6.061 / Introduction to Electric Power Systems

Size: px
Start display at page:

Download "6.061 / Introduction to Electric Power Systems"

Transcription

1 MIT OpenCourseWare / 6.69 Introduction to Electric Power Systems Spring 27 For information about citing these materials or our Terms of Use, visit:

2 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.61 Introduction to Power Systems Problem Set 5 Solutions March 1, 27 Problem 1: The current source will launch two pulses along the line, one going to the right as v + and one to the left as v. These will have associated currents and as the point of injection, v(t) = v + + v i(t) = I (t) = i + i = v + V + From symmetry we can see that the two pulses that get launched must be of the same magnitude, so that: 1 1 v + = v = I = 2,A 25Ω = 2,5,V = 2.5MV 2 2 Time of flight is T = m = 1 ms = 5µS. 1 8 m/s 2 At the right-hand end, when the forward going pulse reaches the short, a second, reverse direction pulse is generated, and there because of the short, v + + v =. The current in the pulse is doubled, so that at peak it has value of 2, A. It takes 2 T = µs for this pulse to get to the left hand end. Since the left-hand end is terminated in impedance =, both pulses appear across the resistor but no reflections are generated. The results are shown in graphical form in Figure 1 Voltage at Termination esistor 2.5 MV 2 µs 5 µ S µ S Current at right hand short 2 A t t Figure 1: Transmission Line Example 1

3 Problem 2: Once corrected, the notes give us the pertinent formula: the ratio of receiving end to sending end voltage is: V r V s = cos(kl) + j sin(kl) 1 Since the wavelength is λ = 8 6 = m = 5km, Here, kl = 2π 5 To find out what happens at the sending end, note that, at x =, voltage and current are: V s = V + + V 1 I s = (V + V ) Since the ratio of reflected to incident wave voltage is: V V + = e 2jkl then, with a little algebraic pain we may conclude that: ( ) V s V = ( ) ( ) e j2ll ( ) V s 1 e j2kl V = ( ) ( ) e j2ll Then, with a little more algebra the sending end current can be found to be: I s = V s j sin kl + cos kl cos kl + j sinkl The calculations from here are carried out in MATLAB. Here is the session. More results show up later >> p2 / Vr Is Open

4 For the final two parts of this problem, note that the derivation done in the notes can be generalized to a termination with a complex impedance. In this case the complex amplitudes of receiving end and sending end voltages are related by: V = V r s cos(kl) + j sin(kl) For the first part, we note that the load is drawing surge impedance load when =. As a practical matter we can use load admittance G = 1/ as a parameter, calculating both load power and voltage as a function of that parameter and doing a cross-plot. The result is shown in Figure 2 x Problem 5.2, eal Loading Volts, MS eal Load, Watts x 1 8 Figure 2: Voltage vs. power ow for the second part, we may approximate things by assuming a real part of the terminating admittance suitable for the power levels involved and then note that reactive power supplied by the termination is: Q s = V 2 Im {Y s } A cross-plot of receiving end voltage against Q s is shown in Figure. The script that implements these calculations is in the appendix. Problem : Voltage across the resistor is 48V

5 x Problem 5.2, eactive Compensation Volts, MS % SIL eal Power % SIL eal Power 12 % SIL eal Power eactive Comp, VAS x 1 8 Figure : Voltage vs. reactive injection So that power is P = 48 = 48kW. The phase voltage on the secondary (wye) side is V, so that the turns ratio of the transformer is = frac Voltage across the load resistor is (see Figure 4) V = 48e j 2 π bc Current on the secondary side of the transformer is in phase with this voltage and flows in phases B and C.Power in each phase is: P B = P C = 277 cos( ) = 24kW The phase current is reflected across to the primary winding through the turns ratio: π = I ba e j 2 I e j 2 cb I ac = π = 4

