Outflow from orifice

Size: px
Start display at page:

Download "Outflow from orifice"

Transcription

1 Outflow from orifice

2 TYPES OF OUTFLOW Outflow steady: z = const, h E = const (H = const, H E = const) Q p = Q quasi-steady: z ~ const., phenomenon of large reseroir unsteady: z const (H const) Q p Q, filling and drawdown of tank (reseroir) Outflow free (a) free outlet jet submerged (b) submerged outlet jet partly submerged, e.g. outflow from large orifices at the bottom (slide gate) K141 HYAE Outflow from orifice 1

3 STEADY OUTFLOW FROM ORIFICE STEADY FREE OUTFLOW (SFO) OF IDEAL LIQUID p a (=0) BE surface outlet: i h E = p 0 i g h+ + = g g g oerpressure i = ghe Torricelli ( ) equation for outflow elocity of ideal liquid i S orifice for large reseroirs with free leel: section 0 p 0, 0, he h i = gh g u i, i,dq i,q i outflow discharge of ideal liquid Q i : Q = dq = u ds for small orifice (bottom and wall): Q = i i ds Q = S=S i i S i i i S S gh K141 HYAE Outflow from orifice u i i h depth of cente of orifice

4 CONTRACTION OF OUTLET JET Strip area S c < S, S c = S, contraction coefficient 1 TAB. sharp edged orifice well mouthed orifice partial contraction imperfect contraction re-entrant streamlined mouthpiece external mouthpiece D Hydraulic losses outlet loss Z= c g... depends on shape, setup and size of orifice (structure), Re K141 HYAE Outflow from orifice 3

5 SFO OF REAL LIQUID FROM ORIFICE AT THE BOTTOM OF TANK BE h lc g ps0 g pa g c g c g l c ~ 0,5 D Simplification: free leel p s0 = p a S 0 >> S 0 ~ 0 l c << h E l c ~ 0 c p s0 1 1 p g gh l 0 g ps0 g p a g K141 HYAE Outflow from orifice 4 a c... elocity coefficient Q = c S c, S c = εs, εφ = μ orifice discharge coefficient contraction coefficient φ, μ, ε... TAB. 0 c Q S gh, gh

6 SFO OF REAL LIQUID FROM ORIFICE IN VERTICAL WALL OF TANK - Large orifice h T < ( - 3) a change of outflow elocity u with height of orifice u= gh E Q= 1/ g h ds S E - Open reseroir and large rectangular orifice in ertical wall: ds=b dh E S=ba h E 1/ Q= Q= b g he dhe 3 b g h -h he1 for large tank: 0 h h E g Q= 3 b g h -h 3/ 3/ E E1 3/ 3/ 1 - Small orifice h T > ( - 3)a for S 0 >> S 0 ~ 0 c Q S gh t, gh t K141 HYAE Outflow from orifice 5

7 Coefficients for discharge determination - small sharp-edged orifice with full contraction 0,97 0,63 0,61 - external cylindrical mouthpiece L/D = 4 0,81 1,00 0,81 - streamlined mouthpiece jet tube 0,95 1,00 0,95 - large orifices at the bottom with significant 0,65 to 0,85 or continuous side contraction - outlet tube of diameter D and length L with free outflow K141 HYAE Outflow from orifice 6 = 1 L 1+ + D φ, ε, μ for imperfect and partial contraction > φ, ε, μ for full contraction empirical formulas Note: special application of outflow through mouthpiece - - Mariotte essel - with function of dilution dosing, Q = const. i

8 OUTFLOW FROM SUBMERGED ORIFICE for both small and large orifices of whateer shape u gh 0 for small orifice for large reseroir H = H 0 Q μ Q μ S S gh 0 gh Note: solution for partial submergence: Q = Q 1 + Q (Q 1 outflow from free part of orifice, Q outflow from submerged part of orifice). K141 HYAE Outflow from orifice 7

9 OUTFLOW JETS Free outflow jet connected part Supported outflow jet theoretical trajectory (parabola ) type: water - air decay of jet, aeration, drops Submerged outflow jet type: water air solid surface pulsating margin of boundary layer (mixing regions) jet core with constant elocity type: water - water different functions of jet requirements for outlet equipment and outlet elocity - free jets cutting, drilling, hydro-mechanization (unlinking), firefighting, irrigation jets - submerged jets - dosing, mixing, rectifying, K141 HYAE Outflow from orifice 8

