatn f enegy t S = S + S (8-4) Substtutng q. (8-3) Γ + τ = (8-5) Tw tems n the left sde cespnd t the eflected and the tansmtted eneges elatve t the ncdent enegy. M Hamnc Wave 8-8 Ppetay f Pf. Lee, Yen H

29 A. Standng Wave Rat Ttal electc feld ntensty n medum jβ j β = + = axe + Γe a ˆ x (8-6) Γ s cmplex n geneal j Γ= Γ e φ (8-7) Rewtng q. (8-6) wth q. (8-7) ˆ j j( ) = e β + Γ e β +φ (8-8) The maxmum ampltude and ts lcatn ˆ = + Γ (8-9) max max ( ) = φ+ π β ( n) ( n = 0, ±, ±,...) (8-0) The mnmum ampltude and ts lcatn ˆ = Γ (8-) mn mn ( ) = φ+ π +π β ( n ) ( n = 0, ±, ±,...) (8-) The ntemaxmal dstance s π /β, a half wavelength f the wave n medum. Rewtng q. (8-8) ˆ jβ = e Γ+Γ+Γe j( β +φ) φ/ ( ) cs ( /) jβ j = e Γ + Γ e β + φ (8-3) Real nstantaneus expessn = Γ cs ωt β + Γ cs β +φ/ cs ω t +φ/ (8-4) ( ) ( ) ( ) ( ) Tavelng wave Standng wave M Hamnc Wave 8-9 Ppetay f Pf. Lee, Yen H

30 Tavelng wave, a blue cled lne; standng wave, black cled lne ω t = 0, π / 4 and π f Γ= 0.5 and φ = 0 at ω t = 0, π/ 4, π/, 3 π / 4, and π f Γ= 0.5 and φ = 0. Black cled lne, ; blue cled lne, ampltude f as a functn f pstn The standng wave at s defned by S ˆ = max = : Dmensnless (8-5) Γ ˆ mn +Γ Γ anges fm 0 t, and S anges fm t. M Hamnc Wave 8-30 Ppetay f Pf. Lee, Yen H

31 xample 8-3 A nmally ncdent wave s eflected ff an nteface at = 0 plane. Measued n medum ae the standng wave at f 4, a dstance f 0.m between the fst maxmum f the electc feld ntensty and the nteface, and a dstance f 0.5m between tw adjacent maxma. Fnd the ntnsc mpedance f medum. Slutn The ntemaxmal dstance s equal t a half wavelength f the wave n medum λ= 0.5m π β = = π. λ The fst maxmum cespnds t n = 0 n q. (8-0) max = φ= 0.m β Cmbnng tw equatns φ= 0.8π (8-6) Fm q. (8-5) S 4 Γ= = = 0.6 S + 4+ (8-7) The eflectn ceffcent, fm qs. (8-6) and (8-7) e j π Γ= (8-8) Rewtng q. (8-a) +Γ = Γ (8-9) Insetng q. (8-8) and = n q. (8-9) j0.8π j e 0.99e = = = 0.8e j0.8π j e.e The answe s 0.83 = e [ Ω ] 305 j j 0.83 B. Inteface Invlvng Pefect Cnduct Inteface between a lssless medum and a pefect cnduct < 0 0 Pefect cnduct σ= = 0 Γ = and τ = 0 M Hamnc Wave 8-3 Ppetay f Pf. Lee, Yen H

32 Incdent plane wave n medum j = a e β : Plaed n x -dectn (8-30a) x e β j H = a y (8-30b) Reflected plane wave ppagates n dectn jβ jβ = a Γ e = a e (8-3a) x x e β j H = a y (8-3b) whee Ampltude f fm =Γ H fm q. (8-3). = 0 at cnduct suface. Ndes wth a ped f λ /. Fst nde f H at λ /4 fm the cnduct suface. The same ped as M Hamnc Wave 8-3 Ppetay f Pf. Lee, Yen H

