A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

Size: px
Start display at page:

Download "A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K"

Transcription

1 Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium tempeatue. The change in the entpy f the ht bject ( S h ), the change in the entpy f the cld bject ( S c ), and the change in the entpy f the cmbinatin ( S ttal ) ae: A) S h < 0, S c > 0, S ttal > 0 B) S h > 0, S c > 0, S ttal > 0 C) S h < 0, S c > 0, S ttal = 0 D) S h > 0, S c < 0, S ttal > 0 E) S h > 0, S c < 0, S ttal < 0 Q. A Cant heat engine peates between 300 K and 500 K. T duble the efficiency, the tempeatue f the ht esevi is fixed, and the tempeatue f the cld esevi is changed t: A) 100 K B) 150 K C) 00 K D) 50 K E) 350 K Q3. Five mles f an ideal mnatmic gas ae cled fm 5.0 C t 18.0 C. What is the change in the entpy f the gas if the cling is dne at a cnstant pessue f 1.00 atm? A) 16. J/K B) J/K C) 34.1 J/K D) J/K E) 9.71 J/K Q4. Tw fixed paticles f chages q 1 = C and q = C, ae 10 cm apat. Hw fa fm q 1 shuld a thid chage be lcated s that the net fce n it is ze? A) 5.0 cm B) 15 cm C) 0 cm D) 10 cm E) 35 cm Q5. Tw neutal metal sphees ae sepaated by 300 m. Hw many electns must be tansfeed fm ne sphee t the the s that thei fce f attactin has a magnitude f 10 6 N? A) B) C) D) E) King Fahd Univesity f Petleum and Mineals

2 Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: Q6. Figue 1 shws a paticle with psitive chage and a paticle with negative chage, bth fixed in place. What is the electic field at pint P? [Take = 1.00 µc] A) + 43 ĵ (N/C) B) 43 ĵ (N/C) C) ĵ (N/C) D) 576 ĵ (N/C) E) 540 î (N/C) Q7. An electic diple cnsists f a paticle with a chage f C at the igin and a paticle with a chage f C n the x axis at x = m. Its diple mment is: A) C.m, in the negative x diectin B) C.m, in the psitive x diectin C) 0 because the net chage is 0 D) C.m, in the psitive y diectin E) C.m, in the negative y diectin Q8. A ptn with a speed f m/s mves in unifm electic field f N/C. The field is acting t deceleate the ptn. Hw fa des the ptn tavel befe it is bught mmentaily t est? A) m B) 5.6 µm C) 55 µm D) 44 m E) 11 m Q9. A nn-unifm electic field given by = 3.0 x î ĵ pieces the Gaussian suface that is in the fm f a cylinde f adius 1.0 m (see Figue ). What is the net chage inside the cylinde? King Fahd Univesity f Petleum and Mineals

3 Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 3 A) 6πε ο B) 1 πε ο C) 1 πε ο D) 6 πε ο E) ze Q10. Thee paallel psitively-chaged nn-cnducting sheets ae sepaated by a distance d between adjacent sheets. The suface chage density n each f the sheets is σ. The electic field in the egins between adjacent sheets has magnitude: A) σ/ε B) σ/ε C) 3σ/ε D) σ/3ε E) ze Q11. Figue 3 shws a css sectin f a neutal spheical metal shell f inne adius R. A pint chage q = 5.0 µc is lcated at a distance 4R/5 fm the cente f the shell. Pints 1,, 3, and 4 ae all the same distance fm the cente f the spheical shell. At which pint is the magnitude f the electic field the lagest? King Fahd Univesity f Petleum and Mineals

4 Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 4 A) The electic field is the same at pints 1,, 3 and 4 B) The electic field is ze utside a cnduct C) Pint 1 D) Pints and 3 E) Pint 4 Q1. A vey lng nn -cnducting cylinde f adius 4.0 cm has a unifm vlume chage density f 5 µc/m 3. What is the magnitude f the electic field at =.0 cm, whee is the distance fm the axis f the cylinde? A) N/C B) N/C C) N/C D) N/C E) ze Q13. A chage f +8 nc is placed at the igin in a unifm electic field that is diected alng the psitive y-axis and has a magnitude f V/m. The wk dne by the electic field when the chage mves t the pint (3.0 m, 4.0 m) is: A) +4.5 mj B) +6.0 mj C) +3.4 mj D) 4.5 mj E) 6.0 mj Q14. An electn is placed in an xy plane whee the electic ptential depends n x and y as shwn in Figue 4 (the ptential des nt depend n z). What is the electic field (in units f kv/m)? A) 5 î ĵ B) 5 î + ĵ C) 5 î + ĵ D) 5 î + ĵ E) 10 î ĵ King Fahd Univesity f Petleum and Mineals

