16.1 Permanent magnets

Size: px
Start display at page:

Download "16.1 Permanent magnets"

Transcription

1 Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and magnetic toque 166 Biot and Savat s law 161 Pemanent magnets A ba magnet can attact anothe magnet o epel it, depending on which ends of the magnets ae bought togethe One end of a magnet is efeed to as its noth pole; the othe end is its south pole The ule fo whethe two magnets attact o epel each othe: opposites attact; likes epel Beaking a magnet in half esults in the appeaance of two new poles on eithe side of the beak This behavio is fundamentally diffeent fom that in electicity, whee the two types of chage can exist sepaately We saw a visual indication of the electic field E of a point chage using gass seed suspended in oil Similaly, the magnetic field B can be visualized using small ion filings spinkled onto a smooth suface The filings ae bunched togethe nea the poles of the magnets This is whee the magnetic field is most intense The diection of the magnetic field, B, at a given location is the diection in which the noth pole of a compass points when placed at that location In geneal, magnetic field lines exit fom the noth pole of a magnet and ente at the south pole 1

2 16 The magnetic foce on moving chage The magnetic foce depends on seveal factos: The chage of the paticle, q; The speed of the paticle, v; The magnitude of the magnetic field, B; The angle between the velocity vecto and the magnetic field vecto, θ The mathematical elation of them in vecto fom is F = q( v B) One can ewite it as a scala expession, eg F = qvb sinθ The maximum foce is obtained when θ = 9 o The foce vanishes when θ = o Now we define the magnetic field B as B = F qv sinθ The SI unit is 1 tesla = 1 T = 1 N/(A m) The tesla is a faily lage unit of magnetic stength, especially when compaed with the magnetic field at the suface of the Eath, which is oughly T Thus, anothe commonly used 4 unit of magnetism is the gauss (G), defined as follows: 1G = 1 T In tems of the

3 gauss, the Eath s magnetic field on the suface of the Eath is appoximately 5 G A ba magnet has a magnetic field of oughly 1 G Remak: Magnetic field lines neve coss one anothe As the diection in which a compass points at any given location is the diection of the magnetic field at that point Since a compass can point in one diection, thee must be only one diection fo the field B If field lines wee to coss, howeve, thee would be two diections fo B at the cossing point, and this is not allowed Example Paticle 1, with a chage q 1 = 36 C and a speed v 1 = 86 m/s tavels at ight angles to a unifom magnetic field The magnetic foce it expeiences is N Paticle, with a chage q = 53 C and a speed v = m s moves at an angle of 55 o / elative to the same magnetic field Find (a) the stength of the magnetic field and (b) the magnitude of the magnetic foce exeted on paticle Answe Apply the fomula: Apply the fomula: F = qvb sinθ with θ = 9 o One obtains 3 F 45 1 N B = = = 137T 6 qvsin θ (36 1 C)(86 m/ s)sin 9 o F = qvb sinθ with θ = 55 o One obtains 6 3 o F (53 1 )(13 1 m/ s)(137 T) sin N = = The diection of the magnetic foce is given by the magnetic foce ight-hand ule (RHR), which states as follows To find the diection of magnetic foce on a positive chage, stat by pointing the finges of you ight hand in the diection of the velocity, v Now cul you finges fowad the diection of B You thumb points in the diection of F 3

4 If the chage is negative, the foce points opposite to the diection of you thumb Note that the magnetic foce F points in a diection that is pependicula to both B and the chage velocity v As an example, the diection of a magnetic foce F can be indicated by the magnetic foce RHR extending ou finges to the ight (v) and then culing them into the page (B) we see that the magnetic foce exeted on this paticle is upwad, as indicated If the chage is negative, the diection of F is evesed Example Thee paticles tavel though a egion of space whee the magnetic field is out of the page as shown in figue Fo each of the thee paticles, state whethe the paticle s chage is positive, negative, o zeo Answe Use the RHR to obtain the following Paticle 1: negative; paticle : zeo and paticle 3: positive 4

5 163 The motion of chaged paticles in a magnetic field Figues (a) and (b) shows the motion of a positive chaged paticle moving unde electic field and magnetic field espectively Remaks: 1 As the diection of velocity and the diection of magnetic foce ae pependicula to each othe, the wok done by the magnetic foce is always zeo A chaged paticle with a velocity v that is pependicula to the magnetic field moves in a cicula path The magnetic foce acts as the centipetal foce, eg = and F cp F cp = qvb Hence = qvb gives the adius of cicula path, = On the othe hand, F cp = = mω = qvb, qb we can wite m ω = qb, as v = ω Plugging in the elation ω π π =, we have m = qb T T πm T = qb, and the peiod T is given by 3 Helical motion is a combination of linea motion and cicula motion 5