33 Ttal feld n medum a = + = x e e jβ jβ ( ) = a j sn β H = H + H = a y e + e = ay cs β x ( ) jβ jβ Instantaneus expessn Z ax sn( β) cs ( ωt π/) = a sn( β ) sn( ωt) x (8-3a) (8-3b) : Standng wave (8-33a) H = a cs ( β ) cs ( ωt) (8-33b) x Standng wave cannt tanspt enegy n space, because the fact j n q. (8-3a) * makes H be magnay and esults n S = 0. xample 8-4 A ght-hand cculaly plaed wave, = ( x y) j a j a e β, ppagates n fee space and mpnges n the suface f a pefect cnduct at = 0 plane. Fnd (a) plaatn vect f the eflected wave (b) suface cuent densty n the cnduct suface (c) n fee space Slutn (a) Intnsc mpedance f the pefect cnduct = 0 Reflectn ceffcent Γ= Reflected wave j β j e j e j β =Γ a a = a + a (8-34) ( x y) ( x y) Real nstantaneus expessn f the eflected wave jπ/ jβ jωt = Re a + e a e e ( x y) π = ax cs ( ω t +β ) + ay cs ω t +β + = a cs ω t +β ω t +β ( ) a sn ( ) x y Let us check at = 0 plane At ω t = 0, = a x At ω t = π /, = a (8-35) y When the left fnges fllw n q. (8-35), the left thumb pnts t the ppagatn dectn f, the dectn. Snce the x and y -cmpnents have the same ampltude, the eflected wave s left-hand cculaly plaed. M Hamnc Wave 8-33 Ppetay f Pf. Lee, Yen H

34 If a ght-hand cculaly plaed wave s eflected, t becmes a left-hand cculaly plaed wave, vce vesa. (b) Magnetc feld ntenstes f the ncdent and eflected waves H = ( ak ) = a ( ax jay) e jβ ( ay jax) = + e jβ H = ( ak ) = ( a) ( ax + jay) e jβ ( ay jax) = + Ttal feld at = 0 plane H = H + H = a + a ( y j x ) Suface cuent densty J = a H = a a + a e jβ ( ) ( j ) s n y x = ( ax jay) whee a n s the unt suface nmal. (c) Ttal feld n fee space β ( x y) ( x y) = + = a j a e + a + j a e j jβ ( ) a ( ) = a j sn β sn β x y Instantaneus expessn ( ) ( ) jωt j( ωt π/) jωt x y = Re e = Re sn β e sn β e a a ( ) a ( ) a ( ) = sn β x sn ωt y cs ωt M Hamnc Wave 8-34 Ppetay f Pf. Lee, Yen H

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state): Electc ptental enegy Electstatc fce des wk n a patcle : v v v v W = F s = E s. Ptental enegy (: ntal state f : fnal state): Δ U = U U = W. f ΔU Electc ptental : Δ : ptental enegy pe unt chag e. J ( Jule)

More information

is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2

is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2 Ct Cllege f New Yk MATH (Calculus Ntes) Page 1 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak Chapte 7 sectn : Vlume Suface f evlutn (Dsc methd) 1) Estalsh the tatn as and the

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 3 lectmagnetic Waves 3.1 Maxwell s quatins and ectmagnetic Waves A. Gauss s Law: # clsed suface aea " da Q enc lectic fields may be geneated by electic chages. lectic field lines stat at psitive

More information

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC LEAP FOG TEHNQUE Opeatnal Smulatn f L Ladde Fltes L pttype lw senstvty One fm f ths technque s called Leapf Technque Fundamental Buldn Blcks ae - nteats - Secnd-de ealzatns Fltes cnsdeed - LP - BP - HP

