Final Exam Spring 2014 SOLUTION

Size: px
Start display at page:

Download "Final Exam Spring 2014 SOLUTION"

Transcription

1 Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw shw a alte rstal plate lated at the rdnate =. Calte a brefrngent materal whse prnpal ndes f refratn are n e = n = The thness d f the plate n eah f the dfferent ases nsdered belw rrespnds t ether a quarter wave plate QW n )d n e ) r a half wave plate HW n n e )d ). Here s the wavelength n vauum. The ptal as s rented alng the as. In ths questn we anale the dfferent effet the alte plate has n ndent lght f dfferent plaratns. 1A. Case: Indent lght s lnearl plared. The alte materal s a half wave plate. S r ut r ut X OA Calte HW Seth ur answer here als

2 ) rvde an epressn fr the felds t) and t) n the regn <. rvde an epressn fr the felds t) and t) n the regn >d. ) valuate the felds and at = and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses. valuate the felds and at =d and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses. Slutn n n > n e n e X OA ) < > = COS [ /) t ] = COS [ /)n e d + /) -d) t ] = COS [ /) t ] = COS [ /)n d + /) -d) t ] Lnear plaratn ) At = At = d = COS [ t ] = COS [ /)n e d t ] = COS [ t ] = COS [ /)n d t ] sng HW n )d n e = COS [ /)n e d + t ] Rewrtng n term f +t fr nvenene

3 = COS [ t ] = COS [ t /)n e d ] = COS [ t ] = COS [ t - /)n d ] t Ths gves 1. Case: Indent lght s lnearl plared. The alte materal s a quarter wave plate. S r ut r ut X OA Calte QW Seth ur answer here als ) rvde an epressn fr the felds t) and t) n the regn <.

4 rvde an epressn fr the felds t) and t) n the regn >d. ) valuate the felds and at = and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses. valuate the felds and at =d and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses. ANSWR ) It s dental t 1 abve ) At = At = d = COS [ t ] = COS [ /)n e d t ] = COS [ t ] = COS [ /)n d t ] sng QW n )d n e = COS [ /)n e d + t ] Rewrtng n term f +t fr nvenene = COS [ t ] = COS [ t /)n e d ] = COS [ t ] = COS [ t - /)n d ] t Ths gves

5 1C. Case: Indent lght s lnearl plared. The alte materal s a quarter wave plate. S X OA Calte QW Seth ur answer here als ) rvde an epressn fr the felds t) and t) n the regn <. rvde an epressn fr the felds t) and t) n the regn >d. ) valuate the felds and at = and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses. valuate the felds and at =d and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses.

6 ) < > = COS [ /) t ] = COS [ /)n e d + /) -d) t ] = - COS [ /) t ] = - COS [ /)n d + /) -d) t ] Lnear plaratn ) At = At = d = COS [ t ] = COS [ /)n e d t ] = - COS [ t ] = - COS [ /)n d t ] sng QW n )d n e = - COS [ /)n e d + t ] Rewrtng n term f +t fr nvenene = COS [ t ] = COS [ t /)n e d ] = COS [ t ] = - COS [ t - /)n d ] t Ths gves

7 1D. Case: Indent lght s rularl plared. The alte materal s a half wave plate. S r ut r ut X OA Calte HW Seth ur answer here als ) rvde an epressn fr the felds t) and t) n the regn <. rvde an epressn fr the felds t) and t) n the regn >d. ) valuate the felds and at = and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses. valuate the felds and at =d and use the dagram abve t seth ther shape and rentatn n whh var as tme prgresses. ) < >

8 = COS [ /) t ] = COS [ /)n e d + /) -d) t ] = COS [ /) t + ] = COS[ /)n d +/) -d) t+ ] Crular plaratn t Seth ur ) At = At = d = COS [ t ] = COS [ /)n e d t ] = COS [ t + ] = COS[ /)n d t + ] sng HW n )d n e = COS[ /)n e d + t + ] 3 = COS[ /)n e d t + ] Rewrtng n term f +t fr nvenene = COS [ t ] = COS [ t - /)n e d ] 3 = COS [ t - ] = COS [ t - - /)n e d ] t