6 Terminal current is then: I a = I ac I ba = I b = I ba I cb = 2 I c = I cb I ac = e j 2 π e j 2 π e j 2 π ote that = 6.598A Primary side power is, noting that line-neutral voltage is V, P a = cos(6 ) 8,W P b = ,W P c = cos(6 ) 8,W Total primary power is 8, + 2, + 8, = 48,W. eactive power is Q a = sin( 6 ) 1857V A Q b = Q c = sin(6 ) 1857V A Problem 4: For 6.69: This one is actually even easier, at least to start. Since the voltage is 48 V and current is A, power is P = 48 = 48kW. The turns ratio is = Voltage across the resistor is in phase with primary side phase C: V cb = 48e j 2 π ote that since the primary is ungrounded, i A +i B +i C =. And since there is no connection to the Phase A corner, i A = i B, leaving us with i A = i B = i C 2. Then: 2 1 i C = 1.196A 5.52 Understanding that this current is in phase with voltage, we can now write down the three phase currents: 5

7 V c V BC V C I C V a V b V B I B V A I a = Ic I b Figure 4: Currents for Problem I 6.598e j 2 a I b 6.598e j 2 I 1.196e j 2 π c π π Then: P A Q A P B Q B P C = cos( 6 ) 8kW = sin( 6 ) 1.856kV A = cos(6 ) 8kW = sin(6 ) 1.856kV A = kW Q C = Scripts Finally, nothing happens when the ground is restored. To see this, view the equivalent delta side of the transformer as is shown in Figure 5. Since the combination of Phase A and Phase B voltage is equal to the Phase C voltage, the thevenin equivalent, including leakage impedance, has the same back voltage but twice the series impedance. That combination will source half the current of Phase C, so there is really no difference between the grounded and ungrounded situations here. 6

8 Vc + X X X 2X V V V V a + b c c X Figure 5: Delta Equivalent % Problem Set 5, Problem 2 C=e8; % speed of light L=e; % line length = 25; % characteristic impedance Vs = 5e; % line voltage f = 6; lambda = C/f; k = 2*pi/lambda; % part : easy part Vro = Vs /cos(k*l); Iso = (Vs/) * tan(k*l); rr = [1/.8 1 1/1.2]; Vrr= Vs.* rr./ (rr.* cos(k*l) + j*sin(k*l)); IAs = (Vs/).* (-rr.* j*sin(k*l) + cos(k*l))./ (rr.* cos(k*l) -j*sin(k*l)); fprintf( / Vr Is \n ); fprintf( Open %1.1f %1.1f \n,abs(vro),iso); for i = 1:length(rr) fprintf( %1.4f %1.1f %1.1f \n,rr(i),abs(vrr(i)),abs(ias(i))) end % part 1: eal loading only rf = 1.25; % fudge factor Gr = :.1:rf; Gi = ; r = 1./ (Gr + j *Gi); Vr = r./ (r.* cos(k*l) + j*sin(k*l)); V_r = Vs.* abs(vr); P_r = V_r.^2.* (Gr/); figure(1) plot(p_r, V_r) title( Problem 5.2, eal Loading ); ylabel( Volts, MS ); xlabel( eal Load, Watts ) grid on 7

9 %part 2: eactive Loading Gr =.8; Gi = -.:.1:.2; r = 1./ (Gr + j *Gi); Vr = r./ (r.* cos(k*l) + j*sin(k*l)); V_r1 = Vs.* abs(vr); Q_r1 = V_r1.^2.* (Gi/); Gr = 1.; Gi = -.2:.1:.2; r = 1./ (Gr + j *Gi); Vr = r./ (r.* cos(k*l) + j*sin(k*l)); V_r2 = Vs.* abs(vr); Q_r2 = V_r2.^2.* (Gi/); Gr = 1.2; Gi = -.2:.1:.; r = 1./ (Gr + j *Gi); Vr = r./ (r.* cos(k*l) + j*sin(k*l)); V_r = Vs.* abs(vr); Q_r = V_r.^2.* (Gi/); figure(2) plot(q_r1, V_r1, Q_r2, V_r2, Q_r, V_r) title( Problem 5.2, eactive Compensation ); ylabel( Volts, MS ); xlabel( eactive Comp, VAS ) legend( 8 % SIL eal Power, % SIL eal Power, 12 % SIL eal Power ) grid on 8

