Charge in a Cavity of Conductor

Size: px
Start display at page:

Download "Charge in a Cavity of Conductor"

Transcription

1 Tdy s Pln Electic Ptentil Enegy (mesued in Jules Electic Ptentil Ptentil Enegy pe unit Chge (mesued in Vlts). Recll tht the electic field E is fce F pe unit chge. Cpcitnce

2 BB Chge in Cvity f Cnduct A pticle with chge +Q is plced in the cente f n unchged cnducting hllw sphee. Hw much chge will be induced n the inne nd ute sufces f the sphee? A) inne = Q, ute = +Q B) inne = Q/2, ute = +Q/2 C) inne = 0, ute = 0 D) inne = +Q/2, ute = -Q/2 E) inne = +Q, ute = -Q Q Guss Lw: E da Since E=0 in cnduct Q = enc Q enc = 0 ε 0 Wht Gussin sufce shuld we use? 11

3 BB Infinite Cylindes A lng thin wie hs unifm psitive chge density f 2.5 C/m. Cncentic with the wie is lng thick cnducting cylinde, with inne dius 3 cm, nd ute dius 5 cm. The cnducting cylinde hs net line chge density f -4 C/m. Wht is the line chge density f the induced chge n the inne sufce f the cnducting cylinde? A) -6.5 C/m B) -4 C/m C) -2.5 C/m D) -1.5 C/m E) 0 Tw pts Wht is the line chge density f the induced chge n the ute sufce f the cnducting cylinde? A) -4 C/m B) -2.5 C/m C) -1.5 C/m D) 0 C/m E) +2.5 C/m 15 Wht Gussin sufce(s) shuld we use?

4 Electic Ptentil Enegy nd Electic Ptentil Cnsevtive Fces nd Enegy Cnsevtin Ttl enegy is cnstnt nd is the sum f kinetic(k) nd ptentil enegies(u); E= K+U A vey pweful tl in mechnics (Physics 170) Electic Ptentil Enegy Electic Ptentil

5 Cnsevtin f Enegy (f pticle) fm Phys 170 Kinetic Enegy (K) nn-eltivistic Ptentil Enegy (U) detemined by fce lw K = 1 mv 2 f Cnsevtive Fces: K+U is cnstnt ttl enegy is lwys cnstnt exmples f cnsevtive fces gvity; gvittinl ptentil enegy spings; ciled sping enegy (Hke s Lw): U(x)=½kx 2 electic; electic ptentil enegy (tdy s tpic!) exmples f nn-cnsevtive fces (het) fictin viscus dmping (teminl velcity) 2 U ( x, y, z )

6 Exmple: Gvity t sufce f eth. Gvittinl fce is cnsevtive. F = mg = cnst. U = mgy gvittinl ptentil enegy U + K = cnstnt dp bll fm : U lge; K smll t b: K lge; U smll eveywhee: U + K = cnst. U + K = U b + K b Enegy cnseved. y b F = mg Cn slve this pblem tw wys: using fces nd Newtn s Lws using cnsevtin f E. Abslute ptentil enegy is bity; nly diffeences in ptentil enegy hve physicl mening me ptentil enegy

7 Exmple: Chge in unifm E field. Electicl fce ls cnsevtive. F unifm electic field: F = E = cnst. U = Ey electicl ptentil enegy elese chge fm est t : E nd F dwnwd s it cceletes dwn, K inceses; U deceses. E y F = E me ptentil enegy U + K = cnstnt b Unifm gvity U= mgy Unifm E field U=Ey Tw pblems vey simil.

8 Wk nd ptentil enegy. W b = wk dne by fce in ging fm t b lng pth. W b b = F dl = U = (U b U ) = - W b = + W b b Fdl csθ F θ dl b F u exmple: W b = b F dl = b E dl = b Edl cs0 0 E = b Edl = E dl = E( y U U b = + W b = E(y y b ) b y b ) F = E let y b = 0 nd chse U = 0 t y = 0 U = Ey Abslute ptentil enegy is bity; nly diffeences in ptentil enegy hve physicl mening y b dl

9 Electic ptentil enegy Imgine tw psitive chges, ne with chge, the the with chge 0 : 0 Initilly the chges e vey f pt, s we sy tht the initil ptentil enegy U i is ze (we e fee t define the enegy ze smewhee) b Cnside fixed nd mves dilly fm t b b b b W = F dl = E d = E d cs0 b = Cn identify: b 1 4πε U 2 d = = 4πε 1 4πε 1 ( b 1 ) Like: = U U U b Gmm = And independent f pth!