5 Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 5 Q15. An islated cnducting sphee has adius R = 0.0 m and a chage f +0 µc. Pint A is at a distance f 3R fm the cente f the sphee. If V C is the electic ptential at the cente f the sphee, what is the electic ptential diffeence V C V A? A) V B) V C) V D) V E) V Q16. An electn is pjected with an initial kinetic enegy f J twad a fixed ptn. If the electn is initially infinitely fa fm the ptn, at what distance fm the ptn is its speed equal t twice its initial speed? A) 1 µm B) 16 µm C) 83 µm D).9 µm E) 3.8 µm Q17. Thee electns ae initially infinitely fa fm each the. Hw much wk (by an extenal agent) is equied t place them n the cnes f an equilateal tiangle f side length 1.00 nm? A) J B) J C) J D) J E) J Q18. Thee capacits ae aanged as shwn in Figue 5. C 1 has a capacitance f 5.00 pf, C has a capacitance f 10.0 pf, and C 3 has a capacitance f 15.0 pf. Find the chage sted in capacit C 1 if the vltage dp acss C is 311 V. A) 7.78 nc B) 1.56 nc C) 5.0 nc D) 15.6 nc E) 3.89 nc King Fahd Univesity f Petleum and Mineals

6 Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 6 Q19. Each f the thee 5-µF capacits shwn in Figue 6 is initially unchaged. Hw much chage is sted in the cmbinatin afte the switch S is clsed? S 4000 V A) 0.30 C B) 0.10 C C) 0.0 C D) C E) 5.0 C Q0. In Figue 7, tw capacits, C 1 =.00 µf and C = 5.00 µf, ae sepaately chaged by a 100-vlt battey and then cnnected, with ppsite plaity, by clsing switches S 1 and S. What will be the ptential diffeence acss C 1 afte the switches ae clsed? A) 4.9 V B) 95. V C) 100 V D) 71.4 V E) 84.5 V King Fahd Univesity f Petleum and Mineals

7 iˆ, jˆ and kˆ ae unit vects alng the psitive diectins f x-axis, y-axis and z-axis espectively. T c = T 73 Q = n C V T Q = n C P T W = Q H Q L ε = W Q H = 1- Q Q QL K = W dq S = T kq1q F =, F = q 0 E Φ = E. da, E = Suface kq E =, E = 3 R L H kλ kq v = v + at 1 x x = v t + at v = v + a(x x ) R = 8.31 J/ml K ε 0 = C /N.m k = N.m /C e = C m e = kg m p = kg g = 9.8 m/s mic ( µ ) = 10-6 nan (n) = 10-9 pic (p) = 10-1 kq V =, W = ± U B U V = V B - V A = - E.ds = q A 0 V V V E x =, E y =, E z = x y z kq1q U = 1 Q ε 0A ab C =, C =, C = 4πε V d b a,

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: 5/0/011 Chapte 5 In the last lectue: CapacitanceII we calculated the capacitance C f a system f tw islated cnducts. We als calculated the capacitance f sme simple gemeties. In this chapte we will cve the

More information

Electric Fields and Electric Forces

Electric Fields and Electric Forces Cpyight, iley 006 (Cutnell & Jhnsn 9. Ptential Enegy Chapte 9 mgh mgh GPE GPE Electic Fields and Electic Fces 9. Ptential Enegy 9. Ptential Enegy 9. The Electic Ptential Diffeence 9. The Electic Ptential

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

Introduction. Electrostatics

Introduction. Electrostatics UNIVESITY OF TECHNOLOGY, SYDNEY FACULTY OF ENGINEEING 4853 Electmechanical Systems Electstatics Tpics t cve:. Culmb's Law 5. Mateial Ppeties. Electic Field Stength 6. Gauss' Theem 3. Electic Ptential 7.