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science.01/.90 Introduction to Power Systems Problem Set 4 Solutions February 28, 2007 Problem 1: Part 1: Chapter,

More information

6.061 / Introduction to Electric Power Systems

6.061 / Introduction to Electric Power Systems MIT OpenCourseWare http://ocw.mit.edu 6.061 / 6.690 Introduction to Electric Power Systems Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems Problem Set 3 Solutions February 14, 2011 Problem 1: Voltage across

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introduction to Power Systems

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introduction to Power Systems Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061 Introduction to Power Systems Problem Set 5 Solutions February 27, 2011 Problem 1: The inductance and

More information

6.061 / Introduction to Electric Power Systems

6.061 / Introduction to Electric Power Systems MIT OpenCourseWare http://ocw.mit.edu 6.061 / 6.690 Introduction to Electric Power Systems Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061/6.690 Introduction to Power Systems Problem Set 9 Solutions April 18, 011 Problem 1: Chapter 9, Problem

More information

6.061 / Introduction to Electric Power Systems

6.061 / Introduction to Electric Power Systems MIT OpenCourseWare http://ocw.mit.edu 6.6 / 6.69 Introduction to Electric Power Systems Spring 7 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Chapter 2-3 Transformers

Chapter 2-3 Transformers Principles of Electric Machines and Power Electronics Chapter 2-3 Transformers Third Edition P. C. Sen Auto transformer Per unit system S b = S rate V b1 = V rate1 V b2 = V rate2 S b I b1 = = S rate =

More information

LO 1: Three Phase Circuits

LO 1: Three Phase Circuits Course: EEL 2043 Principles of Electric Machines Class Instructor: Dr. Haris M. Khalid Email: hkhalid@hct.ac.ae Webpage: www.harismkhalid.com LO 1: Three Phase Circuits Three Phase AC System Three phase

More information

ECE 476 Power System Analysis Fall 2014 Exam #1, Thursday, October 2, :30AM - 10:50AM

ECE 476 Power System Analysis Fall 2014 Exam #1, Thursday, October 2, :30AM - 10:50AM ECE 476 Power System Analysis Fall 4 Exam #, Thursday, October, 4. 9:3AM - :5AM Name: Problem (5 p) Two balanced 3-phase loads are connected in parallel. One is Y-connected and draws 75 kw (3-phase) at.8

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

Basics of Electric Circuits

Basics of Electric Circuits António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement ENE 240 Electrical and Electronic Measurement Class 11, February 4, 2009 werapon.chi@kmutt.ac.th 1 Work, Energy and Power Work is an activity of force and movement in the direction

More information

Toolbox: Electrical Systems Dynamics

Toolbox: Electrical Systems Dynamics Toolbox: Electrical Systems Dynamics Dr. John C. Wright MIT - PSFC 05 OCT 2010 Introduction Outline Outline AC and DC power transmission Basic electric circuits Electricity and the grid Image removed due

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement EIE 240 Electrical and Electronic Measurement April 24, 2015 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is

More information

A tricky node-voltage situation

A tricky node-voltage situation A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The method we have outlined well in almost all cases, but

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 4 Solution October 5, 201 Problem 1: No secrets here. The script to do

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set solutions September 8, 3 e dλ dt Problem : Torque is, for this system,

More information

12. Introduction and Chapter Objectives

12. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 1: Steady-State Sinusoidal Power 1. Introduction and Chapter Objectives In this chapter we will address the issue of power transmission via sinusoidal or AC) signals. This

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

6.334 Power Electronics Spring 2007

6.334 Power Electronics Spring 2007 MIT OpenCourseWare http://ocw.mit.edu 6.334 Power Electronics Spring 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Chapter 3 Power Factor and Measures