9 Seth ur answer here als. T-plaratn radatn has the fllwng frm ) ) ) ) t t r r A Calulate. Als use the Mawell equatns t btan the fllwng relatnshp ) = Answer det j ˆ ˆ ˆ ) Answer ) ) ) = Calulate. Als use the Mawell equatns t btan the fllwng relatnshp:

10 = j = j Answer: det ˆ ˆ ˆ j ) Answer: ) = = ) = = C Frm the results n A and demnstrate that the T mde must satsf the fllwng wave equatn ω ε ε Answer sng = gves = = = sng A ) = ) = The left sde an be alulated frm

11 the result abve - = + + = OTIONAL QSTION 1%) The eletr suseptblt s defned thrugh the epressn where N p s the ttal dple mment per unt vlume. results frm the ndvdual atm dples ntrbutn p -e. T fnd we need t fgure ut hw hanges wth tme under the effet f an eletr feld t). A smple mdel nsders the eletrn mtn equvalent t a mehanal fred harmn mtn. That s ) the harge s bund t the atm b a restrng fre - m. ) sne the aelerated harge lsses energ a d phenmenlgal dampng fre s nsdered - mγ. dt The rrespndng equatn f mtn s m d d γ dt dt ω ) -e t) t Assumng the eletr feld t) vares harmnall n tme wth frequen as e - and that N s the number f atms per unt vlume slve epltl the equatn abve t prvde an epressn fr a) The ampltude f sllatns b) The phase relatve t the feld). ) The eletr suseptblt. Slutn

12 e 1 p -er dple mment per atm m - ) Hwever an atm has dfferent resnane frequenes... These resnant 1 3 etatns ma als have dfferent strengths f 1 f f3...the latter are numbers f the rder 1 magntude.) e f p -er dple mment per atm m - ) If N s the number f atms per unt vlume the plaratn vetr s gven b whh gves N e f N p = ) m - ) N e f ) eletr suseptblt 1) m - )

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

Homework-6 Due:

Homework-6 Due: Applied Optics H-464/564 ECE 594 rtland State niversity A. La Rsa Hmewrk-6 Due: 05-26-2016 1. Quarter wave plates and half wave plates The figures belw shw a calcite crystal plate lcated at the crdinate

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik S. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6 des Waefrm shapng Cruts Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 Tw-prt netwrks as buldng blks Reall: Transfer funtn f a tw-prt netwrk an be fund by slng ths rut ne.

More information

Exploiting vector space properties for the global optimization of process networks

Exploiting vector space properties for the global optimization of process networks Exptng vectr space prpertes fr the gbal ptmzatn f prcess netwrks Juan ab Ruz Ignac Grssmann Enterprse Wde Optmzatn Meetng March 00 Mtvatn - The ptmzatn f prcess netwrks s ne f the mst frequent prblems

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Partle n a Magnet Feld Mhael Fowler 1/16/08 Introduton Classall, the fore on a harged partle n eletr and magnet felds s gven b the Lorentz fore law: v B F = q E+ Ths velot-dependent fore s qute

More information

Diodes Waveform shaping Circuits

Diodes Waveform shaping Circuits des Waefrm shapng Cruts Leture ntes: page 2-2 t 2-31 Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 F. Najmabad, ECE65, Wnter 212 Tw-prt netwrks as buldng blks Reall: Transfer

More information

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E]

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E] WYSE Aaem Challenge 0 Setnal hss Exam SOLUTION SET. Crret answer: E Unts Trque / unts pwer: [ r ][ ] [ E] [ t] [ r ][ ][ t] [ E] [ r ][ ][ t] [ ][ ] [ r ][ t] [ ] m s m s. Crret answer: D The net external

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

Conservation of Energy

Conservation of Energy Cnservatn f Energy Equpment DataStud, ruler 2 meters lng, 6 n ruler, heavy duty bench clamp at crner f lab bench, 90 cm rd clamped vertcally t bench clamp, 2 duble clamps, 40 cm rd clamped hrzntally t

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Matrix Mechanics Exercises Using Polarized Light