10 Electic ptentil enegy Wht if is psitive nd is negtive? Pticles tend t mve t smlle U. like chges epel. unlike chges ttct. U = 4πε 1 Cn ls think f the U s the wk dne by n utside gent t ssemble the chge distibutin stting with the pticles t infinity. F O = - F E W O = -W E = U F O F E

11 Electic Ptentil Enegy Exmple: Wht is the ptentil enegy f this cllectin f chges? Step 1: Bing in +2 fm infinity. This csts nthing. +2 d - d 2d - Step 2: Bing in ne - chge. The fce is ttctive! The wk euied is negtive: U = (2)( ) 4πε d 0 Step 3: Bing in 2nd - chge. It is ttcted t the +2, but epelled fm the the - chge. The ttl wk (ll 3 chges) is 2 (2 )( ) (2 )( ) ( )( ) 1 U = + + = 4 4πε 0d 4πε 0d 4πε 4 0 2d πε0d 2 A negtive munt f wk ws euied t bing these chges fm infinity t whee they e nw (i.e., the ttctive fces between the chges e lge thn the epulsive nes).

12 UIL5A1 Cnside the 3 cllectins f pint chges shwn belw. Which cllectin hs the smllest ptentil enegy? -Q d -Q d d -Q d +Q d d -Q d +Q d -Q +Q () (b) (c) +Q

13 UIL5A1 Cnside the 3 cllectins f pint chges shwn belw. Which cllectin hs the smllest ptentil enegy? -Q d -Q d d -Q d +Q d d -Q d +Q d -Q +Q () (b) (c) +Q We hve t d psitive wk t ssemble the chges in () since they ll hve the sme chge nd will ntully epel ech the. In (b) nd (c), it s nt cle whethe we hve t d psitive negtive wk since thee e 2 ttctive pis nd ne epulsive pi. () U = πε 0 Q d 2 (b) U = 1 4πε 0 Q d 2 (c) U = 1 4πε 0 Q 2 2 d (b) (c) 0 () U

14 UI5PF 5: A Tw chges which e eul in mgnitude, but ppsite in sign e plced t eul distnces fm pint A. 2) If thid chge is dded t the system nd plced t pint A, hw des the electic ptentil enegy f the chge cllectin chnge? ) inceses b) deceses c) desn t chnge

15 Electic ptentil Cnside tht we hve thee chges fixed in spce. The ptentil enegy f n dded test chge 0 t pint P is just Q Q Q Uf 0 t P = 0 k + k + k 1 p 2 p 3 p Q 1 Q 2 Q 3 2p 1p 3p Nte tht this fcts: 0 x (the effects f ll the chges) 0 Just s we peviusly defined the electic field s the fce/chge, we nw define the electic ptentil s the ptentil enegy/chge: V(x,y,z) = U(x,y,z)/ 0 (U = V) U depends n, but V is independent f (cn be + -) Units f electic ptentil e vlts: 1 V = 1 J/C V(x,y,z) is scl field, defined eveywhee in spce.

16 ELECTRIC POTENTIAL f 1 pint chge V ( ) U = ( ) 1 = 4πε ) Wht is electic ptentil distnce 1m fm +1C chge? 1m Q=1C ELECTRIC POTENTIAL f 2 pint chges: supepsitin! ) Wht is electic ptentil distnce L fm fm tw +1C chges? L L L b) Wht if the tw chges e +1C nd 1C??