More information

hitt Phy2049: Magnetism 6/10/2011 Magnetic Field Units Force Between Two Parallel Currents Force Between Two Anti-Parallel Currents

hitt Phy2049: Magnetism 6/10/2011 Magnetic Field Units Force Between Two Parallel Currents Force Between Two Anti-Parallel Currents 6/0/0 Phy049: Magsm Last lectue: t-avat s and Ampee s law: Magc eld due t a staght we Cuent lps (whle bts)and slends Tday: emnde and aaday s law. htt Tw lng staght wes pece the plane f the pape at vetces

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetsm Set 8: Plane waves Instructor: Prof. Vtaly Lomakn Department of Electrcal and Computer Engneerng Unversty of Calforna, San Dego, CA 92093 1 Wave equaton Source-free lossless Maxwell

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating: Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

More information

T-model: - + v o. v i. i o. v e. R i

T-model: - + v o. v i. i o. v e. R i T-mdel: e gm - V Rc e e e gme R R R 23 e e e gme R R The s/c tanscnductance: G m e m g gm e 0 The nput esstance: R e e e e The utput esstance: R R 0 /c unladed ltage gan, R a g R m e gmr e 0 m e g me e/e

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470 Assignment 7 Paallel Resnance OBJECTIVE T investigate the paallel cnnectin f R,, and C. EQUIPMENT REQUIRED Qty Appaatus 1 Electicity & Electnics Cnstuct EEC470 1 Basic Electicity and Electnics Kit EEC471-1

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r 1 Intductin t Pe Unit Calculatins Cnside the simple cicuit f Figue 1 in which a lad impedance f L 60 + j70 Ω 9. 49 Ω is cnnected t a vltage suce. The n lad vltage f the suce is E 1000 0. The intenal esistance

More information

Basics of Wave Propagation

Basics of Wave Propagation Basics of Wave Propagation S. R. Zinka zinka@hyderabad.bits-pilani.ac.in Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus May 7, 2015 Outline 1 Time Harmonic Fields 2 Helmholtz

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: 5/0/011 Chapte 5 In the last lectue: CapacitanceII we calculated the capacitance C f a system f tw islated cnducts. We als calculated the capacitance f sme simple gemeties. In this chapte we will cve the

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

Application of Complex Vectors and Complex Transformations in Solving Maxwell s Equations

Application of Complex Vectors and Complex Transformations in Solving Maxwell s Equations Applcaton of Complex Vectos and Complex Tansfomatons n Solvng Maxwell s Equatons by Payam Saleh-Anaa A thess pesented to the Unvesty of Wateloo n fulfllment of the thess equement fo the degee of Maste

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70 Chapte Tw ce System 35.4 α α 100 Rx cs 0.354 R 69.3 35.4 β β 100 Ry cs 0.354 R 111 Example 11: The man shwn in igue (a) pulls n the cd with a fce f 70 lb. Repesent this fce actin n the suppt A as Catesian

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCuseWae hp://cw.m.edu 6.03/ESD.03J Elecmagnecs and Applcans, Fall 005 Please use he fllwng can fma: Makus Zahn, Ech Ippen, and Davd Saeln, 6.03/ESD.03J Elecmagnecs and Applcans, Fall 005. (Massachuses

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

Boundaries, Near-field Optics

Boundaries, Near-field Optics Boundares, Near-feld Optcs Fve boundary condtons at an nterface Fresnel Equatons : Transmsson and Reflecton Coeffcents Transmttance and Reflectance Brewster s condton a consequence of Impedance matchng

More information

5. Plane Electromagnetic Waves

5. Plane Electromagnetic Waves 5. Plane lectomagnetic Waves Pof. Rakhesh Singh 1 5.1 Intoduction lectomagnetic Waves Plane waves Poynting vecto Plane waves in vaious media Polaiation Lossless medium Lossy conducting medium Good conducto

More information

Phys 331: Ch 9,.6-.7 Noninertial Frames: Centrifugal and Corriolis forces 1. And and

