Remember: When an object falls due to gravity its potential energy decreases.

Size: px
Start display at page:

Download "Remember: When an object falls due to gravity its potential energy decreases."

Transcription

1 Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee we want to study the concepts o wok and potental as they apply to the electc eld. In the study o mechancs we talk about wok done by (o on the gavtatonal eld. ample: The wok (W done by gavty when a 1 kg mass (m alls a dstance (d o 1 mete s: Wmgd(1kg(9.8m/s (1m9.8 Joules We also talk about the potental enegy o an object. In geneal : Wok F d Fd cosθ ample: A 1kg mass sttng 1m above the eaths suace has a potental enegy (U o: Umgd(1kg(9.8m/s (1m9.8 Joules The elatonshp between wok done by gavty on an object and ts change n potental enegy s: W done by gavty - U -(U nal -U ntal When ou 1 kg object alls 1m ts potental enegy deceases: U U nal -U ntal 9.8J -9.8J The wok done by the eath s gavtatonal eld s: W done by gavty - U -(-9.8J 9.8J Constant oce : Wok F d Fd cosθ emembe: When an object alls due to gavty ts potental enegy deceases. Imagne nstead o gavty the oce on the object was electostatc. ample: A postve chage ( o 1 C s n an electc eld ( o 9.8N/C that ponts down. How much wok s done by the -eld the chage moves 1 m n the decton o? W -eld d(1c(9.8n/c(1m9.8joules How much does the chage s potental enegy change when t moves 1m n the decton o? U -W done by -eld -(9.8J -9.8J. Kass P13 Sp4 1

2 The lectc Potental Dened It tuns out to be vey useul to dene a uantty called the electc potental (V. The electc eld can be calculated om the electc potental and vsa vesa. The electc potental s just the electc potental enegy pe unt chage: U V electc potental Actually, t s the electc potental deence we want snce n analogy wth potental enegy t s only the change n potental enegy that counts: eample: In ou pevous eample we sad that a 1 kg mass held 1 m above the eath s suace had a potental enegy o 9.8 J. In dong ths poblem we (mplctly assumed that the potental enegy at the eaths suace was J. Moe coectly, we should say the potental enegy deence o a 1 kg mass 1m above the eath s suace s 9.8J. U U U V V V electc potental deence The electc potental deence s a scala uantty. Ths s one o ts vtues. It allows us to calculate the electc eld, a vecto, om a scala! Fnally, we can elate the electc potental deence to the wok done by an electostatc oce: W V V V note the mnus sgn! The unt o potental deence s the volt.. Kass P13 Sp4 1 volt1 joule pe coulomb

3 The lectc Potental Dened contnued In electostatcs we usually set the eeence at nnty (: U. Wth ths eeence V too. We can dene the electc potental V at any pont n an electc eld n tems o the wok (W t takes to move chage om nnty to a pont :. Kass P13 Sp4 V V V W The electc potental s a popety o the electc eld. It s dened ndependent o any chages placed n the electc eld. ample: A postve chage 1C moves 1m n an electc eld o 9.8N/C as n the gue. a The wok done by the -eld s: W -eld dcosθdcos(18-(1c(9.8n/c(1m-9.8j b The chage s potental enegy deence s: U -W done by -eld -(-9.8J9.8J c The electc potental deence s: V U/9.8 volts An mpotant popety o the potental deence s that ts value s ndependent o the path taken to get om pont to pont. a y d Let s calculate the potental deence n gong om to by two deent outes. b the dect oute to : V U/(-W -eld /-dcosθ-dcos(-d the ndect oute to : along path to a: V as no wok s done snce: W -eld ycosθycos(9 along path a to b: V U/(W -eld /-dcosθ-dcos(-d along path b to : V as no wok s done snce: W -eld ycosθycos(7 Thus V s ndependent o the path taken! The electostatc oce s a consevatve oce and theeoe the potental deence s ndependent o path. 3

4 upotental Suaces It s also useul to speak o eupotental suaces o lnes. These ae ponts n space at the same potental. Snce along an eupotental suace we have V -V (duh! no wok s done movng along an eupotental path. upotental lnes and a pont chage. The gue on the ght shows the electc eld lnes (adally outwad and the eupotental lnes (concentc ccles o a postve pont chage. Caeul nspecton o the geomety shows that the lnes o the electc eld and the eupotental ae pependcula to each othe. Ths s tue n all ccumstances. I t wee not tue then thee would be component o the electc eld along an eupotental and theeoe wok would be done movng along an eupotental. But ths would volate the denton o an eupotental! HW Fg. 5-3 The gue on the ght shows a constant electc eld and ts lnes o eupotental. As epected, the electc eld lnes and the eupotentals ae pependcula to each othe.. Kass P13 Sp4 4