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

BASIC PRINCIPLES. Power In Single-Phase AC Circuit

BASIC PRINCIPLES. Power In Single-Phase AC Circuit BASIC PRINCIPLES Power In Single-Phase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v

More information

NETWORK ANALYSIS ( ) 2012 pattern

NETWORK ANALYSIS ( ) 2012 pattern PRACTICAL WORK BOOK For Academic Session 0 NETWORK ANALYSIS ( 0347 ) 0 pattern For S.E. (Electrical Engineering) Department of Electrical Engineering (University of Pune) SHREE RAMCHANDRA COLLEGE OF ENGG.

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.641 Electromagnetic Fields, Forces, and Motion, Spring 005 Please use the following citation format: Markus Zahn, 6.641 Electromagnetic Fields, Forces, and Motion,

More information

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme Exercise1 1.10.015 Informatik 7 Rechnernetze und Kommunikationssysteme Review of Phasors Goal of phasor analysis is to simplify the analysis of constant frequency ac systems v(t) = max cos(wt + q v ) i(t)

More information

Chapter 1W Basic Electromagnetic Concepts

Chapter 1W Basic Electromagnetic Concepts Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples

More information

THREE PHASE SYSTEMS Part 1

THREE PHASE SYSTEMS Part 1 ERT105: ELECTRCAL TECHNOLOGY CHAPTER 3 THREE PHASE SYSTEMS Part 1 1 Objectives Become familiar with the operation of a three phase generator and the magnitude and phase relationship. Be able to calculate

More information

Transmission and Distribution of Electrical Power

Transmission and Distribution of Electrical Power KINGDOM OF SAUDI ARABIA Ministry Of High Education Umm Al-Qura University College of Engineering & Islamic Architecture Department Of Electrical Engineering Transmission and Distribution of Electrical

More information

Work, Energy and Power

Work, Energy and Power 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is the capacity for doing work (Joules) Power is the rate of using energy (Watt) P = W / t,

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

Review of DC Electric Circuit. DC Electric Circuits Examples (source:

Review of DC Electric Circuit. DC Electric Circuits Examples (source: Review of DC Electric Circuit DC Electric Circuits Examples (source: http://hyperphysics.phyastr.gsu.edu/hbase/electric/dcex.html) 1 Review - DC Electric Circuit Multisim Circuit Simulation DC Circuit

More information

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session Name: Student ID: Signature: THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications FINALEXAMINATION Session 00 ELEC46 Power System Analysis TIME ALLOWED: 3 hours TOTAL

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

AC Power Analysis. Chapter Objectives:

AC Power Analysis. Chapter Objectives: AC Power Analysis Chapter Objectives: Know the difference between instantaneous power and average power Learn the AC version of maximum power transfer theorem Learn about the concepts of effective or value

More information

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street,

More information

BASIC NETWORK ANALYSIS

BASIC NETWORK ANALYSIS SECTION 1 BASIC NETWORK ANALYSIS A. Wayne Galli, Ph.D. Project Engineer Newport News Shipbuilding Series-Parallel dc Network Analysis......................... 1.1 Branch-Current Analysis of a dc Network......................

More information

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) James E. Morris Dept of Electrical & Computer Engineering Portland State University 1 Lecture topics

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocwmitedu 00 Dynamics and Control II Spring 00 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts Institute of Technology

More information

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations 5-1 Repeating the Example on Power Factor Correction (Given last Class) P? Q? S? Light Motor From source 1000 volts @ 60 Htz 10kW

More information

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

IGEE 402 Power System Analysis. FINAL EXAMINATION - SAMPLE Fall 2004

IGEE 402 Power System Analysis. FINAL EXAMINATION - SAMPLE Fall 2004 IGEE 402 Power System Analysis FINAL EXAMINATION - SAMPLE Fall 2004 Special instructions: - Duration: 80 minutes. - Material allowed: a crib sheet (double sided 8.5 x ), calculator. - Attempt 5 out of