Phys 331: Ch 9,.6-.7 Noninertial Frames: Centrifugal and Corriolis forces 1. And and Phs 331: Ch 9 6-7 Nnnetal Fames: Centfual and Cls fces 1 Mn 1/5 Wed 1/7 Thus F Mn 1/6 96-7 Fctnal Fces: Centfual and Cls 98-9 Fee-Fall Cls Fucault 101- Cente f Mass & Rtatn abut a Fed As 103-4 Rtatn abut

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

EE 221 Practice Problems for the Final Exam

EE 221 Practice Problems for the Final Exam EE 1 Practce Prblems fr the Fnal Exam 1. The netwrk functn f a crcut s 1.5 H. ω 1+ j 500 Ths table recrds frequency respnse data fr ths crcut. Fll n the blanks n the table:. The netwrk functn f a crcut

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

UNIVERSITÀ DI PISA. Math thbackground

UNIVERSITÀ DI PISA. Math thbackground UNIVERSITÀ DI ISA Electomagnetc Radatons and Bologcal l Inteactons Lauea Magstale n Bomedcal Engneeng Fst semeste (6 cedts), academc ea 2011/12 of. aolo Nepa p.nepa@et.unp.t Math thbackgound Edted b D.

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

Optimization of the Electron Gun with a Permanent Ion Trap

Optimization of the Electron Gun with a Permanent Ion Trap 4.3.-178 Optmzatn f the Electn Gun wth a Pemanent In Tap We Le Xabng Zhang Jn Dng Fe Dpla Technlg R&D CenteSutheat Unvet Nangjng Chna Danel den Engelen Pduct and Pce Develpment(PPD)LG.Phlp Dpla 5600 MD

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Solution: (a) C 4 1 AI IC 4. (b) IBC 4 C A C C R A C R C R C sin 9 sin. A cuent f is maintaine in a single cicula lp f cicumfeence C. A magnetic fiel f is iecte paallel t the plane f the lp. (a) Calculate the magnetic mment f the lp. (b) What

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

March 15. Induction and Inductance Chapter 31

March 15. Induction and Inductance Chapter 31 Mach 15 Inductin and Inductance Chapte 31 > Fces due t B fields Lentz fce τ On a mving chage F B On a cuent F il B Cuent caying cil feels a tque = µ B Review > Cuents geneate B field Bit-Savat law = qv

More information

Summary 7. ELECTROMAGNETIC JOINT. ROTATING MAGNETIC FIELD. SPACE-PHASOR THEORY... 2

Summary 7. ELECTROMAGNETIC JOINT. ROTATING MAGNETIC FIELD. SPACE-PHASOR THEORY... 2 uay 7. ELECTROMAGETIC JOIT. ROTATIG MAGETIC FIELD. PACE-PHAOR THEORY... 7.1 ELECTROMAGETIC JOIT... 7. UMER OF POLE... 4 7. DITRIUTED WIDIG... 5 7.4 TORQUE EXPREIO... 6 7.5 PACE PHAOR... 7 7.6 THREE-PHAE

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS P P Methd EECTOMAGNETIC INDUCTION PEVIOUS EAMCET BITS [ENGINEEING PAPE]. A cnduct d f length tates with angula speed ω in a unifm magnetic field f inductin B which is pependicula t its mtin. The induced

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications Lectue Feedback mple ntductn w Pt Netwk Negatve Feedback Un lateal Case Feedback plg nalss eedback applcatns Clse Lp Gan nput/output esstances e:83h 3 Feedback w-pt Netwk z-paametes Open-Ccut mpedance

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y Detemining n and μ: The Hall Effect V x, E x + + + + + + + + + + + --------- E y I, J x F = qe + qv B F y = ev D B z F y = ee y B z In steady state, E Y = v D B Z = E H, the Hall Field Since v D =-J x