5 Calculatng the lectc Potental om the Feld We can get an epesson o the potental deence n tems o the -eld usng wok (W. Hee we move a postve test chage a dstance s n an electc eld. dw F ds ds The total wok done movng the chage a dstance s (om pont to n an electc eld s: W F ds ds Usng the denton o potental deence we nd: V V cosθds θ s the angle between and ds. ds W ds I we choose V we get: V Let s calculate the potental om a pont chage ( electc eld. Ou path takes us om to, denng V : d V V V ds cosθd d V We pcked a path whee and d wee paallel (θ. ds. Kass P13 Sp4 5

6 The lectc Potental (V o a Goup o Chages We can calculate the V due to a goup o pont chages by etendng ou esult o a pont chage: V V potental at a dstance om a sngle pont chage n 1 potental at pont (,y,z om n pont chages It s mpotant to emembe the ollowng about V: We ae assumng that V at nnty. Ths s the potental at some pont n space (, y, z: VV(, y, z s dstance that chage ( s om the pont (,y,z. s always postve. v The chage can be postve o negatve. The sgn o V depends on the sgns o the s v The potental s a scala uantty and we ae usng supeposton to calculate ts value hee. ample: Fou chages ae at the cente o a suae wth sde L as shown n the gue. 1 What s the potental at the cente o the suae? The dstance o each chage to the cente o the suae s L/ 4 C C C C Vcente L / L / L / L / C C -C -C 1. Kass P13 Sp4 What s the potental at, a pont mdway between the two postve chages? The negatve chages ae (5/4 1/ L om. C C C C 4C V [ 4 / 5] L / L / L 5 / 4 L 5 / 4 L 6

7 The Potental Due to a Contnuous Chage Dstbuton We can deve the epesson o the potental due to a contnuous chage dstbuton n a ashon smla to the one used o the electc eld om a chage dstbuton. d V dv πε 4 Some thngs to note about dv: s the dstance to d. It s always postve. d can be postve o negatve dependng on what type o chages we have. V s a scala!! No dot poduct n the ntegal.. Kass P13 Sp4 wanng! V s the potental not Volume So, to nd the potental (assumng t s zeo at nnty we must do the ollowng ntegal: 1 d V ample: Suppose a chage s unomly dstbuted n a ccle o adus as shown n n the gue. What s the potental at the cente o the ccle assumng V? Hee we have a lnea chage densty λ. Note: o ths poblem s constant (adus o ccle. Pevously we ound that dλds, and usng sac length (sθ we get dλdθ. d ds d V 1 1 λ 1 λ θ λ λ(π dθ π 4 π λ ε πε The last step used λ/(π 7

8 The Potental Due to a Contnuous Chage Dstbuton contnued Let s do a moe challengng poblem, one whee the dstance to the chage s not constant. d ample: A thn unomly chaged od o length L wth lnea chage densty λ. The dstance om d to P s: h P Fo a lnea chage densty along a lne we have: dλd h L/ V 1 d 4 1 πε L / λd L / h L/ Fo ou poblem we get:. Kass P13 Sp4 Ths ntegal s gven n App., as #17: h d ln( L / λ d λ λ L / h ( L / V 4 [ln( L / h ( L / ln( L / h ( L / ] ln πε 4 / h πε L L / h ( L / We can smply the above wth a bt o algeba to get: V λ πε L / ln h h ( L / h OK, so ths wasn t so easy. At least we ddn t have to use vectos.. 8

9 Calculatng the lectc Feld om the Potental One o the geat thngs about the potental s that t s elated to the electc eld by a devatve! Pevously, we dened the potental to be: V V V W ds Fo an nntesmal change n the potental: V dv and we can wte: dv ds Let s consde the case whee the electc eld s n the decton ( and ds s also n the decton (dsd. dv We can eaange ths to ead: ds dv d The component o the electc eld s just the negatve o the potental wth espect to! Ths esult can be genealzed o cases whee the electc eld has components along, y, o z: y y d z z. Kass P13 Sp4 9