Matrix Mechanics Exercises Using Polarized Light Matrx Mechancs Exercses Usng Polarzed Lght Frank Roux Egenstates and operators are provded for a seres of matrx mechancs exercses nvolvng polarzed lght. Egenstate for a -polarzed lght: Θ( θ) ( ) smplfy

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3 C 634 Intermedate M Waves Fall 216 Prof. Davd R. akson Dept. of C Notes 3 1 Types of Current ρ v Note: The free-harge densty ρ v refers to those harge arrers (ether postve or negatve) that are free to

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mt.edu 6.13/ESD.13J Electromagnetcs and Applcatons, Fall 5 Please use the followng ctaton format: Markus Zahn, Erch Ippen, and Davd Staeln, 6.13/ESD.13J Electromagnetcs and

More information

Energy & Work

Energy & Work rk Dne by a Cntant Frce 6.-6.4 Energy & rk F N m jule () J rk Dne by a Cntant Frce Example Pullng a Sutcae-n-heel Fnd the wrk dne the rce 45.0-N, the angle 50.0 degree, and the dplacement 75.0 m. 3 ( F

More information

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables Appled Mathematcal Scences, Vl. 4, 00, n. 0, 997-004 A New Methd fr Slvng Integer Lnear Prgrammng Prblems wth Fuzzy Varables P. Pandan and M. Jayalakshm Department f Mathematcs, Schl f Advanced Scences,

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

Module 7: Solved Problems

Module 7: Solved Problems Mdule 7: Slved Prblems 1 A tn-walled nentr tube eat exanger f 019-m lengt s t be used t eat denzed water frm 40 t 60 at a flw rate f 5 kg/s te denzed water flws trug te nner tube f 30-mm dameter wle t

More information

Analysis The characteristic length of the junction and the Biot number are

Analysis The characteristic length of the junction and the Biot number are -4 4 The temerature f a gas stream s t be measured by a thermule. The tme t taes t regster 99 erent f the ntal ΔT s t be determned. Assumtns The juntn s sheral n shae wth a dameter f D 0.00 m. The thermal

More information

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = +

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = + MATH sectn 7. Vlumes (Washer Methd) Page f 8 6) = = 5 ; abut x-axs x x x = 5 x 5 ( x+ )( x ) = 5 x 5= x+ = x = 5 x= x= ( x ) = nterval: x r = (5 x ) + = (5 x ) r = x + = x A = (5 x ) = (5 x + x ) A = x

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

[Algadir*, 5(2): February, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

[Algadir*, 5(2): February, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785 [Algadr*, 5(): February, 6] ISSN: 77-9655 (IOR), Publatn Impat Fatr: 3.785 IJSRT INTRNATIONAL JOURNAL OF NGINRING SCINCS & RSARCH TCHNOLOGY SCHRÖDINGR QUANTUM QUATION FROM CLASSICAL AND QUANTUM HARMONIC

More information

TRANSPORT MOMENTS. beyond the leading order. arxiv: Jack Kuipers. University of Regensburg. with. Gregory Berkolaiko.

TRANSPORT MOMENTS. beyond the leading order. arxiv: Jack Kuipers. University of Regensburg. with. Gregory Berkolaiko. TRANSPORT MOMENTS beynd the leadng rder arxv:1012.3526 Jack Kupers Unversty f Regensburg wth Gregry Berklak Texas A&M Transprt mments p.1/24 OUTLINE Open systems mments crrelatn functns semclasscal expressn

More information

Chem 204A, Fall 2004, Mid-term (II)

Chem 204A, Fall 2004, Mid-term (II) Frst tw letters f yur last name Last ame Frst ame McGll ID Chem 204A, Fall 2004, Md-term (II) Read these nstructns carefully befre yu start tal me: 2 hurs 50 mnutes (6:05 PM 8:55 PM) 1. hs exam has ttal

More information

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night PHYS 015 Week 13 -M Waves, Interferene Reading Jurnals Tuesday WebAssign due WDNSDAY night Test Friday: Chap 3 (Magneti indutin); Chap 33.1-4 (Indutane, self and mutual, energy, RL iruits). Chap 34 (Waves,