17 ELECTRIC POTENTIAL b We cn ls clculte the wk t mve the chge fm t b s, W b = U = ( U U ) b = ( Vb V ) = V Vb SO, the wk pe unit chge t mve fm t b euls, b b Als W b = F dl = E dl W b b = V Vb = E dl The ptentil diffeence, V V b, is line integl V V b

18 Exmple; Clculte vltge diffeence between tw psitins eltive t pint chge Use the line integl definitin + V V b = b E = K E dl 2 ˆ b ANSWER = K [ 1/ 1/ b ]

19 A E B C Tw pts 4) Pints A, B, nd C lie in unifm electic field. Wht is the ptentil diffeence between pints A nd B? V AB = V B - V A ) VAB > 0 b) V AB = 0 c) V AB < 0 5) Pint C is t highe ptentil thn pint A. Tue Flse

20 9) A psitive chge is elesed fm est in egin f electic field. The chge mves: ) twds egin f smlle electic ptentil b) lng pth f cnstnt electic ptentil c) twds egin f gete electic ptentil

21 13) If yu wnt t mve in egin f electic field withut chnging yu electic ptentil enegy. Hw wuld yu chse the diectin? Yu wuld hve t mve pependicul t the field if yu wish t mve withut chnging electic ptentil.

22 Clicke execise A single chge ( Q = -1µC) is fixed t the igin. Define pint A t x = + 5m nd pint B t x = +2m. Wht is the sign f the ptentil diffeence -1µC B Á x between A nd B? ( V AB V B - V A ) () V AB < 0 (b) V AB = 0 (c) V AB > 0

23 Clicke execise A single chge ( Q = -1µC) is fixed t the igin. Define pint A t x = + 5m nd pint B t x = +2m. Wht is the sign f the ptentil diffeence -1µC B Á x between A nd B? ( V AB V B - V A ) () V AB < 0 (b) V AB = 0 (c) V AB > 0 The simplest wy t get the sign f the ptentil diffeence is t imgine plcing psitive chge t pint A nd detemining which wy it wuld mve. Remembe tht psitive chge will lwys fll t lwe ptentil. A psitive chge t A wuld be ttcted t the -1µC chge; theefe NEGATIVE wk wuld be dne t mve the chge fm A t B. Yu culd ls detemine the sign diectly fm the definitin: B V V V = E dl AB B A A E dl > 0 Since, V AB <0!!

24 V AB is Independent f Pth = B WAB VAB VB VA E dl 0 A 0 A E B The integl is the sum f the tngentil (t the pth) cmpnent f the electic field lng pth fm A t B. This integl des nt depend upn the exct pth chsen t mve fm A t B. (tue f ny cnsevtive fce) V AB is the sme f ny pth chsen t mve fm A t B (becuse electic fces e cnsevtive).

25 Pth Indepence: Des it elly wk? Cnside cse f cnstnt field: Diect: A - B B V B V A = E dl = A Eh B h A dl θ C E Lng wy und: A - C B V B V A = C A E dl B C E dl = C A ( E( dl ) sinθ ) 0 V B V A = E (sin θ ) = Eh S hee we hve t lest ne exmple f cse in which the integl is the sme f BOTH pths. In fct, it wks f ll pths.

26 E A B C 7) Cmpe the ptentil diffeences between pints A t C nd pints B t C. ) V AC > V BC b) V AC = V BC c) V AC < V BC

27 Clicke Execise 3 A psitive chge Q is mved fm A t B lng the pth shwn by the w. Wht is the sign f the wk dne t mve the chge fm A t B? A B () W AB < 0 (b) W AB = 0 (c) W AB > 0

28 Clicke execise 3 A psitive chge Q is mved fm A t B lng the pth shwn by the w. Wht is the sign f the wk dne t mve the chge fm A t B? A B () W AB < 0 (b) W AB = 0 (c) W AB > 0 A diect clcultin f the wk dne t mve psitive chge fm pint A t pint B is nt esy. Neithe the mgnitude n the diectin f the field is cnstnt lng the stight line fm A t B. But, yu DO NOT hve t d the diect clcultin. Remembe: ptentil diffeence is INDEPENDENT OF THE PATH!! Theefe we cn tke ny pth we wish. Chse pth lng the c f E cicle dl centeed t the chge. Alng this pth = 0 t evey pint!!