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

Multipole Radiation. March 17, 2014

Multipole Radiation. March 17, 2014 Multpole Radaton Mach 7, 04 Zones We wll see that the poblem of hamonc adaton dvdes nto thee appoxmate egons, dependng on the elatve magntudes of the dstance of the obsevaton pont,, and the wavelength,

More information

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector Pwer Flw in Electrmagnetic Waves Electrmagnetic Fields The time-dependent pwer flw density f an electrmagnetic wave is given by the instantaneus Pynting vectr P t E t H t ( ) = ( ) ( ) Fr time-varying

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = +

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = + MATH sectn 7. Vlumes (Washer Methd) Page f 8 6) = = 5 ; abut x-axs x x x = 5 x 5 ( x+ )( x ) = 5 x 5= x+ = x = 5 x= x= ( x ) = nterval: x r = (5 x ) + = (5 x ) r = x + = x A = (5 x ) = (5 x + x ) A = x

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

Phy 213: General Physics III

Phy 213: General Physics III Phy 1: Geneal Physics III Chapte : Gauss Law Lectue Ntes E Electic Flux 1. Cnside a electic field passing thugh a flat egin in space w/ aea=a. The aea vect ( A ) with a magnitude f A and is diected nmal

More information

Lecture 2 Feedback Amplifier

Lecture 2 Feedback Amplifier Lectue Feedback mple ntductn w-pt Netwk Negatve Feedback Un-lateal Case Feedback plg nalss eedback applcatns Clse-Lp Gan nput/output esstances e:83hkn 3 Feedback mples w-pt Netwk z-paametes Open-Ccut mpedance

More information

Lecture 5. Plane Wave Reflection and Transmission

Lecture 5. Plane Wave Reflection and Transmission Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3 C 634 Intermedate M Waves Fall 216 Prof. Davd R. akson Dept. of C Notes 3 1 Types of Current ρ v Note: The free-harge densty ρ v refers to those harge arrers (ether postve or negatve) that are free to

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser Tanssts essn #10 Chapte 4 BM 372 lectncs 154 Hmewk Ps. 4.40, 4.42, 4.43, 4.45, 4.46, 4.51, 4.53, 4.54, 4.56 BM 372 lectncs 155 Hmewk Answes #20 Ps. 4.40 See fgue 4.33 BM 372 lectncs 156 Ps. 4.42 Hmewk

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig. TEST-03 TPC: MAGNETSM AND MAGNETC EFFECT F CURRENT Q. Fnd the magnetc feld ntensty due to a thn we cayng cuent n the Fg. - R 0 ( + tan) R () 0 ( ) R 0 ( + ) R 0 ( + tan ) R Q. Electons emtted wth neglgble

More information

[ ] = jω µ [ + jω ε E r

[ ] = jω µ [ + jω ε E r Guided Wave Foulation of Maxwell's Equations I. Geneal Theoy: Recapitulation -- fequency doain foulation of the acoscopic Maxwel l equations in a souce-fee egion: cul E H cul H ( ) jω µ ( ) [ I-1a ] (

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

Introduction. Electrostatics

Introduction. Electrostatics UNIVESITY OF TECHNOLOGY, SYDNEY FACULTY OF ENGINEEING 4853 Electmechanical Systems Electstatics Tpics t cve:. Culmb's Law 5. Mateial Ppeties. Electic Field Stength 6. Gauss' Theem 3. Electic Ptential 7.

More information

2/4/2012. τ = Reasoning Strategy 1. Select the object to which the equations for equilibrium are to be applied. Ch 9. Rotational Dynamics

2/4/2012. τ = Reasoning Strategy 1. Select the object to which the equations for equilibrium are to be applied. Ch 9. Rotational Dynamics /4/ Ch 9. Rtatna Dynamcs In pue tansatna mtn, a pnts n an bject tae n paae paths. ces an Tques Net ce acceeatn. What causes an bject t hae an angua acceeatn? TORQUE 9. The ctn ces an Tques n Rg Objects

More information