Note: Please use the actual date you accessed this material in your citation.

Size: px
Start display at page:

Download "Note: Please use the actual date you accessed this material in your citation."

Transcription

1 MIT OpenCuseWae hp://cw.m.edu 6.03/ESD.03J Elecmagnecs and Applcans, Fall 005 Please use he fllwng can fma: Makus Zahn, Ech Ippen, and Davd Saeln, 6.03/ESD.03J Elecmagnecs and Applcans, Fall 005. (Massachuses Insue f Technlgy: MIT OpenCuseWae). hp://cw.m.edu (accessed MM DD, YYYY). Lcense: Ceave Cmmns Abun- Nncmmecal-Shae Alke. Ne: Please use he acual dae yu accessed hs maeal n yu can. F me nfman abu cng hese maeals u Tems f Use, vs: hp://cw.m.edu/ems

2 6.03 Fmula Shee aached. Pblem (35 Pns) Massachuses Insue f Technlgy Depamen f Eleccal Engneeng and Cmpue Scence 6.03 Elecmagnecs and Applcans Quz, Ocbe 0, 005 J=J ( ) = J 0 ampees/mee z z z R z 0 < < R φ R R A caxal cable f vey lng lengh caes a z deced cuen densy ha vaes wh adal psn n he nne cylnde as: J=J ( ) = J 0 ampees/mee z z z 0 < < R R A pefecly cnducng ue cylnde f adus R caes all he eun cuen s ha H= 0 f > R. a) Fnd he H feld f 0< < R. b) Wha ae he magnude and decn f he suface cuen densy (ampees/mee) n he = R suface?

3 Pblem (35 Pns) V 0 z α φ ε, σ Deph d 0 R R Tw fla elecdes a angle α exend fm adus R R and have a deph d n he z decn (u f he pape). The elecdes enclse a lssy delecc medum wh pemvy ε and cnducvy σ. Thee s n fee vlume chage whn he lssy delecc. The elecc Φ φ = 0 = 0andΦ φ = α = V. penals n he elecdes ae ( ) ( ) 0 a) The scala elecc penal Φ s f he fm ( φ) Aφ B B sasfy he bunday cndns? Φ = +. Wha values f A and b) Fnd he elecc feld E(, φ) whn he lssy delecc. c) Wha s he fee suface chage densy, σ sf, n he elecde a φ = α? d) Wha s he capacance f hs devce? Yu may neglec fngng felds.

4 Pblem 3 (30 Pns) ε, µ x θ y z E H An elecmagnec wave s avelng a an angle θ wh espec he z axs whn a medum wh delecc pemvy ε and magnec pemeably µ. The magnec feld s gven as: j π 0 8 π ( x+ 3z ) H = H 0 Re e y ampees/mee. a) Fnd he fequency n Hez. b) Fnd he wavelengh n mees. c) Fnd he numecal value f he speed f lgh n he medum n mees/secnd. d) Fnd he angle θ.

5 6.03 Quz Fmula Shee Ocbe 0, 005 Caesan Cdnaes (x,y,z): Ψ = Ψ Ψ xˆ Ψ + ŷ + ẑ x y z A x A y A A = + + z x y z A = x A z A y A + ŷ A z A y A + ẑ z x ˆ x y z x x y Ψ = Ψ + Ψ + Ψ x y z Cylndcal cdnaes (,φ,z): Ψ = ˆ Ψ +φˆ Ψ + ẑ Ψ φ z (A ) + A φ A A = + z φ z ˆ φˆ ẑ A z A φ ˆ A A z (A φ ) A = ˆ φ +φ + ẑ A = de φ z z z φ A A φ A z ( Ψ ) + Ψ + Ψ = Ψ φ z Sphecal cdnaes (,θ,φ): Ψ = ˆ Ψ +θˆ Ψ +φˆ Ψ θ sn θ φ A = ( A ) (sn θa + θ ) + A φ sn θ θ sn θ φ (sn θa φ ) A θ A (A φ ) ˆ ˆ (A θ ) A A = ˆ +θ +φ sn θ θ φ sn θ φ θ = sn de θ ˆ θˆ sn θφˆ θ φ A A θ sn θa φ Ψ ( ) sn θ + Ψ sn θ θ θ sn θ φ Ψ = ( Ψ ) + Gauss Dvegence Theem: Vec Algeba: = xˆ x + ŷ y + ẑ z A B = A B + A y By + A z Bz ( A) = 0 ( A) = ( A) A G dv = V Gnˆ da A x x Skes Theem: ( G ) nˆ da = G d A C