29 Electic Ptentil: whee is it ze? S f we hve nly cnsideed ptentil diffeences. Define the electic ptentil f pint in spce s the ptentil diffeence between tht pint nd efeence pint. gd efeence pint is infinity... we ften set V = 0 the electic ptentil is then defined s: V ( ) V V f pint chge t igin, integte in fm infinity lng sme xis, e.g., the x-xis hee is distnce t igin V( ) V V 1 = 4πε Ptentil fm pint chge 0 V( ) V( ) = dl E line integl

30 Ptentil fm N chges The ptentil fm cllectin f N chges is just the lgebic sum f the ptentil due t ech chge septely (this is much esie t clculte thn the net electic field, which wuld be vect sum). = = N V( ) = E dl = E dl = = n= 1 n Q 1 Q 2 Q 3 1p V( ) = N V ( ) = n n= πε 0 N n= 1 n n 2p 3p V t P = 1 4πε Q 1 1p + 1 4πε Q 2 2 p + 1 4πε Q 3 3p P

31 +5 µc -3 µc A 11) Tw chges 1 = + 5 µc, 2 = -3µC e plced t eul distnces fm the pint A. Wht is the electic ptentil t pint A? ) V A < 0 b) V A = 0 c) V A > 0

32 Clicke execise Which f the fllwing chge distibutins pduces V(x) = 0 f ll pints n the x-xis? (we define V(x) 0 t x = ) +2µC +1µC +2µC +1µC +2µC -2µC x x x -2µC () -1µC -1µC (b) -2µC -1µC (c) +1µC

33 Clicke execise Which f the fllwing chge distibutins pduces V(x) = 0 f ll pints n the x-xis? (we define V(x) 0 t x = ) +2µC +1µC +2µC +1µC +2µC -2µC x x x -2µC () -1µC -1µC (b) -2µC -1µC (c) +1µC The key hee is t elize tht t clculte the ttl ptentil t pint, we must nly mke n ALGEBRAIC sum f the individul cntibutins. Theefe, t mke V(x)=0 f ll x, we must hve the +Q nd -Q cntibutins cncel, which mens tht ny pint n the x-xis must be euidistnt fm +2µC nd -2µC nd ls fm +1µC nd -1µC. This cnditin is met nly in cse ()!

34 Shuld lightening ds hve smll lge dius f cuvtue? V is pptinl t 1/R. If yu wnt high vltge t pss thugh the d then use smll dius f cuvtue. Ai is nmlly n insult, hweve f lge E fields (E>3 x 10 6 V/m) it stts cnducting. Empie Stte Building, NYC

35 Summy Ptentil enegy sted in sttic chge distibutin wk we d t ssemble the chges Electic ptentil enegy f chge in the pesence f set f suce chges ptentil enegy f the test chge euls the ptentil fm the suces times the test chge: U = V If we knw the electic field E, B V V = E dl B llws us t clculte the ptentil functin V eveywhee (define V A = 0 bve) A A Ptentil due t n chges: V( ) = N V ( ) = n n= πε 0 N n= 1 n n

Electric Potential Energy

Electric Potential Energy Electic Ptentil Enegy Ty Cnsevtive Fces n Enegy Cnsevtin Ttl enegy is cnstnt n is sum f kinetic n ptentil Electic Ptentil Enegy Electic Ptentil Cnsevtin f Enegy f pticle fm Phys 7 Kinetic Enegy (K) nn-eltivistic

More information

Chapter 4. Energy and Potential

Chapter 4. Energy and Potential Chpte 4. Enegy nd Ptentil Hyt; 0/5/009; 4-4. Enegy Expended in Mving Pint Chge in n Electic Field The electic field intensity is defined s the fce n unit test chge. The fce exeted y the electic field n

More information

Lecture 4. Electric Potential

Lecture 4. Electric Potential Lectue 4 Electic Ptentil In this lectue yu will len: Electic Scl Ptentil Lplce s n Pissn s Eutin Ptentil f Sme Simple Chge Distibutins ECE 0 Fll 006 Fhn Rn Cnell Univesity Cnsevtive Ittinl Fiels Ittinl