More information

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs BME/ISE 3511 Bioelectronics - Test Three Course Notes Fall 2016 Delta & Y Configurations, Principles of Superposition, esistor Voltage Divider Designs Use following techniques to solve for current through

More information

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10

More information

6.061 / Introduction to Electric Power Systems

6.061 / Introduction to Electric Power Systems MIT OpenCourseWare http://ocw.mit.edu 6.061 / 6.690 Introduction to Electric Power Systems Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

THREE-PHASE CIRCUITS

THREE-PHASE CIRCUITS THR-HAS CIRCUITS 4.1 Introduction Generation, Transmission and distribution of electricity via the National Grid system is accomplished by three-phase alternating currents. The voltage induced by a single

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Sinusoidal Steady State Analysis

Sinusoidal Steady State Analysis Sinusoidal Steady State Analysis 9 Assessment Problems AP 9. [a] V = 70/ 40 V [b] 0 sin(000t +20 ) = 0 cos(000t 70 ).. I = 0/ 70 A [c] I =5/36.87 + 0/ 53.3 =4+j3+6 j8 =0 j5 =.8/ 26.57 A [d] sin(20,000πt

More information

AC Circuits. The Capacitor

AC Circuits. The Capacitor The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance

More information

Unit-3. Question Bank

Unit-3. Question Bank Unit- Question Bank Q.1 A delta connected load draw a current of 15A at lagging P.F. of.85 from 400, -hase, 50Hz suly. Find & of each hase. Given P = = 400 0 I = 15A Ans. 4.98, 5.7mH So I P = 15 =8.66A

More information

Circuit Theory I Basic Laws

Circuit Theory I Basic Laws Circuit Theory I Basic Laws Assistant Professor Suna BOLAT Eastern Mediterranean University Electric and electronic department ef2: Anant Agarwaland Jeffrey Lang, course materials for 6.002 Circuits and

More information

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013 ECE 41/51 Electric Energy Systems Power Systems Analysis I Basic Principles Instructor: Kai Sun Fall 013 1 Outline Power in a 1-phase AC circuit Complex power Balanced 3-phase circuit Single Phase AC System

More information

Active loads in amplifier circuits

Active loads in amplifier circuits Active loads in amplifier circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Balanced three-phase systems and operation

Balanced three-phase systems and operation ELEC0014 - Introduction to power and energy systems Balanced three-phase systems and operation Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2017 1 / 17 system used for

More information

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). . Transformers Transformer Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). f the primary side is connected to an AC voltage source v (t), an AC flux (t) will be

More information

Figure 1. Symmetries of an equilateral triangle

Figure 1. Symmetries of an equilateral triangle 1. Groups Suppose that we take an equilateral triangle and look at its symmetry group. There are two obvious sets of symmetries. First one can rotate the triangle through 120. Suppose that we choose clockwise

More information

8.04: Quantum Mechanics Professor Allan Adams. Problem Set 7. Due Tuesday April 9 at 11.00AM

8.04: Quantum Mechanics Professor Allan Adams. Problem Set 7. Due Tuesday April 9 at 11.00AM 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Thursday April 4 Problem Set 7 Due Tuesday April 9 at 11.00AM Assigned Reading: E&R 6 all Li. 7 1 9, 8 1 Ga. 4 all, 6

More information

Symmetrical Components. References

Symmetrical Components. References Symmetrical Components Review of basics Sequence Equivalents Fault Analysis Symmetrical Components Fall 28 References Your power systems analysis class text book NPAG: Chapter 4 (analysis) Chapter 5 (equipment

More information

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA.