6 Fundamenals f = q ( E + v µ H)[ N] E = B c E ds = d B da d A H = J + D c H ds = A J da + d D da d A Basc Equans f Elecmagnecs and Applcans D =ρ A D da = ρdv V E// H// B D E // H // = 0 B D = ρ s = 0 = Js nˆ 0 = f σ = Elecmagnec Quassacs nˆ E = Φ (), Φ() = V' (ρ( ) 4πε ' )dv' B= 0 B da = 0 A J = ρ E = elecc feld (Vm - ) H = magnec feld (Am - ) D = elecc dsplacemen (Cm - ) B = magnec flux densy (T) Tesla (T) = Webe m - = 0,000 gauss ρ = chage densy (Cm -3 ) J = cuen densy (Am - ) σ = cnducvy (Semens m - ) Js = suface cuen densy (Am - ) ρ s = suface chage densy (Cm - ) ε Fm - µ = 4π 0-7 Hm c = (ε µ ) ms - e = C η 377 hms = (µ /ε ) 0.5 ( µε ) E = 0 [Wave Eqn.] j E y (z,) = E + (z-c) + E - (z+c) = Re{E (z)e ω } y H x (z,) = η - [E + (z-c)-e - (z+c)] [(ω-kz) (-z/c)] A ( E H ) da d ) V (ε H ) + (d E +µ Meda and Bundaes D =ε E + P D =ρ f, τ=εσ ε E =ρ +ρ f p P = ρ, J =σ E p B =µh =µ ( H + M ) = V E J dv (Pynng Theem) 0.5 ε=ε ( ω ω p ), ω p =(Ne mε ) ε eff =ε( jσ ωε) skn deph δ = (/ωµσ) 0.5 [m] dv (Plasma) Φ = -ρ f ε C = Q/V = Aε/d [F] L = Λ/I () = C dv()/d v() = L d()/d = dλ/d w e = Cv ()/; w m = L ()/ L slend = N µa/w τ = RC, τ = L/R Λ = B da A F= I µ H [ Nm (pe un) - ] Elecmagnec Waves ( µε ) E = 0 [Wave Eqn.] ( +k ) E = 0, E = E e jk k = ω(µε) 0.5 = ω/c = π/λ k x + k y + k z = k = ω µε v p = ω/k, v g = ( k/ ω) - θ = θ sn θ sn θ = k k = n n θ =sn c (n n ) 0.5 θ = an B ( ε ε ) f TM x jk z z θ>θ c E = E Te +α k = k ' jk '' Γ = T T TE = ( + [η cs θ η cs T TM = ( +η [ cs θ η cs θ ]) θ ])

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCureWare http://w.mit.edu 6.03/ESD.03J Eletrmagneti and ppliatin, Fall 005 Pleae ue the fllwing itatin frmat: Marku Zahn, Erih Ippen, and David Staelin, 6.03/ESD.03J Eletrmagneti and ppliatin,

More information

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant Nes n Inducance and cu Tansens Je Wlfe, Physcs UNSW cus wh and - Wha happens when yu clse he swch? (clse swch a 0) - uen flws ff capac, s d Acss capac: Acss ess: c d s d d ln + cns. 0, ln cns. ln ln ln

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mt.edu 6.13/ESD.13J Electromagnetcs and Applcatons, Fall 5 Please use the followng ctaton format: Markus Zahn, Erch Ippen, and Davd Staeln, 6.13/ESD.13J Electromagnetcs and

More information

Lecture 5. Plane Wave Reflection and Transmission

Lecture 5. Plane Wave Reflection and Transmission Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenCouseWae http://ocw.mit.eu 6.013/ESD.013J Electomagnetics an Applications, Fall 005 Please use the following citation fomat: Makus Zahn, Eich Ippen, an Davi Staelin, 6.013/ESD.013J Electomagnetics

More information

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering TRANSIENTS Lece 5 ELECE8409 Hgh Volage Engneeng TRANSIENT VOLTAGES A ansen even s a sholved oscllaon (sgnfcanly fase han opeang feqency) n a sysem cased by a sdden change of volage, cen o load. Tansen

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCouseWae http://ocw.mit.edu 6.641 Electomagnetic Fields, Foces, and Motion, Sping 5 Please use the following citation fomat: Makus Zahn, 6.641 Electomagnetic Fields, Foces, and Motion, Sping 5.