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

Inductance and Energy of B Maxwell s Equations Mon Potential Formulation HW8

Inductance and Energy of B Maxwell s Equations Mon Potential Formulation HW8 Wed. Fi. 7..3-7..5 Inductnce nd Enegy f 7.3.-.3.3 Mxwell s Equtins Mn. 0. -.. Ptentil Fmultin HW8 Whee we ve been Sttiny Chges pducing nd intecting vi Electic Fields Stedy Cuents pducing nd intecting vi

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Nme Sectin Multiple Chice 1. (8 Pts). (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Ntes: 1. In the multiple chice questins, ech questin my hve me thn ne cect nswe; cicle

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chpte 4 Mtin in Tw nd Thee Dimensins In this chpte we will cntinue t stud the mtin f bjects withut the estictin we put in chpte t me ln stiht line. Insted we will cnside mtin in plne (tw dimensinl mtin)

More information

CHAPTER 2 ELECTRIC FIELD

CHAPTER 2 ELECTRIC FIELD lecticity-mgnetim Tutil (QU PROJCT) 9 CHAPTR LCTRIC FILD.. Intductin If we plce tet chge in the pce ne chged d, n electttic fce will ct n the chge. In thi ce we pek f n electic field in thi pce ( nlgy

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

Electricity & Magnetism Lecture 6: Electric Potential

Electricity & Magnetism Lecture 6: Electric Potential Electicity & Mgnetism Lectue 6: Electic Potentil Tody s Concept: Electic Potenl (Defined in tems of Pth Integl of Electic Field) Electicity & Mgnesm Lectue 6, Slide Stuff you sked bout:! Explin moe why

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

ME 236 Engineering Mechanics I Test #4 Solution

ME 236 Engineering Mechanics I Test #4 Solution ME 36 Enineein Mechnics I est #4 Slutin Dte: id, M 14, 4 ie: 8:-1: inutes Instuctins: vein hptes 1-13 f the tetbk, clsed-bk test, clcults llwed. 1 (4% blck ves utwd ln the slt in the pltf with speed f

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97 Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

Lecture 3. Electrostatics

Lecture 3. Electrostatics Lecue lecsics In his lecue yu will len: Thee wys slve pblems in elecsics: ) Applicin f he Supepsiin Pinciple (SP) b) Applicin f Guss Lw in Inegl Fm (GLIF) c) Applicin f Guss Lw in Diffeenil Fm (GLDF) C

More information

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9 Mesuement f Residul Stess/Stin (Using Stin Gges nd the Hle Dilling Methd) Summy f Discussin in Sectin 8.9 The Hle Dilling Methd Is Bsed On: () Stess tnsfmtin equtins τ x' x' y' y' x' y' xx xx cs sin sin

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

PH2200 Practice Exam I Summer 2003

PH2200 Practice Exam I Summer 2003 PH00 Prctice Exm I Summer 003 INSTRUCTIONS. Write yur nme nd student identifictin number n the nswer sheet.. Plese cver yur nswer sheet t ll times. 3. This is clsed bk exm. Yu my use the PH00 frmul sheet

More information

Phy 213: General Physics III

Phy 213: General Physics III Phy 1: Geneal Physics III Chapte : Gauss Law Lectue Ntes E Electic Flux 1. Cnside a electic field passing thugh a flat egin in space w/ aea=a. The aea vect ( A ) with a magnitude f A and is diected nmal

More information

SOLUTIONS TO CONCEPTS CHAPTER 11

SOLUTIONS TO CONCEPTS CHAPTER 11 SLUTINS T NEPTS HPTE. Gvittionl fce of ttction, F.7 0 0 0.7 0 7 N (0.). To clculte the gvittionl fce on t unline due to othe ouse. F D G 4 ( / ) 8G E F I F G ( / ) G ( / ) G 4G 4 D F F G ( / ) G esultnt

More information

Introduction. Electrostatics

Introduction. Electrostatics UNIVESITY OF TECHNOLOGY, SYDNEY FACULTY OF ENGINEEING 4853 Electmechanical Systems Electstatics Tpics t cve:. Culmb's Law 5. Mateial Ppeties. Electic Field Stength 6. Gauss' Theem 3. Electic Ptential 7.