6 Example In a device called a velocity selecto, chaged paticles move though a egion of space with both an electic and a magnetic field If the speed of the paticle has a paticula value, the net foce acting on it is zeo Assume that a positively chaged paticle moves in the positive x diection, and the electic field is in the positive y diection Should the magnetic field be in (a) the positive z diection, (b) the negative y diection, o (c) the negative z diection in ode to give zeo net foce? Answe The foce exeted by the electic field is in the positive y diection; hence, the magnetic foce must be in the negative y diection if it is to cancel the electic foce If we simply ty the thee possible diections fo B one at a time, applying the magnetic foce RHR in each case, we find that only a magnetic field along the positive z axis gives ise to a foce in the negative y diection, as desied The answe is (a) Example Two isotopes of uanium, 35 5 U ( 39 1 kg ) and 38 5 U ( kg ), ae sent 5 into a mass spectomete with a speed of 15 1 m/ s Given that each isotope is singly ionized, and that the stength of the magnetic field is 75 T, what is the distance d between the two isotopes afte they complete half a cicula obit? Answe The isotopes ae singly ionized, which means that a single electon has been emoved 19 fom each atom And the isotopes ae now having chage of e = 16 1 C 6

7 Fom the elation qb = qvb, we obtain v =, and thus = m qb 5 5 (39 1 kg)(15 1 m / s) = = = 341cm qb (16 1 C)(75 T) 5 5 (395 1 kg)(15 1 m / s) = = = 346cm qb (16 1 C)(75 T) The sepaation between the isotopes: d = = (346cm 341 cm) = 1cm 164 The magnetic foce exeted on a cuent-caying wie As a chaged paticle expeiences a foce when it moves acoss magnetic field lines The same thing happens when a wie caies cuent on it Conside a staight segment of length L of a wie with a cuent I flowing fom left to ight, pesents in a magnetic field B, as shown in figue If the conducting chages move though the wie with an aveage speed v, the time equied fo them to move fom one end of the wie segment to the othe is t = L / v The amount of chage that flows though the wie in this time is q = I t = IL / v Theefoe, the foce exeted on the wie is I L F = qvbsinθ = vbsinθ v Hence, we have F = ILB sinθ Maximum foce occus when the cuent is pependicula to the magnetic field (θ = 9 o ) and is zeo if the cuent is in the same diection as B (θ = o ) The diection of the magnetic foce is given by the RHR, whee the diection of chage velocity v is now the diection of cuent I Example When the switch is closed in the cicuit, the wie between the poles of the hoseshoe magnet deflects downwad Is the left end of the magnet (a) a noth magnet pole of (b) a south magnetic pole? 7

8 Answe Once the switch is closed, the cuent in the wie is into the page, as shown in the ight figue Applying the magnetic foce RHR, we see that the magnetic field must point fom left to ight in ode fo the foce to be downwad Since magnetic field lines leave fom noth poles and ente at south poles, it follows that the left end of the magnet must be a noth magnetic pole The answe is (a) 165 Cuent loops and magnetic toque A toque is expeienced by a cuent loop as shown in figue If we imagine an axis of otation though the cente of the loop, at the point O, it is clea that the foces exet a toque that tends to otate the loop clockwise w w τ = ( IhB ) + ( IhB) = IB( hw) = IAB, Plug in the aea of the ectangula loop, A = hw We haveτ = IAB If the plane of loop makes an angle with the magnetic field, we haveτ = IABsinθ Fo the case that has n tuns in a geneal loops, we haveτ = niabsinθ Applications of the magnetic toque ae electic motos and galvanomete 8

9 166 Biot and Savat s law Chage E Electic field Chage Cuent B field Cuent Recall that in the Coulomb s law, we have, say, a point chage q 1 gives an electic field at P and E = ε q distibution, the electic field is at P due to dq is ˆ Fo a chage 1 de = ε dq ˆ dq de Now, fo a magnetic field, we have the law of Biot and Savat I ds sinθ db =, 7 7 whee = 1 T m/ A= 1 H / m ( Heny = H = T m A ) and is called the / pemeability constant In vecto fom, we I ds ˆ have db = Compaing with the Coulomb s 1 law, we ealize that both ae laws I ds θ I ˆ Magnetic field P Example Find the magnetic field at the cente of a coil which caies a steady cuent I Answe The magnetic field though the cente of coil is the supeposition of the magnetic field due to cuent segment I ds sinθ Hence, B = As is a constant and θ = 9 o, we can wite I I ( ) I B = ds π = = NI If the coil has N tuns, the magnetic field is given by B = 9