More information

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating: Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

More information

Phy 213: General Physics III

Phy 213: General Physics III Phy 1: Geneal Physics III Chapte : Gauss Law Lectue Ntes E Electic Flux 1. Cnside a electic field passing thugh a flat egin in space w/ aea=a. The aea vect ( A ) with a magnitude f A and is diected nmal

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A LCTRIC & MAGNTIC FILDS I (STATIC FILDS) LC 05A D. Hanna A. Kils Assciate Pfess lectnics & Cmmnicatins ngineeing Depatment Faclty f ngineeing Cai Univesity Fall 0 f Static lecticity lectic & Magnetic Fields

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS P P Methd EECTOMAGNETIC INDUCTION PEVIOUS EAMCET BITS [ENGINEEING PAPE]. A cnduct d f length tates with angula speed ω in a unifm magnetic field f inductin B which is pependicula t its mtin. The induced

More information

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 9 T K T o C 7.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC dt L pv nt Kt nt CV ideal monatomic gas 5 CV ideal diatomic gas w/o vibation V W pdv V U Q W W Q e Q Q e Canot H C T T S C

More information

Chapter 23: GAUSS LAW 343

Chapter 23: GAUSS LAW 343 Chapte 23: GAUSS LAW 1 A total chage of 63 10 8 C is distibuted unifomly thoughout a 27-cm adius sphee The volume chage density is: A 37 10 7 C/m 3 B 69 10 6 C/m 3 C 69 10 6 C/m 2 D 25 10 4 C/m 3 76 10

More information

Physics 111. Exam #1. January 26, 2018

Physics 111. Exam #1. January 26, 2018 Physics xam # Januay 6, 08 ame Please ead and fllw these instuctins caefully: Read all pblems caefully befe attempting t slve them. Yu wk must be legible, and the ganizatin clea. Yu must shw all wk, including

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Solution: (a) C 4 1 AI IC 4. (b) IBC 4 C A C C R A C R C R C sin 9 sin. A cuent f is maintaine in a single cicula lp f cicumfeence C. A magnetic fiel f is iecte paallel t the plane f the lp. (a) Calculate the magnetic mment f the lp. (b) What

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

Chapter 4. Energy and Potential

Chapter 4. Energy and Potential Chpte 4. Enegy nd Ptentil Hyt; 0/5/009; 4-4. Enegy Expended in Mving Pint Chge in n Electic Field The electic field intensity is defined s the fce n unit test chge. The fce exeted y the electic field n

More information

Chapter 19 8/30/2010 ( ) Let s review what we have learned in PHY College Physics I. Electric Potential Energy and the Electric Potential

Chapter 19 8/30/2010 ( ) Let s review what we have learned in PHY College Physics I. Electric Potential Energy and the Electric Potential 8/3/ Chapte 9 Electic Ptential Enegy and the Electic Ptential Gals Chapte 9 T undestand electical ptential enegy. T deine electicalptential. T study euiptential suaces. T study capacits and dielectics.

More information

Chapter 15. ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS

Chapter 15. ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS Ch. 15--Elect. Pt. and Enegy Cns. Chapte 15 ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS A.) Enegy Cnsideatins and the Abslute Electical Ptential: 1.) Cnside the fllwing scenai: A single, fixed, pint

More information

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT .. Cu-Pl, INE 45- Electmagnetics I Electstatic fields anda Cu-Pl, Ph.. INE 45 ch 4 ECE UPM Maagüe, P me applicatins n Pwe tansmissin, X as, lightning ptectin n lid-state Electnics: esists, capacits, FET

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

March 15. Induction and Inductance Chapter 31

March 15. Induction and Inductance Chapter 31 Mach 15 Inductin and Inductance Chapte 31 > Fces due t B fields Lentz fce τ On a mving chage F B On a cuent F il B Cuent caying cil feels a tque = µ B Review > Cuents geneate B field Bit-Savat law = qv

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

Physics 313 Practice Test Page 1. University Physics III Practice Test II

Physics 313 Practice Test Page 1. University Physics III Practice Test II Physics 313 Pactice Test Page 1 Univesity Physics III Pactice Test II This pactice test should give you a ough idea of the fomat and oveall level of the Physics 313 exams. The actual exams will have diffeent

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons Electostatics IB 12 1) electic chage: 2 types of electic chage: positive and negative 2) chaging by fiction: tansfe of electons fom one object to anothe 3) positive object: lack of electons negative object:

More information

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70 Chapte Tw ce System 35.4 α α 100 Rx cs 0.354 R 69.3 35.4 β β 100 Ry cs 0.354 R 111 Example 11: The man shwn in igue (a) pulls n the cd with a fce f 70 lb. Repesent this fce actin n the suppt A as Catesian

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

clicker 1/25/2011 All C s are 8.00 nf. The battery is 12 V. What is the equivalent capacitance? summary o

clicker 1/25/2011 All C s are 8.00 nf. The battery is 12 V. What is the equivalent capacitance? summary o /5/0 summary C = ε / d = πε / ln( b / a ) ab C = 4πε 4πε a b a b >> a Capacitance Parallel plates, caxial cables, Earth Series and parallel cmbinatins Energy in a capacitr Dielectrics Dielectric strength

More information

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N Q1. A transverse sinusidal wave travelling n a string is given by: y (x,t) = 0.20 sin (2.5 x 80 t) (SI units). The length f the string is 2.0 m and its mass is 1.5 g. What is the magnitude f the tensin

More information

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook The Gadient and Applicatins This unit is based n Sectins 9.5 and 9.6 Chapte 9. All assigned eadings and eecises ae fm the tetbk Objectives: Make cetain that u can define and use in cntet the tems cncepts

More information

Capacitors and Capacitance

Capacitors and Capacitance Capacitos and Capacitance Capacitos ae devices that can stoe a chage Q at some voltage V. The geate the capacitance, the moe chage that can be stoed. The equation fo capacitance, C, is vey simple: C Q

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

Chapter 19. Electric Potential Energy and the Electric Potential

Chapter 19. Electric Potential Energy and the Electric Potential Chapter 19 Electric Ptential Energy and the Electric Ptential 19.1 Ptential Energy W mgh mgh GPE GPE 19.1 Ptential Energy 19.1 Ptential Energy W EPE EPE 19. The Electric Ptential Difference W q EPE q EPE

More information

Today in Physics 122: getting V from E

Today in Physics 122: getting V from E Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions Capacitance Potential enegy

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 3 lectmagnetic Waves 3.1 Maxwell s quatins and ectmagnetic Waves A. Gauss s Law: # clsed suface aea " da Q enc lectic fields may be geneated by electic chages. lectic field lines stat at psitive

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Surface and Interface Science Physics 627; Chemistry 542. Lecture 10 March 1, 2013

Surface and Interface Science Physics 627; Chemistry 542. Lecture 10 March 1, 2013 Suface and Inteface Science Physics 67; Chemisty 54 Lectue 0 Mach, 03 Int t Electnic Ppeties: Wk Functin,Theminic Electn Emissin, Field Emissin Refeences: ) Wduff & Delcha, Pp. 40-4; 46-484 ) Zangwill

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

Physics 122, Fall September 2012

Physics 122, Fall September 2012 Physics 1, Fall 1 7 Septembe 1 Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions

More information

Department of Physics. PHYS MAJOR 2 EXAM Test Code: 015. Monday 1 st May 2006 Exam Duration: 2hrs (from 6:30pm to 8:30pm)

Department of Physics. PHYS MAJOR 2 EXAM Test Code: 015. Monday 1 st May 2006 Exam Duration: 2hrs (from 6:30pm to 8:30pm) Department of Physics PHYS1005 MJOR EXM Test Code: 015 Monday 1 st May 006 Exam Duration: hrs (from 6:30pm to 8:30pm) Name: Student Number: Section Number: Version 15 Page 1 1. Each of the four capacitors

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r 1. Shw that if the angula entu f a bb is deteined with espect t an abita pint, then H can be epessed b H = ρ / v + H. This equies substituting ρ = ρ + ρ / int H = ρ d v + ρ ( ω ρ ) d and epanding, nte

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

Phys 222 Sp 2009 Exam 1, Wed 18 Feb, 8-9:30pm Closed Book, Calculators allowed Each question is worth one point, answer all questions

Phys 222 Sp 2009 Exam 1, Wed 18 Feb, 8-9:30pm Closed Book, Calculators allowed Each question is worth one point, answer all questions Phys Sp 9 Exam, Wed 8 Feb, 8-9:3pm Closed Book, Calculatos allowed Each question is woth one point, answe all questions Fill in you Last Name, Middle initial, Fist Name You ID is the middle 9 digits on