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Bsystems Mdeln and Cntrl Cell Electrcal Actvty: In Mvement acrss Cell Membrane and Membrane Ptental Dr. Zv Rth (FAU) 1 References Hppensteadt-Peskn, Ch. 3 Dr. Rbert Farley s lecture ntes Inc Equlbra

More information

PT326 PROCESS TRAINER

PT326 PROCESS TRAINER PT326 PROCESS TRAINER 1. Descrptn f the Apparatus PT 326 Prcess Traner The PT 326 Prcess Traner mdels cmmn ndustral stuatns n whch temperature cntrl s requred n the presence f transprt delays and transfer

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

Shell Stiffness for Diffe ent Modes

Shell Stiffness for Diffe ent Modes Engneerng Mem N 28 February 0 979 SUGGESTONS FOR THE DEFORMABLE SUBREFLECTOR Sebastan vn Herner Observatns wth the present expermental versn (Engneerng Dv nternal Reprt 09 July 978) have shwn that a defrmable

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 4, 000 Ths paper formalzes a onept presented n my book, "Eletrogravtaton As A Unfed

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

Comparison of Building Codes and Insulation in China and Iceland

Comparison of Building Codes and Insulation in China and Iceland Prceedngs Wrld Gethermal Cngress 00 Bal, Indnesa, 5-9 prl 00 Cmparsn f Buldng Cdes and Insulatn n Chna and Iceland Hayan Le and Pall Valdmarssn Tanjn Gethermal esearch & Tranng Centre, Tanjn Unversty,

More information

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j p. Supp. 9- Suppleent to Rate of Absorpton and Stulated Esson Here are a ouple of ore detaled dervatons: Let s look a lttle ore arefully at the rate of absorpton w k ndued by an sotrop, broadband lght

More information

Boundaries, Near-field Optics

Boundaries, Near-field Optics Boundares, Near-feld Optcs Fve boundary condtons at an nterface Fresnel Equatons : Transmsson and Reflecton Coeffcents Transmttance and Reflectance Brewster s condton a consequence of Impedance matchng

More information

Water vapour balance in a building moisture exposure for timber structures

Water vapour balance in a building moisture exposure for timber structures Jnt Wrkshp f COST Actns TU1 and E55 September 21-22 9, Ljubljana, Slvena Water vapur balance n a buldng msture expsure fr tmber structures Gerhard Fnk ETH Zurch, Swtzerland Jchen Köhler ETH Zurch, Swtzerland

More information

Introduction to Molecular Spectroscopy

Introduction to Molecular Spectroscopy Chem 5.6, Fall 004 Leture #36 Page Introduton to Moleular Spetrosopy QM s essental for understandng moleular spetra and spetrosopy. In ths leture we delneate some features of NMR as an ntrodutory example

More information

Grade 12 Physics Exam Review

Grade 12 Physics Exam Review Grade 12 Physcs Exam Revew 1. A 40 kg wagn s pulled wth an appled frce f 50 N [E 37 degrees abve the hrzntal. The wagn mves 8 m [E] hrzntally whle 5 N f frctn act. Fnd the wrk dne n the wagn by the...

More information

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid The Ide Ellpsd M.P. Vaugha Learg bjectves Wave prpagat astrpc meda Ptg walk-ff The de ellpsd Brefrgece 1 Wave prpagat astrpc meda The wave equat Relatve permttvt I E. Assumg free charges r currets E. Substtutg

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

THE MILLER OPERATIONAL AMPLIFIER S SETTLING RESPONSE

THE MILLER OPERATIONAL AMPLIFIER S SETTLING RESPONSE Optmzatn n rf deves desgn appled n wreless mmunatns, C. Alr, & D. H. Cvarrubas, 9-6 THE MILLER OPERATIONAL AMPLIFIER ETTLING REPONE E. Ruíz-May & F. andval-ibarra nwbush Mex.A. P.I. de C.V. V. Carranza

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

t } = Number of calls in progress at time t. Engsett Model (Erlang-B)

t } = Number of calls in progress at time t. Engsett Model (Erlang-B) Engsett Model (Erlang-B) A B Desrpton: Bloed-alls lost model Consder a entral exhange wth users (susrers) sharng truns (truns). When >, long ours. Ths s the ase of prnpal nterest. Assume that the truns