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

More information

A two-port network is an electrical network with two separate ports

A two-port network is an electrical network with two separate ports 5.1 Introduction A two-port network is an electrical network with two separate ports for input and output. Fig(a) Single Port Network Fig(b) Two Port Network There are several reasons why we should study

More information

Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Potential and Current Transformers (Refer Slide Time: 00:37) So far we

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications,

More information

VTU E-LEARNING NOTES ON:

VTU E-LEARNING NOTES ON: VTU E-LEARNING NOTES ON: 10EE35 ELECTRICAL AND ELECTRONIC MEASUREMENTS AND INSTRUMENTATION BY DR. M.S. RAVIPRAKASHA PROFESSOR & HEAD DEPT. OF E&E ENGG. MALNAD COLLEGE OF ENGG. HASSAN 573 201. SUBJECT CODE

More information

Revised October 6, EEL , Henry Zmuda. 2. Three-Phase Circuits 1

Revised October 6, EEL , Henry Zmuda. 2. Three-Phase Circuits 1 Three Phase Circuitsit Revised October 6, 008. Three-Phase Circuits 1 Preliminary Comments and a quick review of phasors. We live in the time domain. We also assume a causal (nonpredictive) world. Real-world

More information

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA I m VECTOR. Cause I m committing crimes with magnitude and direction at the same time!" What are phasors??? In normal practice,

More information

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through

More information

Lecture 11 Date:

Lecture 11 Date: Lecture 11 Date: 11.09.014 Scattering Parameters and Circuit Symmetry Even-mode and Odd-mode Analysis Generalized S-Parameters Example T-Parameters Q: OK, but how can we determine the scattering matrix

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FCLTY F ENGNEERNG LB SHEET EEL1196 nstrumentation & Measurement Techniques TRMESTER 2 2017-2018 M2: Power Measurement sing Two Wattmeter Method *Note: Students will have to tabulate the theoretical values

More information

Lab #8 Two Port Networks

Lab #8 Two Port Networks Cir cuit s 212 Lab Lab #8 Two Port Networks Network parameters are used to characterize a device. Given the network parameters of a device, the voltage and current characteristics of the device can be

More information

Fault Analysis Power System Representation

Fault Analysis Power System Representation .1. Power System Representation Single Line Diagram: Almost all modern power systems are three phase systems with the phases of equal magnitude and equal phase difference (i.e., 10 o ). These three phase

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit esson 8 evenin s and Norton s theorems in the context of dc voltage and current sources acting in a resistive network Objectives To understand the basic philosophy behind the evenin

More information

UNIT- I Phase Sequence:

UNIT- I Phase Sequence: UNIT- I Phase Sequence: Phase sequence refers to the relation between voltages (or currents, as well) in a three-phase system. The common representation of this relation is in terms of a phasor diagram,

More information

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale. ECE 40 Review of Three Phase Circuits Outline Phasor Complex power Power factor Balanced 3Ф circuit Read Appendix A Phasors and in steady state are sinusoidal functions with constant frequency 5 0 15 10

More information

ELG4125: Power Transmission Lines Steady State Operation

ELG4125: Power Transmission Lines Steady State Operation ELG4125: Power Transmission Lines Steady State Operation Two-Port Networks and ABCD Models A transmission line can be represented by a two-port network, that is a network that can be isolated from the

More information

Lecture 17 Date:

Lecture 17 Date: Lecture 17 Date: 09.03.017 The Quadrature Hybrid We began our discussion of dividers and couplers by considering important general properties of three- and four-port networks. This was followed by an analysis

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

Notes on Electric Circuits (Dr. Ramakant Srivastava)

Notes on Electric Circuits (Dr. Ramakant Srivastava) Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 5 Solutions October 14, 013 Problem 1: The six slot, two pole winding

More information

Transients on Integrated Power System

Transients on Integrated Power System Chapter 3 Transients on Integrated Power System 3.1 Line Dropping and Load Rejection 3.1.1 Line Dropping In three phase circuit capacitance switching, the determination of the voltage trapped after switching

More information

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Three-phase Circuits Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Where 3 voltages are supplied of equal magnitude,

More information

Electric Circuits II Power Measurement. Dr. Firas Obeidat

Electric Circuits II Power Measurement. Dr. Firas Obeidat Electric Circuits II Power Measurement Dr. Firas Obeidat 1 Table of contents 1 Single-Phase Power Measurement 2 Three-Phase Power Measurement 2 Single-Phase Power Measurement The wattmeter is the instrument

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits

More information

Remark 3.2. The cross product only makes sense in R 3.