More information

3.8.1 Electric Potential Due to a System of Two Charges. Figure Electric dipole

3.8.1 Electric Potential Due to a System of Two Charges. Figure Electric dipole 3.8 Solved Poblems 3.8.1 Electic Potential Due to a System o Two Chages Conside a system o two chages shown in Figue 3.8.1. Figue 3.8.1 Electic dipole Find the electic potential at an abitay point on the

More information

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM. Exam 1 Exam 1 is on Tuesday, Febuay 14, fom 5:00-6:00 PM. Testing Cente povides accommodations fo students with special needs I must set up appointments one week befoe exam Deadline fo submitting accommodation

More information

F 13. The two forces are shown if Q 2 and Q 3 are connected, their charges are equal. F 12 = F 13 only choice A is possible. Ans: Q2.

F 13. The two forces are shown if Q 2 and Q 3 are connected, their charges are equal. F 12 = F 13 only choice A is possible. Ans: Q2. Q1. Three fixed point charges are arranged as shown in Figure 1, where initially Q 1 = 10 µc, Q = 15 µc, and Q 3 = 5 µc. If charges Q and Q 3 are connected by a very thin conducting wire and then disconnected,

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state): Electc ptental enegy Electstatc fce des wk n a patcle : v v v v W = F s = E s. Ptental enegy (: ntal state f : fnal state): Δ U = U U = W. f ΔU Electc ptental : Δ : ptental enegy pe unt chag e. J ( Jule)

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information

Review of Potential Energy. The Electric Potential. Plotting Fields and Potentials. Electric Potential of a Point Charge

Review of Potential Energy. The Electric Potential. Plotting Fields and Potentials. Electric Potential of a Point Charge eview of Potential negy Potential enegy U() can be used to descibe a consevative foce. efeence point (U) can be chosen fo convenience. Wok done by F : W F d s F d (1D) Change in P.. : U U f U i W Foce

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 -

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 - Pepaed by: M. S. KumaSwamy, TGT(Maths) Page - - ELECTROSTATICS MARKS WEIGHTAGE 8 maks QUICK REVISION (Impotant Concepts & Fomulas) Chage Quantization: Chage is always in the fom of an integal multiple

More information

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chapte 4 Mtin in Tw and Thee Dimensins In this chapte we will cntinue t stud the mtin f bjects withut the estictin we put in chapte t me aln a staiht line. Instead we will cnside mtin in a plane (tw dimensinal

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Charge in a Cavity of Conductor

Charge in a Cavity of Conductor Tdy s Pln Electic Ptentil Enegy (mesued in Jules Electic Ptentil Ptentil Enegy pe unit Chge (mesued in Vlts). Recll tht the electic field E is fce F pe unit chge. Cpcitnce BB Chge in Cvity f Cnduct A pticle

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Nme Sectin Multiple Chice 1. (8 Pts). (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Ntes: 1. In the multiple chice questins, ech questin my hve me thn ne cect nswe; cicle

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

e = 1.60 x 10 ε 0 = 8.85 x C 2 / Nm 2 V i...) F a = m Power =

e = 1.60 x 10 ε 0 = 8.85 x C 2 / Nm 2 V i...) F a = m Power = Equations: 1 1 Constants: q q v v F = k F = qe e = 1.6 x 1-19 C q 1 q 1 9 E = k = k = = 9 1 Nm / C 4πε 4 πε Φ = E da Φ V Total v v q = E da = = V f V i = W q enclosed ε = E ds U e V = q q V V V V = k E

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

SPH4UI 28/02/2011. Total energy = K + U is constant! Electric Potential Mr. Burns. GMm

SPH4UI 28/02/2011. Total energy = K + U is constant! Electric Potential Mr. Burns. GMm 8//11 Electicity has Enegy SPH4I Electic Potential M. Buns To sepaate negative an positive chages fom each othe, wok must be one against the foce of attaction. Theefoe sepeate chages ae in a higheenegy

More information

Physics 107 HOMEWORK ASSIGNMENT #15

Physics 107 HOMEWORK ASSIGNMENT #15 Physics 7 HOMEWORK SSIGNMENT #5 Cutnell & Johnson, 7 th eition Chapte 8: Poblem 4 Chapte 9: Poblems,, 5, 54 **4 small plastic with a mass of 6.5 x - kg an with a chage of.5 µc is suspene fom an insulating

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information