More information

Maxwell Equations. Dr. Ray Kwok sjsu

Maxwell Equations. Dr. Ray Kwok sjsu Maxwell quains. Ray Kwk sjsu eeence: lecmagneic Fields and Waves, Lain & Csn (Feeman) Inducin lecdynamics,.. Giihs (Penice Hall) Fundamenals ngineeing lecmagneics,.k. Cheng (Addisn Wesley) Maxwell quains.

More information

F = net force on the system (newton) F,F and F. = different forces working. E = Electric field strength (volt / meter)

F = net force on the system (newton) F,F and F. = different forces working. E = Electric field strength (volt / meter) All the Impotant Fomulae that a student should know fom. XII Physics Unit : CHAPTER - ELECTRIC CHARGES AND FIELD CHAPTER ELECTROSTATIC POTENTIAL AND CAPACITANCE S. Fomula No.. Quantization of chage Q =

More information

Reflection and Refraction

Reflection and Refraction Chape 1 Reflecon and Refacon We ae now neesed n eplong wha happens when a plane wave avelng n one medum encounes an neface (bounday) wh anohe medum. Undesandng hs phenomenon allows us o undesand hngs lke:

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jackson Dept. of ECE Notes 7 1 TEM Transmission Line conductors 4 parameters C capacitance/length [F/m] L inductance/length [H/m] R resistance/length

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

β A Constant-G m Biasing

β A Constant-G m Biasing p 2002 EE 532 Anal IC Des II Pae 73 Cnsan-G Bas ecall ha us a PTAT cuen efeence (see p f p. 66 he nes) bas a bpla anss pes cnsan anscnucance e epeaue (an als epenen f supply lae an pcess). Hw h we achee

More information

) 12 = 1+ j. = ε 2. = n 2 n 1. sinθ ic. mπ a. = 1+ j. cos mπ a x. H z. =±j ε 2. sin 2 θ i. cosθ t 1 [3.31] ε 2ε1. θ i. ε =1e jφ. tan φ sin 2.

) 12 = 1+ j. = ε 2. = n 2 n 1. sinθ ic. mπ a. = 1+ j. cos mπ a x. H z. =±j ε 2. sin 2 θ i. cosθ t 1 [3.31] ε 2ε1. θ i. ε =1e jφ. tan φ sin 2. Mawell s Equatos (geeral deretal E B D ρ H J + D B 0 Mawell s Equatos (tme harmoc E jωb D ρ [.a] [.b] [.c] [.d] [.a] [.b] H J + D [.c] B 0 [.d] Mawell s Equatos (tegral E dl B ds [.] D ds ρdv V [.] D H

More information

UNIVERSITÀ DI PISA. Math thbackground

UNIVERSITÀ DI PISA. Math thbackground UNIVERSITÀ DI ISA Electomagnetc Radatons and Bologcal l Inteactons Lauea Magstale n Bomedcal Engneeng Fst semeste (6 cedts), academc ea 2011/12 of. aolo Nepa p.nepa@et.unp.t Math thbackgound Edted b D.

More information

Chapter 5 Waveguides and Resonators

Chapter 5 Waveguides and Resonators 5-1 Chpter 5 Wveguides nd Resontors Dr. Sturt Long 5- Wht is wveguide (or trnsmission line)? Structure tht trnsmits electromgnetic wves in such wy tht the wve intensity is limited to finite cross-sectionl

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 1 1 Overview In this set of notes we derive the far-field pattern of a circular patch operating in the dominant TM 11 mode. We use the magnetic

More information

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y Detemining n and μ: The Hall Effect V x, E x + + + + + + + + + + + --------- E y I, J x F = qe + qv B F y = ev D B z F y = ee y B z In steady state, E Y = v D B Z = E H, the Hall Field Since v D =-J x

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenouseWe http://ocw.mit.edu 6.1/ESD.1J Electomgnetics nd pplictions, Fll 25 Plese use the following cittion fomt: Mkus Zhn, Eich Ippen, nd Dvid Stelin, 6.1/ESD.1J Electomgnetics nd pplictions, Fll

More information

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41 ECE 634 Sprng 6 Prof. Davd R. Jackson ECE Dept. Notes 4 Patch Antenna In ths set of notes we do the followng: Fnd the feld E produced by the patch current on the nterface Fnd the feld E z nsde the substrate

More information

Basics of Wave Propagation

Basics of Wave Propagation Basics of Wave Propagation S. R. Zinka zinka@hyderabad.bits-pilani.ac.in Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus May 7, 2015 Outline 1 Time Harmonic Fields 2 Helmholtz