Remark 3.2. The cross product only makes sense in R 3. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Work, Energy and Power

Work, Energy and Power 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is the capacity for doing work (Joules) Power is the rate of using energy (Watt) P = W / t,

More information

MAE140 HW3 Solutions

MAE140 HW3 Solutions MAE40 HW Solutions.7) Method: Remove load resistor and find Thevenin equivalent circuit VOC 600 450 00 450 To find Isc, use a voltage divider at a a 00 450 00 450 00 600 0 0 900 6 Isc Isc 00 6*00 00 Amps

More information

ECE145A/218A Course Notes

ECE145A/218A Course Notes ECE145A/218A Course Notes Last note set: Introduction to transmission lines 1. Transmission lines are a linear system - superposition can be used 2. Wave equation permits forward and reverse wave propagation

More information

Total No. of Questions :09] [Total No. of Pages : 03

Total No. of Questions :09] [Total No. of Pages : 03 EE 4 (RR) Total No. of Questions :09] [Total No. of Pages : 03 II/IV B.Tech. DEGREE EXAMINATIONS, APRIL/MAY- 016 Second Semester ELECTRICAL & ELECTRONICS NETWORK ANALYSIS Time: Three Hours Answer Question

More information

Familiarization, and Ohm's Law

Familiarization, and Ohm's Law 1 1 Familiarization, and Ohm's Law Objectives To be familiar with the laboratory equipment and components. Verification of Ohm s law. Series and parallel circuits. Theory Part I : Lab equipment and components:

More information

EE-0001 PEEE Refresher Course. Week 1: Engineering Fundamentals

EE-0001 PEEE Refresher Course. Week 1: Engineering Fundamentals EE-000 PEEE efresher Course Week : Engineering Fundamentals Engineering Fundamentals Bentley Chapters & Camara Chapters,, & 3 Electrical Quantities Energy (work), power, charge, current Electrostatic pressure,

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2 I C + 4 * Massachusetts

More information

Power Systems - Basic Concepts and Applications - Part I

Power Systems - Basic Concepts and Applications - Part I PDHonline Course E104 (1 PDH) Power ystems Basic Concepts and Applications Part I Instructor: hihmin Hsu PhD PE 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax A 006658 Phone & Fax: 709880088

More information

mywbut.com Lesson 6 Wye (Y) - Delta ( ) OR Delta ( )-Wye (Y) Transformations

mywbut.com Lesson 6 Wye (Y) - Delta ( ) OR Delta ( )-Wye (Y) Transformations Lesson 6 Wye (Y) - Delta ( ) O Delta ( )-Wye (Y) Transformations 1 Objectives A part of a larger circuit that is configured with three terminal network Y (or Δ ) to convert into an equivalent Δ (or Y )

More information

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set Solutions September 17, 5 Problem 1: First, note that λ 1 = L 1 i 1 +

More information

CONTENTS 1 THE POWER SYSTEM: AN OVERVIEW 1 2 BASIC PRINCIPLES 5 3 GENERATOR AND TRANSFORMER MODELS; THE PER-UNIT SYSTEM 25

CONTENTS 1 THE POWER SYSTEM: AN OVERVIEW 1 2 BASIC PRINCIPLES 5 3 GENERATOR AND TRANSFORMER MODELS; THE PER-UNIT SYSTEM 25 Solutions Manual Hadi Saadat Professor of Electrical Engineering Milwaukee School of Engineering Milwaukee, Wisconsin McGraw-Hill, Inc CONTENTS 1 THE POWER SYSTEM: AN OVERVIEW 1 2 BASIC PRINCIPLES 5 3

More information