10 Remak: If the solenoid has N tuns, length l and caies a cuent I, the magnetic field B at a point O on the axis nea the cente of the solenoid is found to be B NI = = ni, l whee n is the numbe of tuns pe unit length of coil If the coil is infinite long o long enough that its length is ten times the diamete, the magnetic field at the end of coil is half that at the cente of coil, eg ni B = Example (Challenging) Find the magnetic field B at a point P, a distance z fom a long cuent wie, as shown in the figue Answe Fom Biot-Savat s law, we have I dl ˆ B =, whee dl ˆ = dl sinφ = dl cosθ As l = ztanθ, we have dl = ( z / cos θ) dθ π I dl cosθ We can wite B = π Now, z/ = cosθ 1 cos θ = gives z B = I π z cos θ π cos θ z π π π cosθ dθ sinθ π cosθ dθ I I I = = = z z πz I P z O θ l φ dl I Hence, the magnetic field at P due to a long wie of cuent is given by B = π z 1

11 Remak 1: The magnitude of the magnetic field 1 m fom a long, staight wie caying a cuent 7 I ( 1 T m/ A)(1 A) 7 of 1 A is B = = = 1 T πz π(1 m) This is a weak field, less than one hundedth the stength of the Eath s magnetic field Remak The magnetic field shown in the figue is due to the hoizontal, cuent-caying wie The cuent in the wie flows to the left The following states the use of magnetic field ight-hand ule which points the diection of cuent: If you point the thumb of you ight hand along the wie to the left you finges cul into the page above the wie and out of the page below the wie Thus, the cuent flows to the left 11

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Physics Spring 2012 Announcements: Mar 07, 2012

Physics Spring 2012 Announcements: Mar 07, 2012 Physics 00 - Sping 01 Announcements: Ma 07, 01 HW#6 due date has been extended to the moning of Wed. Ma 1. Test # (i. Ma ) will cove only chaptes 0 and 1 All of chapte will be coveed in Test #4!!! Test

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Physics 2112 Unit 14

Physics 2112 Unit 14 Physics 2112 Unit 14 Today s Concept: What Causes Magnetic Fields d 0I ds ˆ 2 4 Unit 14, Slide 1 You Comments Can you give a summay fo eveything we use the ight hand ule fo? Wasn't too clea on this topic.

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Physics NYB problem set 5 solution

Physics NYB problem set 5 solution Physics NY poblem set 5 solutions 1 Physics NY poblem set 5 solution Hello eveybody, this is ED. Hi ED! ED is useful fo dawing the ight hand ule when you don t know how to daw. When you have a coss poduct

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

How Electric Currents Interact with Magnetic Fields

How Electric Currents Interact with Magnetic Fields How Electic Cuents nteact with Magnetic Fields 1 Oested and Long Wies wote these notes to help ou with vaious diectional ules, and the equivalence between the magnetism of magnets and the magnets of electic

More information

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +)

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +) Conventional Cuent In some mateials cuent moving chages ae positive: Ionic solution Holes in some mateials (same chage as electon but +) Obseving magnetic field aound coppe wie: Can we tell whethe the

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Chapter 26: Magnetism: Force and Field

Chapter 26: Magnetism: Force and Field Chapte 6: Magnetism: Foce and Field Magnets Magnetism Magnetic foces Magnetism Magnetic field of Eath Magnetism Magnetism Magnetic monopoles? Pehaps thee exist magnetic chages, just like electic chages.

More information

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields Magnets and Magnetic ields Magnetism Howee, if you cut a magnet in half, you don t get a noth pole and a south pole you get two smalle magnets. ectue otes Chapte 20 Topics Magnets and Magnetic ields Magnets

More information

Exam 3, vers Physics Spring, 2003

Exam 3, vers Physics Spring, 2003 1 of 9 Exam 3, ves. 0001 - Physics 1120 - Sping, 2003 NAME Signatue Student ID # TA s Name(Cicle one): Michael Scheffestein, Chis Kelle, Paisa Seelungsawat Stating time of you Tues ecitation (wite time

More information

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields Chapte 8: Magnetic fiels Histoically, people iscoe a stone (e 3 O 4 ) that attact pieces of ion these stone was calle magnets. two ba magnets can attact o epel epening on thei oientation this is ue to

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Review for 2 nd Midterm

Review for 2 nd Midterm Review fo 2 nd Midtem Midtem-2! Wednesday Octobe 29 at 6pm Section 1 N100 BCC (Business College) Section 2 158 NR (Natual Resouces) Allowed one sheet of notes (both sides) and calculato Coves Chaptes 27-31

More information

(a) Calculate the apparent weight of the student in the first part of the journey while accelerating downwards at 2.35 m s 2.