More information

AIR FORCE RESEARCH LABORATORY

AIR FORCE RESEARCH LABORATORY AIR FORC RSARCH LABORATORY The xtinctin Theem as an xample f Reseach Vistas in Mathematical Optics Mach Richad A. Albanese Infmatin Opeatins and Applied Mathematics Human ffectiveness Diectate Bks City-Base

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics ECE 3318 Applied Electicity and Magnetism Sping 218 Pof. David R. Jackson Dept. Of ECE Notes 2 Dielectics 1 Dielectics Single H 2 O molecule: H H Wate ε= εε O 2 Dielectics (cont.) H H Wate ε= εε O Vecto

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15 ECE 634 Intermediate EM Waves Fall 6 Prof. David R. Jackson Dept. of ECE Notes 5 Attenuation Formula Waveguiding system (WG or TL): S z Waveguiding system Exyz (,, ) = E( xye, ) = E( xye, ) e γz jβz αz

More information

10.7 Power and the Poynting Vector Electromagnetic Wave Propagation Power and the Poynting Vector

10.7 Power and the Poynting Vector Electromagnetic Wave Propagation Power and the Poynting Vector L 333 lecmgnec II Chpe 0 lecmgnec W Ppgn Pf. l J. l Khnd Islmc Unves f G leccl ngneeng Depmen 06 0.7 Pwe nd he Pnng Vec neg cn be sped fm ne pn (whee nsme s lced) nhe pn (wh eceve) b mens f M ws. The e

More information

calculating electromagnetic

calculating electromagnetic Theoeal mehods fo alulang eleomagne felds fom lghnng dshage ajeev Thoapplll oyal Insue of Tehnology KTH Sweden ajeev.thoapplll@ee.kh.se Oulne Despon of he poblem Thee dffeen mehods fo feld alulaons - Dpole

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 7: Dynamic fields Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Maxwell s equations Maxwell

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 25 Capacitance

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 25 Capacitance EE 3318 pplied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of EE Notes 25 apacitance 1 apacitance apacitor [F] + V - +Q ++++++++++++++++++ - - - - - - - - - - - - - - - - - Q ε r

More information

2/5/13. y H. Assume propagation in the positive z-direction: β β x

2/5/13. y H. Assume propagation in the positive z-direction: β β x /5/3 Retangular Waveguides Mawell s Equatins: = t jω assumed E = jωµ H E E = jωµ H E E = jωµ H E E = jωµ H H = jωε E H H = jωε E H H = jωε E H H = jωε E /5/3 Assume prpagatin in the psitive -diretin: e

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 22

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 22 ECE 634 Intemediate EM Waves Fall 6 Pof. David R. Jackson Dept. of ECE Notes Radiation z Infinitesimal dipole: I l y kl

More information

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT .. Cu-Pl, INE 45- Electmagnetics I Electstatic fields anda Cu-Pl, Ph.. INE 45 ch 4 ECE UPM Maagüe, P me applicatins n Pwe tansmissin, X as, lightning ptectin n lid-state Electnics: esists, capacits, FET

More information

Field and Wave Electromagnetic

Field and Wave Electromagnetic Field and Wave Electromagnetic Chapter7 The time varying fields and Maxwell s equation Introduction () Time static fields ) Electrostatic E =, id= ρ, D= εe ) Magnetostatic ib=, H = J, H = B μ note) E and

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1 ECE 6341 Spring 16 Prof. David R. Jackson ECE Dept. Notes 1 1 Fields in a Source-Free Region Sources Source-free homogeneous region ( ε, µ ) ( EH, ) Note: For a lossy region, we replace ε ε c ( / ) εc

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

ELECTROMAGNETIC FIELDS AT BOUNDARIES

ELECTROMAGNETIC FIELDS AT BOUNDARIES ELECTROMGNETIC FIELDS T BOUNDRIES Differential Form of Maxwell s Equations: E = B t, H = J + D t D = ρ, B = 0 Gauss s Divergene Theorem: ( ) v Ddv = D nda ˆ s Stoke s Theorem: ( G) nda ˆ = î G ds S da

More information

ECE Microwave Engineering

ECE Microwave Engineering ECE 5317-6351 Mirowave Engineering Aapte from notes by Prof. Jeffery T. Williams Fall 18 Prof. Davi R. Jakson Dept. of ECE Notes 7 Waveguiing Strutures Part : Attenuation ε, µσ, 1 Attenuation on Waveguiing