10 Calculatng the lectc Feld om the Potental contnued Let s ty a ew eamples to see how ths woks. ample: Let s calculate the electc eld o a pont chage om the potental o a pont chage. y-as We want to calculate at (,y a chage s at (,. The potental at (,y due to a pont chage at (, s: (, y V (, y θ -as y Accodng to ou pescpton we can calculate and y usng devatves: y (, y (, y y ( y y ( y 1/ 1/ ( ( y y y 3 / 3 / 1 1 y To check we got the coect answe let s wok the poblem by calculatng the electc eld. We know that the magntude o the electc eld at a dstance away om a pont chage s: The components o the electc eld and y ae: Same as what we got cosθ snθ om takng devatve cosθ y snθ o potental! πε 4 cosθ snθ. Kass P13 Sp4 1

11 Calculatng the lectc Feld om the Potental contnued We can use the elatonshp between the potental and electc eld to show that the potental n a conducto must be zeo. A potental: V(,yc, wth c a constant has electc eld: (, y c y (, y y c y Thus a conducto s an eupotental nsde and on ts suace! Sometmes we don t have an euaton that descbes the potental but nstead we have a bunch o measuements o the potental at deent ponts n space. We can estmate the electc eld stength usng - V/. ample: Suppose we have the ollowng measuements: (m V(volts The electc eld at ~m s: -(-1/( V/m The electc eld at ~1m s: -(- (-5/( V/m s pontng n the decton. Kass P13 Sp4 11

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

2 dependence in the electrostatic force means that it is also

2 dependence in the electrostatic force means that it is also lectc Potental negy an lectc Potental A scala el, nvolvng magntues only, s oten ease to wo wth when compae to a vecto el. Fo electc els not havng to begn wth vecto ssues woul be nce. To aange ths a scala

More information

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite PHYS 015 -- Week 5 Readng Jounals today fom tables WebAssgn due Wed nte Fo exclusve use n PHYS 015. Not fo e-dstbuton. Some mateals Copyght Unvesty of Coloado, Cengage,, Peason J. Maps. Fundamental Tools

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

Physics 202, Lecture 2. Announcements

Physics 202, Lecture 2. Announcements Physcs 202, Lectue 2 Today s Topcs Announcements Electc Felds Moe on the Electc Foce (Coulomb s Law The Electc Feld Moton of Chaged Patcles n an Electc Feld Announcements Homewok Assgnment #1: WebAssgn

More information

3.1 Electrostatic Potential Energy and Potential Difference

3.1 Electrostatic Potential Energy and Potential Difference 3. lectostatc Potental negy and Potental Dffeence RMMR fom mechancs: - The potental enegy can be defned fo a system only f consevatve foces act between ts consttuents. - Consevatve foces may depend only

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r LINEAR MOMENTUM Imagne beng on a skateboad, at est that can move wthout cton on a smooth suace You catch a heavy, slow-movng ball that has been thown to you you begn to move Altenatvely you catch a lght,

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today? Clce Quz I egsteed my quz tansmtte va the couse webste (not on the clce.com webste. I ealze that untl I do so, my quz scoes wll not be ecoded. a Tue b False Theoetcal hyscs: the etenal quest fo a mssng

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

One-dimensional kinematics

One-dimensional kinematics Phscs 45 Fomula Sheet Eam 3 One-dmensonal knematcs Vectos dsplacement: Δ total dstance taveled aveage speed total tme Δ aveage veloct: vav t t Δ nstantaneous veloct: v lm Δ t v aveage acceleaton: aav t

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3. 3 Eath s Rotaton 3.1 Rotatng Famewok Othe eadng: Valls 2.1, 2.2; Mashall and Plumb Ch. 6; Holton Ch. 2; Schubet Ch. 3 Consde the poston vecto (the same as C n the fgue above) otatng at angula velocty.

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig. TEST-03 TPC: MAGNETSM AND MAGNETC EFFECT F CURRENT Q. Fnd the magnetc feld ntensty due to a thn we cayng cuent n the Fg. - R 0 ( + tan) R () 0 ( ) R 0 ( + ) R 0 ( + tan ) R Q. Electons emtted wth neglgble

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lectue 18 Hamltonan Equatons of Moton (Chapte 8) What s Ahead We ae statng Hamltonan fomalsm Hamltonan equaton Today and 11/6 Canoncal tansfomaton 1/3, 1/5, 1/10 Close lnk to non-elatvstc

More information

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy Lesson 8: Wok, negy, Powe (Sectons 6.-6.8) Chapte 6 Conseaton o negy Today we begn wth a ey useul concept negy. We wll encounte many amla tems that now hae ey specc dentons n physcs. Conseaton o enegy

More information

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c)

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c) ed. Lab., Mon. Tues. ed. Lab. Mon. Tues. 6.1-.4 (.1) Intoducng Enegy & ok Quz 5 L5: Buoyancy, Ccles & Pendulums 6.5-.7 (.) Rest Mass,ok by Changng oces tudy Day tudy Day 6.8-.9(.18,.19) Intoducng Potental