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r Wok, Potentil Enegy, Consevtion of Enegy the electic foces e consevtive: u Fd = Wok, Potentil Enegy, Consevtion of Enegy b b W = u b b Fdl = F()[ d + $ $ dl ] = F() d u Fdl = the electic foces e consevtive

More information

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

More information

Chapter 21: Electric Charge and Electric Field

Chapter 21: Electric Charge and Electric Field Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme

More information

This chapter is about energy associated with electrical interactions. Every

This chapter is about energy associated with electrical interactions. Every 23 ELECTRIC PTENTIAL whee d l is n infinitesiml displcement long the pticle s pth nd f is the ngle etween F nd d l t ech point long the pth. econd, if the foce F is consevtive, s we defined the tem in

More information

Electric Fields and Electric Forces

Electric Fields and Electric Forces Cpyight, iley 006 (Cutnell & Jhnsn 9. Ptential Enegy Chapte 9 mgh mgh GPE GPE Electic Fields and Electic Fces 9. Ptential Enegy 9. Ptential Enegy 9. The Electic Ptential Diffeence 9. The Electic Ptential

More information

r = (0.250 m) + (0.250 m) r = m = = ( N m / C )

r = (0.250 m) + (0.250 m) r = m = = ( N m / C ) ELECTIC POTENTIAL IDENTIFY: Apply Eq() to clculte the wok The electic potentil enegy of pi of point chges is given y Eq(9) SET UP: Let the initil position of q e point nd the finl position e point, s shown

More information

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating: Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PE ELECTOSTATICS C Popeties of chges : (i) (ii) (iii) (iv) (v) (vi) Two kinds of chges eist in ntue, positive nd negtive with the popety tht unlike chges ttct ech othe nd like chges epel ech othe. Ecess

More information

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70 Chapte Tw ce System 35.4 α α 100 Rx cs 0.354 R 69.3 35.4 β β 100 Ry cs 0.354 R 111 Example 11: The man shwn in igue (a) pulls n the cd with a fce f 70 lb. Repesent this fce actin n the suppt A as Catesian

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P ε µ0 N mp M G T Kuwit University hysics Deprtment hysics 0 Finl Exmintin Spring Semester (0-0) My, 0 Time: 5:00 M :00 M Nme.Student N Sectin N nstructrs: Drs. bdelkrim, frsheh, Dvis, Kkj, Ljk, Mrfi, ichler,

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: 5/0/011 Chapte 5 In the last lectue: CapacitanceII we calculated the capacitance C f a system f tw islated cnducts. We als calculated the capacitance f sme simple gemeties. In this chapte we will cve the

More information

CHAPTER 2 ELECTROSTATIC POTENTIAL

CHAPTER 2 ELECTROSTATIC POTENTIAL 1 CHAPTER ELECTROSTATIC POTENTIAL 1 Intoduction Imgine tht some egion of spce, such s the oom you e sitting in, is pemeted by n electic field (Pehps thee e ll sots of electiclly chged bodies outside the

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

= ΔW a b. U 1 r m 1 + K 2

= ΔW a b. U 1 r m 1 + K 2 Chpite 3 Potentiel électiue [18 u 3 mi] DEVOIR : 31, 316, 354, 361, 35 Le potentiel électiue est le tvil p unité de chge (en J/C, ou volt) Ce concept est donc utile dns les polèmes de consevtion d énegie

More information

Ch 26 - Capacitance! What s Next! Review! Lab this week!