More information

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii Prblem 1 STRATEGY KNOWN Resstance f a cmplete sphercal shell: R ( r r / (4 π r rk sphere Inner an uter ra r an r, SOLUTION Part 1: Resstance f a hemsphercal shell: T calculate the resstance f the hemsphere,

More information

Heat exchanger. Heat exchanger

Heat exchanger. Heat exchanger s are deves n w eat s transferred between tw fluds at dfferent teperatures wtut any xng f fluds. type. Dret eat transfer type 2. Strage type 3. Dret ntat type ttps://www.faebk./0000085304058/vdes/96230780490756/.

More information

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS rnat. J. Math. & Math. S. Vl. 6 N. (983) 33534 335 ON THE RADUS OF UNVALENCE OF CONVEX COMBNATONS OF ANALYTC FUNCTONS KHALDA. NOOR, FATMA M. ALOBOUD and NAEELA ALDHAN Mathematcs Department Scence Cllege

More information

A Note on Equivalences in Measuring Returns to Scale

A Note on Equivalences in Measuring Returns to Scale Internatnal Jurnal f Busness and Ecnmcs, 2013, Vl. 12, N. 1, 85-89 A Nte n Equvalences n Measurng Returns t Scale Valentn Zelenuk Schl f Ecnmcs and Centre fr Effcenc and Prductvt Analss, The Unverst f

More information

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that PHY 387 K. Solutons for problem set #7. Problem 1: To prove that under the assumptons at hand, the group velocty of an EM wave s less than c, I am gong to show that (a) v group < v phase, and (b) v group

More information

ON-LINE PHYSICS 122 EXAM #2 (all online sections)

ON-LINE PHYSICS 122 EXAM #2 (all online sections) ON-LINE PHYSIS EXAM # (all nline setins) ) Bubble in the ID number setin f the santrn. ) This Exam is hurs lng - 34 multiple-hie questins. hse the ne BEST answer fr eah questin. Yu are nt penalized fr

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2012 Fnal Exam Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

ELG4139: Op Amp-based Active Filters

ELG4139: Op Amp-based Active Filters ELG439: Op Amp-baed Actve Flter Advantage: educed ze and weght, and therere paratc. Increaed relablty and mprved perrmance. Smpler degn than r pave lter and can realze a wder range unctn a well a prvdng

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2 Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

Problem 1. Refracting Surface (Modified from Pedrotti 2-2) .70 Optc Hmewrk # February 8, 04 Prblem. Reractng Surace (Me rm Pertt -) Part (a) Fermat prncple requre that every ray that emanate rm the bject an pae thrugh the mage pnt mut be chrnu (.e., have equal

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

LECTURE 2 1. THE SPACE RELATED PROPRIETIES OF PHYSICAL QUANTITIES

LECTURE 2 1. THE SPACE RELATED PROPRIETIES OF PHYSICAL QUANTITIES LECTURE. THE SPCE RELTED PROPRIETIES OF PHYSICL QUNTITIES Phss uses phsl prmeters. In ths urse ne wll del nl wth slr nd vetr prmeters. Slr prmeters d nt depend n the spe dretn. Vetr prmeters depend n spe

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

Phys 344 Ch 5 Lect 4 Feb 28 th,

Phys 344 Ch 5 Lect 4 Feb 28 th, hys 44 Ch 5 Lect 4 Feb 8 th, 009 1 Wed /4 Fr /6 Mn /9 Wed /11 Fr / 1 55 Dlute Slutn 56 Chemcal Equlbrum Revew Exam (C 107 S 60, 61 Bltzmann Statstcs Bnus: hys Sr hess resentatns @ 4pm HW17: 7,76,8 HW18:8,84,86,88,89,91

More information

Statistics MINITAB - Lab 2

Statistics MINITAB - Lab 2 Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

More information

Fundamental Concepts in Structural Plasticity

Fundamental Concepts in Structural Plasticity Lecture Fundamental Cncepts in Structural Plasticit Prblem -: Stress ield cnditin Cnsider the plane stress ield cnditin in the principal crdinate sstem, a) Calculate the maximum difference between the

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information