More information

Appendix A: Numerical Constants

Appendix A: Numerical Constants ppendix : Numerical Constants.1 Fundamental Constants c velocity of light.998 10 8 m/s ε o permittivity of free space 8.854 10-1 F/m μ o permeability of free space 4π 10-7 H/m η o characteristic impedance

More information

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown [Giffiths Ch.-] 8//8, :am :am, Useful fomulas V ˆ ˆ V V V = + θ+ φ ˆ and v = ( v ) + (sin θvθ ) + v θ sinθ φ sinθ θ sinθ φ φ. (6%, 7%, 7%) Suppose the potential at the suface of a hollow hemisphee is specified,

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

Phy 213: General Physics III

Phy 213: General Physics III Phy 1: Geneal Physics III Chapte : Gauss Law Lectue Ntes E Electic Flux 1. Cnside a electic field passing thugh a flat egin in space w/ aea=a. The aea vect ( A ) with a magnitude f A and is diected nmal

More information

6.641 Electromagnetic Fields, Forces, and Motion

6.641 Electromagnetic Fields, Forces, and Motion MIT OpenCoureWare http://ocw.it.edu 6.64 Electroagnetic Field, Force, and Motion Spring 009 For inforation about citing thee aterial or our Ter of Ue, viit: http://ocw.it.edu/ter. 6.64 Electroagnetic Field,

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

16 Reflection and transmission, TE mode

16 Reflection and transmission, TE mode 16 Reflecton transmsson TE mode Last lecture we learned how to represent plane-tem waves propagatng n a drecton ˆ n terms of feld phasors such that η = Ẽ = E o e j r H = ˆ Ẽ η µ ɛ = ˆ = ω µɛ E o =0. Such

More information

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db . (Balanis 6.43) You can confim tat AF = e j kd cosθ + e j kd cosθ N = cos kd cosθ gives te same esult as (6-59) and (6-6), fo a binomial aay wit te coefficients cosen as in section 6.8.. Tis single expession

More information

r r q Coulomb s law: F =. Electric field created by a charge q: E = = enclosed Gauss s law (electric flux through a closed surface): E ds σ ε0

r r q Coulomb s law: F =. Electric field created by a charge q: E = = enclosed Gauss s law (electric flux through a closed surface): E ds σ ε0 Q E ds = enclosed ε S 0 08 Fomulae Sheet 1 q 1q q Coulomb s law: F =. Electic field ceated by a chage q: E = 4πε 4πε Pemittivity of fee space: 0 1 = 9 10 4πε 0 9 Newton mete / coulomb = 9 10 9 0 N m Q

More information

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector Pwer Flw in Electrmagnetic Waves Electrmagnetic Fields The time-dependent pwer flw density f an electrmagnetic wave is given by the instantaneus Pynting vectr P t E t H t ( ) = ( ) ( ) Fr time-varying

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Notes 3 Review of Vector Calculus

Notes 3 Review of Vector Calculus ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018 A ˆ Notes 3 Review of Vector Calculus y ya ˆ y x xa V = x y ˆ x Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present

More information

Lecture 3. Electrostatics

Lecture 3. Electrostatics Lecue lecsics In his lecue yu will len: Thee wys slve pblems in elecsics: ) Applicin f he Supepsiin Pinciple (SP) b) Applicin f Guss Lw in Inegl Fm (GLIF) c) Applicin f Guss Lw in Diffeenil Fm (GLDF) C

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18 C 6340 Intermediate M Waves Fall 206 Prof. David R. Jacson Dept. of C Notes 8 T - Plane Waves φˆ θˆ T φˆ θˆ A homogeneous plane wave is shown for simplicit (but the principle is general). 2 Arbitrar Polariation:

More information

Asynchronous Training in Wireless Sensor Networks

Asynchronous Training in Wireless Sensor Networks u t... t. tt. tt. u.. tt tt -t t t - t, t u u t t. t tut t t t t t tt t u t ut. t u, t tt t u t t t t, t tt t t t, t t t t t. t t tt u t t t., t- t ut t t, tt t t tt. 1 tut t t tu ut- tt - t t t tu tt-t

More information

Lecture 2 Review of Maxwell s Equations and the EM Constitutive Parameters

Lecture 2 Review of Maxwell s Equations and the EM Constitutive Parameters Lecture 2 Review of Maxwell s Equations and the EM Constitutive Parameters Optional Reading: Steer Appendix D, or Pozar Section 1.2,1.6, or any text on Engineering Electromagnetics (e.g., Hayt/Buck) Time-domain

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16 ECE 6345 Spring 5 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we calculate the power radiated into space by the circular patch. This will lead to Q sp of the circular patch.