Ch 26 - Capacitance! What s Next! Review! Lab this week! Ch 26 - Cpcitnce! Wht s Next! Cpcitnce" One week unit tht hs oth theoeticl n pcticl pplictions! Cuent & Resistnce" Moving chges, finlly!! Diect Cuent Cicuits! Pcticl pplictions of ll the stuff tht we ve

More information

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y (ˆ ( ) ( ) ( (( ) # (ˆ ( ) ( ) ( ) # B ˆ z ( k ) Emple 1: A positie chge with elocit is moing though unifom mgnetic field s shown in the figues below. Use the ight-hnd ule to detemine the diection of the mgnetic foce on the chge. Emple 1 ˆ i = ˆ ˆ i

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A LCTRIC & MAGNTIC FILDS I (STATIC FILDS) LC 05A D. Hanna A. Kils Assciate Pfess lectnics & Cmmnicatins ngineeing Depatment Faclty f ngineeing Cai Univesity Fall 0 f Static lecticity lectic & Magnetic Fields

More information

ELECTROSTATICS. Syllabus : Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road PE 1

ELECTROSTATICS. Syllabus : Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road PE 1 PE ELECTOSTATICS Syllbus : Electic chges : Consevtion of chge, Coulumb s lw-foces between two point chges, foces between multiple chges; supeposition pinciple nd continuous chge distibution. Electic field

More information

Chapter 15. ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS

Chapter 15. ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS Ch. 15--Elect. Pt. and Enegy Cns. Chapte 15 ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS A.) Enegy Cnsideatins and the Abslute Electical Ptential: 1.) Cnside the fllwing scenai: A single, fixed, pint

More information

11.2. Infinite Series

11.2. Infinite Series .2 Infinite Series 76.2 Infinite Series An infinite series is the sum f n infinite seuence f numbers + 2 + 3 + Á + n + Á The gl f this sectin is t understnd the mening f such n infinite sum nd t develp

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

PX3008 Problem Sheet 1

PX3008 Problem Sheet 1 PX38 Poblem Sheet 1 1) A sphee of dius (m) contins chge of unifom density ρ (Cm -3 ). Using Guss' theoem, obtin expessions fo the mgnitude of the electic field (t distnce fom the cente of the sphee) in

More information

Continuous Charge Distributions

Continuous Charge Distributions Continuous Chge Distibutions Review Wht if we hve distibution of chge? ˆ Q chge of distibution. Q dq element of chge. d contibution to due to dq. Cn wite dq = ρ dv; ρ is the chge density. = 1 4πε 0 qi

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

Chapter 25 Electric Potential

Chapter 25 Electric Potential Chpte 5 lectic Potentil consevtive foces -> potentil enegy - Wht is consevtive foce? lectic potentil = U / : the potentil enegy U pe unit chge is function of the position in spce Gol:. estblish the eltionship

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week. Couse Updtes http://www.phys.hwii.edu/~vne/phys7-sp1/physics7.html Remindes: 1) Assignment #8 vilble ) Chpte 8 this week Lectue 3 iot-svt s Lw (Continued) θ d θ P R R θ R d θ d Mgnetic Fields fom long

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

Get Solution of These Packages & Learn by Video Tutorials on EXERCISE-1

Get Solution of These Packages & Learn by Video Tutorials on  EXERCISE-1 FEE Downlod Study Pckge fom website: www.tekoclsses.com & www.mthsbysuhg.com Get Solution of These Pckges & Len by Video Tutoils on www.mthsbysuhg.com EXECISE- * MAK IS MOE THAN ONE COECT QUESTIONS. SECTION

More information

MAGNETIC EFFECT OF CURRENT & MAGNETISM

MAGNETIC EFFECT OF CURRENT & MAGNETISM TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

General Physics (PHY 2140)

General Physics (PHY 2140) Genel Physics (PHY 40) Lightning Review Lectue 3 Electosttics Lst lectue:. Flux. Guss s s lw. simplifies computtion of electic fields Q Φ net Ecosθ ε o Electicl enegy potentil diffeence nd electic potentil

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

1. The sphere P travels in a straight line with speed

1. The sphere P travels in a straight line with speed 1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chpte The lectic Field II: Continuous Chge Distibutions Conceptul Poblems [SSM] Figue -7 shows n L-shped object tht hs sides which e equl in length. Positive chge is distibuted unifomly long the length

More information

(1) It increases the break down potential of the surrounding medium so that more potential can be applied and hence more charge can be stored.