(a) Calculate the apparent weight of the student in the first part of the journey while accelerating downwards at 2.35 m s 2. Chapte answes Heineann Physics 1 4e Section.1 Woked exaple: Ty youself.1.1 CALCULATING APPARENT WEIGHT A 79.0 kg student ides a lift down fo the top floo of an office block to the gound. Duing the jouney

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 114 A Geneal Physics II 11 AM-1:15 PM TR Olin 11 Plan fo Lectue 1 Chaptes 3): Souces of Magnetic fields 1. Pemanent magnets.biot-savat Law; magnetic fields fom a cuent-caying wie 3.Ampee Law 4.Magnetic

More information

Chapter 31 Faraday s Law

Chapter 31 Faraday s Law Chapte 31 Faaday s Law Change oving --> cuent --> agnetic field (static cuent --> static agnetic field) The souce of agnetic fields is cuent. The souce of electic fields is chage (electic onopole). Altenating

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires)

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires) MTE Wed 6, at 5:30-7:00 pm Ch03 and SH 80 Contents of MTE Wok of the electic foce and potential enegy Electic Potential and ield Capacitos and capacitance Cuent and esistance, Ohm s la DC Cicuits and Kichoff

More information

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday Couse Updates http://www.phys.hawaii.edu/~vane/phys272-sp10/physics272.html Remindes: 1) Assignment #8 will be able to do afte today 2) Finish Chapte 28 today 3) Quiz next Fiday 4) Review of 3 ight-hand

More information

Phys-272 Lecture 13. Magnetism Magnetic forces

Phys-272 Lecture 13. Magnetism Magnetic forces Phys-7 Lectue 13 Magnetism Magnetic foces Chaged paticle motion in a constant field - velocity in plane to. Suppose we have a magnetic field given by 0 and a paticle stats out at the oigin moving in the

More information

Sources of Magnetic Fields (chap 28)

Sources of Magnetic Fields (chap 28) Souces of Magnetic Fields (chap 8) In chapte 7, we consideed the magnetic field effects on a moving chage, a line cuent and a cuent loop. Now in Chap 8, we conside the magnetic fields that ae ceated by

More information

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase? Electostatics 1. Show does the foce between two point chages change if the dielectic constant of the medium in which they ae kept incease? 2. A chaged od P attacts od R whee as P epels anothe chaged od

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09 FARADAY'S LAW No. of lectues allocated Actual No. of lectues dates : 3 9/5/09-14 /5/09 31.1 Faaday's Law of Induction In the pevious chapte we leaned that electic cuent poduces agnetic field. Afte this

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m MTE : Ch 13 5:3-7pm on Oct 31 ltenate Exams: Wed Ch 13 6:3pm-8:pm (people attending the altenate exam will not be allowed to go out of the oom while othes fom pevious exam ae still aound) Thu @ 9:-1:3

More information

Module 18: Outline. Magnetic Dipoles Magnetic Torques

Module 18: Outline. Magnetic Dipoles Magnetic Torques Module 18: Magnetic Dipoles 1 Module 18: Outline Magnetic Dipoles Magnetic Toques 2 IA nˆ I A Magnetic Dipole Moment μ 3 Toque on a Cuent Loop in a Unifom Magnetic Field 4 Poblem: Cuent Loop Place ectangula

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials Souces of the Magnetic Field Moving chages cuents Ampee s Law Gauss Law in magnetism Magnetic mateials Biot-Savat Law ˆ ˆ θ ds P db out I db db db db ds ˆ 1 I P db in db db ds sinθ db μ 4 π 0 Ids ˆ B μ0i

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M.

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M. Magnetic Foces Biot-Savat Law Gauss s Law fo Magnetism Ampee s Law Magnetic Popeties of Mateials nductance F m qu d B d R 4 R B B µ 0 J Magnetostatics M. Magnetic Foces The electic field E at a point in

More information

PHY 213. General Physics II Test 2.

PHY 213. General Physics II Test 2. Univesity of Kentucky Depatment of Physics an Astonomy PHY 3. Geneal Physics Test. Date: July, 6 Time: 9:-: Answe all questions. Name: Signatue: Section: Do not flip this page until you ae tol to o so.