10 0 sinδ Theoretical shape of outflow jet (projection at an angle) arcing distance of jet x t cosδ y 0 0 t sinδ 1 0 gt δ 0 cosδ 0 L p0 = sin =hd sin g maximum height 0 0 d y = sin =h sin g 0 =hd g energetic head of jet h d For = 45 L p0max = 0 /g = h d, y 0 = 0,5 h d For = X, = 90 -X same arcing distance For = 90 ertical jet y 0max = 0 /g = h d x = t y = 0 1 gt For = 0 horizontal jet (horizontal projection) theoretical L p = h d yt real liquid, large reseroir L = h y p T T K141 HYAE Outflow from orifice 9

11 UNSTEADY OUTFLOW FROM ORIFICE Q p < Q 0 drawdown, Q p > Q 0 filling Differential equation of unsteady flow Q dt -Q dt =-S dh 0 p 0 Q dt -Q dt =S dh (filling: t 1 t, h 1 h ) p 0 0 S0dh S0dh dt =- = Q -Q Q -Q 0 p p 0 h h h S dh 1 S dh t =t- t 1= = Q -Q Q -Q 0 p h p 0 (drawdown) the same equation for drawdown and filling For Q p const., S 0 const., irregular reseroir numerical solution in interals t K141 HYAE Outflow from orifice 10

12 Drawdown of prismatic tank (S 0 = const.), at Q p = 0 Assumptions: - outflow from small orifice, mouthpiece, tube - free leel - S 0 >>S 0 ~ 0 Q = 0 S gh S0 t = h dh S g h1-1/ S0 t = h 1- h h S g Time of total emptying (h = 0): S h S h V T = = = S g S gh Q K141 HYAE Outflow from orifice 11

If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body

If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great

More information

Hydraulics of pipelines

Hydraulics of pipelines Hydraulics of pipelines K 4 HYAE Hydraulics of pipelines Application of Bernoulli equation BE continuity equation CE g g p h g g p h loss head (losses): friction losses t (in distance L) local losses m

More information

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS - THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3

More information

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

UNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs

UNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM(15A01305) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech -

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Chapter 3 Bernoulli Equation

Chapter 3 Bernoulli Equation 1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

More information

The Bernoulli Equation

The Bernoulli Equation The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 4. ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring Problem Set 4 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Fluid Mechanics Lab Introduction Fluid Mechanics laboratory provides a hands on environment that is crucial for developing

More information

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) No. of Printed Pages : 6 BME-028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) Term-End Examination December, 2011 00792 BME-028 : FLUID MECHANICS Time : 3 hours

More information

Unit C-1: List of Subjects

Unit C-1: List of Subjects Unit C-: List of Subjects The elocity Field The Acceleration Field The Material or Substantial Derivative Steady Flow and Streamlines Fluid Particle in a Flow Field F=ma along a Streamline Bernoulli s

More information

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s. CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1-D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

More information

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory Project TOUCAN A Study of a Two-Can System Prof. R.G. Longoria Update Fall 2009 Laboratory Goals Gain familiarity with building models that reflect reality. Show how a model can be used to guide physical

More information

Discharge measurements

Discharge measurements Discharge measurements DISCHARGE MEASUREMENTS Suitability of methods and equipment for measurements where, under what conditions and for what reason discharge is measured determination of discharge in

More information

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

More information

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.)

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS I LAB MANUAL Prepared By Prof. L. K. Kokate Lab Incharge Approved By Dr.

More information

A Model Answer for. Problem Set #4 FLUID DYNAMICS

A Model Answer for. Problem Set #4 FLUID DYNAMICS A Model Answer for Problem Set #4 FLUID DYNAMICS Problem. Some elocity measurements in a threedimensional incomressible flow field indicate that u = 6xy and = -4y z. There is some conflicting data for

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then: Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing

More information

CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys

CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys CEE 3310 Control Volume Analysis, Oct. 10, 2018 77 3.16 Review First Law of Thermodynamics ( ) de = dt Q Ẇ sys Sign convention: Work done by the surroundings on the system < 0, example, a pump! Work done

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!"

!! +! 2!! +!!! =!! +! 2!! +!!! +!!!! Homework 4 Solutions 1. (15 points) Bernoulli s equation can be adapted for use in evaluating unsteady flow conditions, such as those encountered during start- up processes. For example, consider the large

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

SOE2156: Fluids Lecture 7

SOE2156: Fluids Lecture 7 Weirs and SOE2156: Fluids Lecture 7 Vee Vee Last lecture { assumed the channel was uniform (constant depth, shape, slope etc.) { steady uniform Found that : location of free surface to be determined 2

More information

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information

Stream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1

Stream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1 Stream Tube A region of the moving fluid bounded on the all sides by streamlines is called a tube of flow or stream tube. As streamline does not intersect each other, no fluid enters or leaves across the

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.

Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter. SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment- To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s

More information

University of Engineering and Technology, Taxila. Department of Civil Engineering

University of Engineering and Technology, Taxila. Department of Civil Engineering University of Engineering and Technology, Taxila Department of Civil Engineering Course Title: CE-201 Fluid Mechanics - I Pre-requisite(s): None Credit Hours: 2 + 1 Contact Hours: 2 + 3 Text Book(s): Reference

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

3.25 Pressure form of Bernoulli Equation

3.25 Pressure form of Bernoulli Equation CEE 3310 Control Volume Analysis, Oct 3, 2012 83 3.24 Review The Energy Equation Q Ẇshaft = d dt CV ) (û + v2 2 + gz ρ d + (û + v2 CS 2 + gz + ) ρ( v n) da ρ where Q is the heat energy transfer rate, Ẇ

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [2] Fluid Statics 1 Fluid Mechanics-2nd Semester 2010- [2] Fluid Statics Fluid Statics Problems Fluid statics refers to

More information

Introduction to Process Control

Introduction to Process Control Introduction to Process Control For more visit :- www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit:- www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The

More information

주요명칭 수직날개. Vertical Wing. Flap. Rudder. Elevator 수평날개

주요명칭 수직날개. Vertical Wing. Flap. Rudder. Elevator 수평날개 High Lift Devices 주요명칭 동체 Flap 수직날개 Vertical Wing Rudder Elevator 수평날개 방향전환 () Rolling Yawing Pitching 방향전환 () Rolling Yawing Pitching Potential Flow of Helicopter PNU ME CFD LAB. =0 o =60 o =90 o =0 o

More information

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

More information

Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing

Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing temperature); cavities filled by vapour, and partly

More information

Experiment (4): Flow measurement

Experiment (4): Flow measurement Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

More information

Hydraulics and hydrology

Hydraulics and hydrology Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

New Website: Mr. Peterson s Address:

New Website:   Mr. Peterson s  Address: Brad Peterson, P.E. New Website: http://njut2009fall.weebly.com Mr. Peterson s Email Address: bradpeterson@engineer.com Lesson 1, Properties of Fluids, 2009 Sept 04, Rev Sept 18 Lesson 2, Fluid Statics,

More information

INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS

INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS VT2010 Pipe Flow: General Information: Attendance at the laboratory experiment is required for completion of the course. The experiments will be

More information

Republic of Iraq Ministry of Higher Education and Scientific Research University of Technology- Electromechanical Department

Republic of Iraq Ministry of Higher Education and Scientific Research University of Technology- Electromechanical Department RepublicofIraq MinistryofHigherEducation andscientificresearch UniversityofTechnology- Electromechanical Department - 2014 1436 Experiment No. 1 Calibration of Bourdon Gauge Description: Figure (1) shows

More information

Fluid Mechanics Lab (ME-216-F) List of Experiments

Fluid Mechanics Lab (ME-216-F) List of Experiments Fluid Mechanics Lab (ME-216-F) List of Experiments 1. To determine the coefficient of discharge C d, velocity C v, and contraction C c of various types of orifices 2. Determine of discharge coefficients

More information

1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring Problem Set 8 1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Solved problems 4 th exercise

Solved problems 4 th exercise Soled roblem th exercie Soled roblem.. On a circular conduit there are different diameter: diameter D = m change into D = m. The elocity in the entrance rofile wa meaured: = m -. Calculate the dicharge

More information

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C. William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, FLUID MECHANICS LABORATORY MANUAL

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, FLUID MECHANICS LABORATORY MANUAL MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS LABORATORY MANUAL Prepared By Mr. L. K. Kokate Lab Incharge Approved By

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Rate of Flow Quantity of fluid passing through any section (area) per unit time Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

More information

Chapter 6 The Impulse-Momentum Principle

Chapter 6 The Impulse-Momentum Principle Chapter 6 The Impulse-Momentum Principle 6. The Linear Impulse-Momentum Equation 6. Pipe Flow Applications 6.3 Open Channel Flow Applications 6.4 The Angular Impulse-Momentum Principle Objectives: - Develop

More information

Study fluid dynamics. Understanding Bernoulli s Equation.

Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

More information

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet Exp. Title FLUID MECHANICS- I LAB Syllabus FM-I Semester-4 th Page No. 1 of 1 Internal Marks: 25 L T P External Marks: 25 0 0 2 Total Marks: 50 1. To determine the met centric height of a floating body

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at

More information

Physics 207 Lecture 18

Physics 207 Lecture 18 Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

More information

Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

Experimental and theoretical investigation of the effect of screens on sloshing

Experimental and theoretical investigation of the effect of screens on sloshing 1 Experimental and theoretical investigation of the effect of screens on sloshing Reza Firoozkoohi Trondheim, 28 May 2013 2 Outline of this presentation Part 1: Definition of the problem Part 2: Very small

More information

CHAPTER FOUR Flow Measurement and Control

CHAPTER FOUR Flow Measurement and Control CHAPTER FOUR Flow Measurement and Control 4.1 INTRODUCTION Proper treatment plant operation requires knowledge of the rate at which flow enters the plant and controlling the flow between unit processes.