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Objectives. Chapter 6. Learning Outcome. Newton's Laws in Action. Reflection: Reflection: 6.2 Gravitational Field

Objectives. Chapter 6. Learning Outcome. Newton's Laws in Action. Reflection: Reflection: 6.2 Gravitational Field Chapte 6 Gataton Objectes 6. Newton's Law o nesal Gataton 6. Gatatonal Feld 6. Gatatonal Potental 6. Satellte oton n Ccula Obts 6.5 scape Velocty Leanng Outcoe (a and use the oula / (b explan the eanng

More information

Phys102 General Physics II

Phys102 General Physics II Electrc Potental/Energy Phys0 General Physcs II Electrc Potental Topcs Electrc potental energy and electrc potental Equpotental Surace Calculaton o potental rom eld Potental rom a pont charge Potental

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

AP Physics Electric Potential Energy

AP Physics Electric Potential Energy AP Physics lectic Potential negy Review of some vital peviously coveed mateial. The impotance of the ealie concepts will be made clea as we poceed. Wok takes place when a foce acts ove a distance. W F

More information

gravity r2,1 r2 r1 by m 2,1

gravity r2,1 r2 r1 by m 2,1 Gavtaton Many of the foundatons of classcal echancs wee fst dscoveed when phlosophes (ealy scentsts and atheatcans) ted to explan the oton of planets and stas. Newton s ost faous fo unfyng the oton of

More information

Multipole Radiation. March 17, 2014

Multipole Radiation. March 17, 2014 Multpole Radaton Mach 7, 04 Zones We wll see that the poblem of hamonc adaton dvdes nto thee appoxmate egons, dependng on the elatve magntudes of the dstance of the obsevaton pont,, and the wavelength,

More information

Physics 111 Lecture 11

Physics 111 Lecture 11 Physcs 111 ectue 11 Angula Momentum SJ 8th Ed.: Chap 11.1 11.4 Recap and Ovevew Coss Poduct Revsted Toque Revsted Angula Momentum Angula Fom o Newton s Second aw Angula Momentum o a System o Patcles Angula

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

UNIVERSITÀ DI PISA. Math thbackground

UNIVERSITÀ DI PISA. Math thbackground UNIVERSITÀ DI ISA Electomagnetc Radatons and Bologcal l Inteactons Lauea Magstale n Bomedcal Engneeng Fst semeste (6 cedts), academc ea 2011/12 of. aolo Nepa p.nepa@et.unp.t Math thbackgound Edted b D.

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state): Electc ptental enegy Electstatc fce des wk n a patcle : v v v v W = F s = E s. Ptental enegy (: ntal state f : fnal state): Δ U = U U = W. f ΔU Electc ptental : Δ : ptental enegy pe unt chag e. J ( Jule)

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Physics 2113 Lecture 14: WED 18 FEB

Physics 2113 Lecture 14: WED 18 FEB Physcs 2113 Jonathan Dowlng Physcs 2113 Lecture 14: WED 18 FEB Electrc Potental II Danger! Electrc Potental Energy, Unts : Electrc Potental Potental Energy = U = [J] = Joules Electrc Potental = V = U/q

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy 7//008 Adh Haoko S Ontang Antng Moent of neta Enegy Passenge undego unfo ccula oton (ccula path at constant speed) Theefoe, thee ust be a: centpetal acceleaton, a c. Theefoe thee ust be a centpetal foce,

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER Edton CAPTER 8 VECTOR MECANCS FOR ENGNEERS: DYNAMCS Fednand P. Bee E. Russell Johnston, J. Lectue Notes: J. Walt Ole Teas Tech Unvest Knematcs of Rgd Bodes n Thee Dmensons 003 The McGaw-ll Companes, nc.

More information

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50 VEKTORANAYS Ksecka INE INTEGRA and UX INTEGRA Kaptel 4 5 Sdo 9 5 A wnd TARGET PROBEM We want to psh a mne cat along a path fom A to B. Bt the wnd s blowng. How mch enegy s needed? (.e. how mch s the wok?