More information

Electo Magnetism iot Savat s Law and Ampee s Cicuital Law 1. A cuent is flowing due noth along a powe line. The diection of the magnetic field above it, neglecting the eath s field is: (1) Noth () East

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

FARADAY'S LAW dt

FARADAY'S LAW dt FAADAY'S LAW 31.1 Faaday's Law of Induction In the peious chapte we leaned that electic cuent poduces agnetic field. Afte this ipotant discoey, scientists wondeed: if electic cuent poduces agnetic field,

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Last time RC circuits. Exam 2 is Tuesday Oct. 27 5:30-7 pm, Birge 145. Magnetic force on charged particle. Magnetic force on electric charges

Last time RC circuits. Exam 2 is Tuesday Oct. 27 5:30-7 pm, Birge 145. Magnetic force on charged particle. Magnetic force on electric charges Eam is Tuesda Oct. 7 5:0-7 pm, ige 45 Last time RC cicuits Students w / scheduled academic conflict please sta afte class TODAY to aange altenate time. Coes: all mateial since eam ook sections: Chap 7,

More information

MAGNETIC EFFECT OF CURRENT AND MAGNETISM

MAGNETIC EFFECT OF CURRENT AND MAGNETISM Einstein Classes, Unit No., 3, Vadhman Ring Road Plaza, Vikas Pui Extn., Oute Ring Road New Delhi 8, Ph. : 936935, 857 PMEC MAGNETIC EFFECT OF CURRENT AND MAGNETISM Syllabus : Biot - Savat law and its

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

ELECTROMAGNETISM (CP2)

ELECTROMAGNETISM (CP2) Revision Lectue on ELECTROMAGNETISM (CP) Electostatics Magnetostatics Induction EM Waves based on pevious yeas Pelims questions State Coulomb s Law. Show how E field may be defined. What is meant by E

More information

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II. Homewok #8. hapte 7 Magnetic ields. 6 Eplain how ou would modif Gauss s law if scientists discoveed that single, isolated magnetic poles actuall eisted. Detemine the oncept Gauss law fo magnetism now eads

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Magnetic Field of a Wire

Magnetic Field of a Wire Magnetic Field of a Wie Fundamental Laws fo Calculating B-field Biot-Savat Law (long method, but woks always) Ampee s Law (high symmety) B-Field of a Staight Wie Fo a thin staight conducto caying cuent

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70 SAMPL PAPR I Time Allowed : 3 hous Maximum Maks : 70 Note : Attempt All questions. Maks allotted to each question ae indicated against it. 1. The magnetic field lines fom closed cuves. Why? 1 2. What is

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics CBS Solved Test Papes PHYSICS Class XII Chapte : lectostatics CBS TST PAPR-01 CLASS - XII PHYSICS (Unit lectostatics) 1. Show does the foce between two point chages change if the dielectic constant of

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Module 21: Faraday s Law of Induction 1 Table of Contents

Module 21: Faraday s Law of Induction 1 Table of Contents Module 21: Faaday s Law of Induction 1 Table of Contents 10.1 Faaday s Law of Induction... 10-2 10.1.1 Magnetic Flux... 10-3 10.1.2 Lenz s Law... 10-5 1 10.2 Motional EMF... 10-7 10.3 Induced Electic Field...

More information

Lab #0. Tutorial Exercises on Work and Fields

Lab #0. Tutorial Exercises on Work and Fields Lab #0 Tutoial Execises on Wok and Fields This is not a typical lab, and no pe-lab o lab epot is equied. The following execises will emind you about the concept of wok (fom 1130 o anothe intoductoy mechanics

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

SPH4U Magnetism Test Name: Solutions

SPH4U Magnetism Test Name: Solutions SPH4U Magneti et Nae: Solution QUESION 1 [4 Mak] hi and the following two quetion petain to the diaga below howing two cuent-caying wie. wo cuent ae flowing in the ae diection (out of the page) a hown.

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions)

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions) JJ 5 H Physics (646) Electic Fields_tutsoln JURONG JUNIOR COLLEGE Physics Depatment Tutoial: Electic Fields (solutions) No Solution LO Electic field stength at a point in an electic field is defined as

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Physics 121: Electricity & Magnetism Lecture 1

Physics 121: Electricity & Magnetism Lecture 1 Phsics 121: Electicit & Magnetism Lectue 1 Dale E. Ga Wenda Cao NJIT Phsics Depatment Intoduction to Clices 1. What ea ae ou?. Feshman. Sophomoe C. Junio D. Senio E. Othe Intoduction to Clices 2. How man

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information