(1) It increases the break down potential of the surrounding medium so that more potential can be applied and hence more charge can be stored. Cpcito Cpcito: Cpcito ( o conense ) is evice fo stoing chge. It essentilly consists of two conucting sufces such s two pltes o two spheicl shell o two cylines etc. kept exctly pllel to ech othe septe y

More information

Problem Set 3 SOLUTIONS

Problem Set 3 SOLUTIONS Univesity of Albm Deptment of Physics nd Astonomy PH 10- / LeCli Sping 008 Poblem Set 3 SOLUTIONS 1. 10 points. Remembe #7 on lst week s homewok? Clculte the potentil enegy of tht system of thee chges,

More information

Solutions to Problems. Then, using the formula for the speed in a parabolic orbit (equation ), we have

Solutions to Problems. Then, using the formula for the speed in a parabolic orbit (equation ), we have Slutins t Prblems. Nttin: V speed f cmet immeditely befre cllisin. V speed f cmbined bject immeditely fter cllisin, mmentum is cnserved. V, becuse liner + k q perihelin distnce f riginl prblic rbit, s

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chpte 24 Guss s Lw CHAPTR OUTLIN 24.1 lectic Flux 24.2 Guss s Lw 24.3 Appliction of Guss s Lw to Vious Chge Distibutions 24.4 Conductos in lectosttic uilibium 24.5 Foml Deivtion of Guss s Lw In tble-top

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Physics 111. Exam #1. January 26, 2018

Physics 111. Exam #1. January 26, 2018 Physics xam # Januay 6, 08 ame Please ead and fllw these instuctins caefully: Read all pblems caefully befe attempting t slve them. Yu wk must be legible, and the ganizatin clea. Yu must shw all wk, including

More information

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook The Gadient and Applicatins This unit is based n Sectins 9.5 and 9.6 Chapte 9. All assigned eadings and eecises ae fm the tetbk Objectives: Make cetain that u can define and use in cntet the tems cncepts

More information

March 15. Induction and Inductance Chapter 31

March 15. Induction and Inductance Chapter 31 Mach 15 Inductin and Inductance Chapte 31 > Fces due t B fields Lentz fce τ On a mving chage F B On a cuent F il B Cuent caying cil feels a tque = µ B Review > Cuents geneate B field Bit-Savat law = qv

More information

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chapte 4 Mtin in Tw and Thee Dimensins In this chapte we will cntinue t stud the mtin f bjects withut the estictin we put in chapte t me aln a staiht line. Instead we will cnside mtin in a plane (tw dimensinal

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

EECE 260 Electrical Circuits Prof. Mark Fowler

EECE 260 Electrical Circuits Prof. Mark Fowler EECE 60 Electicl Cicuits Pof. Mk Fowle Complex Numbe Review /6 Complex Numbes Complex numbes ise s oots of polynomils. Definition of imginy # nd some esulting popeties: ( ( )( ) )( ) Recll tht the solution

More information

Chapter 23 Electrical Potential

Chapter 23 Electrical Potential hpte Electicl Potentil onceptul Polems [SSM] A poton is moved to the left in unifom electic field tht points to the ight. Is the poton moving in the diection of incesing o decesing electic potentil? Is

More information

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW Physics 10 Jonthn Dowling Physics 10 ecture 9 FIRST MIDTERM REVIEW A few concepts: electric force, field nd potentil Electric force: Wht is the force on chrge produced by other chrges? Wht is the force

More information

dx was area under f ( x ) if ( ) 0

dx was area under f ( x ) if ( ) 0 13. Line Integls Line integls e simil to single integl, f ( x) dx ws e unde f ( x ) if ( ) 0 Insted of integting ove n intevl [, ] (, ) f xy ds f x., we integte ove cuve, (in the xy-plne). **Figue - get

More information

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470 Assignment 7 Paallel Resnance OBJECTIVE T investigate the paallel cnnectin f R,, and C. EQUIPMENT REQUIRED Qty Appaatus 1 Electicity & Electnics Cnstuct EEC470 1 Basic Electicity and Electnics Kit EEC471-1

More information