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1 Chape Wave Moon Hech;8/30/010; -1.1 One Dmensonal Waves A wave : A self-susanng dsubance of he medum Waves n a spng A longudnal wave A ansvese wave : Medum dsplacemen // Decon of he wave : Medum dsplacemen

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0936 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 91 PHYSICS B (ADVANCED SEMESTER, 015 TIME ALLOWED: 3 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS: This paper consists

More information

Key Concepts for this section

Key Concepts for this section Key Concepts fo this section 1: Loentz foce law, Field, Maxwell s equation : Ion Tanspot, Nenst-Planck equation 3: (Quasi)electostatics, potential function, 4: Laplace s equation, Uniqueness 5: Debye laye,

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Physics Equations Course Comparison

Physics Equations Course Comparison Physics Equatios Couse Compaiso Ietify you couse. You may use ay of the equatios beeath a to the left of you couse. Math A A PeCalculus Calculus AB o BC A to B is OR A:B is (Cocuet) (Cocuet) B B Algeba

More information

Vector Calculus Identities

Vector Calculus Identities The Coope Union Depatment of Electical Engineeing ECE135 Engineeing Electomagnetics Vecto Analysis Mach 8, 2012 Vecto Calculus Identities A B B A A B C B C A C A B A B C B A C C A B fg f g + g f fg f G

More information

Preliminary Examination - Day 1 Thursday, May 10, 2018

Preliminary Examination - Day 1 Thursday, May 10, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, May, 28 This test covers the topics of Classical Mechanics (Topic ) and Electrodynamics (Topic 2). Each topic has 4 A questions

More information

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements 6.013 Recitation 11 Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements A. Introduction The behavior of most electric devices depends on static or slowly varying (quasistatic 1 ) electric

More information

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form ections: 3.1, 3.2, 3.3 Homework: ee homework file Faraday s Experiment (1837), Electric Flux ΨΨ charge transfer from inner to outer sphere

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance ECE 3318 Applied Electricity nd Mgnetism Spring 018 Prof. Dvid R. Jckson Dept. of ECE Notes 31 nductnce 1 nductnce ˆn S Single turn coil The current produces flux though the loop. Definition of inductnce:

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.641 Electromagnetic Fields, Forces, and Motion, Spring 005 Please use the following citation format: Markus Zahn, 6.641 Electromagnetic Fields, Forces, and Motion,

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0936 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 91 PHYSICS B (ADVANCED) SEMESTER, 014 TIME ALLOWED: 3 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS: This paper consists

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Notes 18 Faraday s Law

Notes 18 Faraday s Law EE 3318 Applied Electricity and Magnetism Spring 2018 Prof. David R. Jackson Dept. of EE Notes 18 Faraday s Law 1 Example (cont.) Find curl of E from a static point charge q y E q = rˆ 2 4πε0r x ( E sinθ

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1 EE 6340 Intermediate EM Waves Fall 2016 Prof. David R. Jackson Dept. of EE Notes 1 1 Maxwell s Equations E D rt 2, V/m, rt, Wb/m T ( ) [ ] ( ) ( ) 2 rt, /m, H ( rt, ) [ A/m] B E = t (Faraday's Law) D H

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Integral Expression of EM Fields Summary

Integral Expression of EM Fields Summary Integal Expeion of EM Field ummay 5 Integal Expeion of EM Field.doc 08/07/0 5- In tem of tangential and nomal component of E and on a ρ E= jωφ φ φ d + + { jωφ ( nˆ ( nˆ E φ φ ( nˆ E } d ρ = jω φ φ φ d

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs) USOD 005 uecal Sudy of Lage-aea An-Reonan Reflecng Opcal Wavegude (ARROW Vecal-Cavy Seconduco Opcal Aplfe (VCSOA anhu Chen Su Fung Yu School of Eleccal and Eleconc Engneeng Conen Inoducon Vecal Cavy Seconduco

More information

Lecture 23. Multilayer Structures

Lecture 23. Multilayer Structures Lcu Mullay Sucus In hs lcu yu wll lan: Mullay sucus Dlcc an-flcn (AR) cangs Dlcc hgh-flcn (HR) cangs Phnc Band-Gap Sucus C Fall 5 Fahan Rana Cnll Unvsy Tansmssn Ln Juncns and Dscnnus - I Tansmssn ln dscnnus

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information