More information

Useful concepts associated with the Bernoulli equation. Dynamic

Useful concepts associated with the Bernoulli equation. Dynamic Useful concets associated with the Bernoulli equation - Static, Stagnation, and Dynamic Pressures Bernoulli eq. along a streamline + ρ v + γ z = constant (Unit of Pressure Static (Thermodynamic Dynamic

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

Lecture 3 The energy equation

Lecture 3 The energy equation Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

More information

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B. CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

More information

ENGI 2422 First Order ODEs - Separable Page 3-01

ENGI 2422 First Order ODEs - Separable Page 3-01 ENGI 4 First Order ODEs - Separable Page 3-0 3. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with

More information

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by:

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by: CEE 10 Open Channel Flow, Dec. 1, 010 18 8.16 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y = 1 + y 1 1 + 8Fr 1 8.17 Rapidly Varied Flows

More information

Flow Characteristics and Modelling of Head-discharge Relationships for Weirs

Flow Characteristics and Modelling of Head-discharge Relationships for Weirs Chapter 8 Flow Characteristics and Modelling of Head-discharge Relationships for Weirs 8.1 Introduction In Chapters 5 and 7, the formulations of the numerical models for the simulations of flow surface

More information

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

More information

HYDRAULICS 1 (HYDRODYNAMICS) SPRING 2005

HYDRAULICS 1 (HYDRODYNAMICS) SPRING 2005 HYDRAULICS (HYDRODYNAMICS) SPRING 005 Part. Fluid-Flow Principles. Introduction. Definitions. Notation and fluid properties.3 Hydrostatics.4 Fluid dynamics.5 Control volumes.6 Visualising fluid flow.7

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

More information

Comparison of Flow and Sedimentation Pattern for three Designs of Storm Water Tanks by Numerical Modelling

Comparison of Flow and Sedimentation Pattern for three Designs of Storm Water Tanks by Numerical Modelling Comparison of Flow and Sedimentation Pattern for three Designs of Storm Water Tanks by Numerical Modelling 9th International Conference on Urban Drainage Modelling, Belgrad 2012 Simon Ebbert Nina Vosswinkel

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

Lab 3A: Modeling and Experimentation: Two-Can System

Lab 3A: Modeling and Experimentation: Two-Can System Lab 3A: Modeling and Experimentation: Two-Can System Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin June 26, 2014 1 Introduction 2 One-Can 3 Analysis 4 Two-Can

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

In steady flow the velocity of the fluid particles at any point is constant as time passes.

In steady flow the velocity of the fluid particles at any point is constant as time passes. Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

More information

IGHEM 2008 MILANO 3 rd -6 th September International Group for Hydraulic Efficiency Measurements

IGHEM 2008 MILANO 3 rd -6 th September International Group for Hydraulic Efficiency Measurements ENERGY LOSS EFFICIENCY MEASURED IN HYDRAULIC JUMPS WITHIN SLOPED CHANNELS J Demetriou* and D Dimitriou** *National Technical University of Athens, Greece School of Civil Engineering Hydraulics Laboratory

More information

LABORATORY MANUAL FLUID MECHANICS ME-216-F

LABORATORY MANUAL FLUID MECHANICS ME-216-F LABORATORY MANUAL FLUID MECHANICS ME-216-F LIST OF THE EXPERIMENT SNO NAME OF THE EXPERIMENT PAGE NO FROM TO 1. To determine the coefficient of impact for vanes. 2. To determine the coefficient of discharge

More information

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering Science Western University Scholarship@Western Electronic Thesis and Dissertation Repository September 2013 Investigation of Discharge Behaviour From a Sharp-Edged Circular Orifice in Both Weir and Orifice Flow

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets Equation of Continuity Our equations of hydrogeology are a combination of o Conservation of mass o Some empirical

More information

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C. Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

More information

1. Introduction 1.1 Course Outline Goals The goal is that you will: 1. Have fundamental knowledge of fluids: a. compressible and incompressible; b. their properties, basic dimensions and units;. Know the

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT

Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT T Hering, J Dybenko, E Savory Mech. & Material Engineering Dept., University of Western Ontario, London,

More information

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s Chapter 6 INCOMPRESSIBLE INVISCID FLOW All real fluids possess viscosity. However in many flow cases it is reasonable to neglect the effects of viscosity. It is useful to investigate the dynamics of an

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [5] Flow of An Incompressible Fluid Dr. Sameer Shadeed 1 Fluid Mechanics-2nd Semester 2010- [5] Flow of An Incompressible

More information