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Chapter 13 - Universal Gravitation

Chapter 13 - Universal Gravitation Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Capítulo. Three Dimensions

Capítulo. Three Dimensions Capítulo Knematcs of Rgd Bodes n Thee Dmensons Mecánca Contents ntoducton Rgd Bod Angula Momentum n Thee Dmensons Pncple of mpulse and Momentum Knetc Eneg Sample Poblem 8. Sample Poblem 8. Moton of a Rgd

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or ENERGETICS So fa we have been studying electic foces and fields acting on chages. This is the dynamics of electicity. But now we will tun to the enegetics of electicity, gaining new insights and new methods

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Chapter 5 Circular Motion

Chapter 5 Circular Motion Chapte 5 Ccula Moton In a gd body, the dstances between the pats o the body eman constant. We begn nestgatng the otaton o a gd body. We conclude ou nestgaton n Chapte 8. The language used to descbe otatonal

More information

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position Chapte 5 Ccula Moton The language used to descbe otatonal moton s ey smla to the language used to descbe lnea moton. The symbols ae deent. Descpton Lnea Angula poston dsplacement ate o change o poston

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics Lesson 1 Stationay Point Chages and Thei Foces Class Today we will: lean the basic chaacteistics o the electostatic oce eview the popeties o conductos and insulatos lean what is meant by electostatic induction

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Synopsis : 8. ELECTROMAGNETISM

Synopsis : 8. ELECTROMAGNETISM Synopss : 8. ELECTROMAGNETISM MAGNETIC EFFECTS OF CURRENT: 1. Electomagnetsm s the banch of physcs whch deals wth elaton between electcty and magnetsm.. A statc chage poduces only electc feld but movng

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101 10/15/01 PHY 11 C Geneal Physcs I 11 AM-1:15 PM MWF Oln 101 Plan fo Lectue 14: Chapte 1 Statc equlbu 1. Balancng foces and toques; stablty. Cente of gavty. Wll dscuss elastcty n Lectue 15 (Chapte 15) 10/14/01

More information

PHYS 1443 Section 003 Lecture #21

PHYS 1443 Section 003 Lecture #21 PHYS 443 Secton 003 Lectue # Wednesday, Nov. 7, 00 D. Jaehoon Yu. Gavtatonal eld. negy n Planetay and Satellte Motons 3. scape Speed 4. lud and Pessue 5. Vaaton of Pessue and Depth 6. Absolute and Relatve

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

PHY121 Formula Sheet

PHY121 Formula Sheet HY Foula Sheet One Denson t t Equatons o oton l Δ t Δ d d d d a d + at t + at a + t + ½at² + a( - ) ojectle oton y cos θ sn θ gt ( cos θ) t y ( sn θ) t ½ gt y a a sn θ g sn θ g otatonal a a a + a t Ccula

More information

φ (x,y,z) in the direction of a is given by

φ (x,y,z) in the direction of a is given by UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Basic Electrohydrodynamics (Electrostatics) of the Floating Water Bridge

Basic Electrohydrodynamics (Electrostatics) of the Floating Water Bridge Basc lectohyoynamcs lectostatcs) o the loatng Wate Bge Wate has a emanent electc ole moment ue to ts molecula conguaton To scuss a ole, let us assume two ont chages, one wth chage +q an one wth chage q,

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005 Homewok 4 Due 8 Mach 005. Inceasing the Beakdown Voltage: This fist question is a mini design poject. You fist step is to find a commecial cable (coaxial o two wie line) fo which you have the following

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Equpotental Surfaces and Lnes Physcs for Scentsts & Engneers 2 Sprng Semester 2005 Lecture 9 January 25, 2005 Physcs for Scentsts&Engneers 2 1 When an electrc feld s present, the electrc potental has a

More information

3.8.1 Electric Potential Due to a System of Two Charges. Figure Electric dipole

3.8.1 Electric Potential Due to a System of Two Charges. Figure Electric dipole 3.8 Solved Poblems 3.8.1 Electic Potential Due to a System o Two Chages Conside a system o two chages shown in Figue 3.8.1. Figue 3.8.1 Electic dipole Find the electic potential at an abitay point on the

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

Physics Exam 3

Physics Exam 3 Physcs 114 1 Exam 3 The numbe of ponts fo each secton s noted n backets, []. Choose a total of 35 ponts that wll be gaded that s you may dop (not answe) a total of 5 ponts. Clealy mak on the cove of you

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Physics 201 Lecture 4

Physics 201 Lecture 4 Phscs 1 Lectue 4 ltoda: hapte 3 Lectue 4 v Intoduce scalas and vectos v Peom basc vecto aleba (addton and subtacton) v Inteconvet between atesan & Pola coodnates Stat n nteestn 1D moton poblem: ace 9.8

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons Electostatics IB 12 1) electic chage: 2 types of electic chage: positive and negative 2) chaging by fiction: tansfe of electons fom one object to anothe 3) positive object: lack of electons negative object:

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information