ECE 417 Lecture 6: knn and Linear Classifiers. Amit Das 09/14/2017

Size: px
Start display at page:

Download "ECE 417 Lecture 6: knn and Linear Classifiers. Amit Das 09/14/2017"

Transcription

1 ECE 417 Lecture 6: knn and Linear Classifiers Amit Das 09/14/2017

2 Acknowledgments n.pdf

3 Nearest Neighbor Algorithm Remember all training examples Given a new example x, find the its closest training example <x i, y i > and predict y i New example How to measure distance Euclidean (squared): x x i 2 = ( x x j j i j ) 2

4 Decision Boundaries: The Voronoi Diagram Given a set of points, a Voronoi diagram describes the areas that are nearest to any given point. These areas can be viewed as zones of control.

5 Decision Boundaries: The Voronoi Diagram Decision boundaries are formed by a subset of the Voronoi diagram of the training data Each line segment is equidistant between two points of opposite class. The more examples that are p stored, the more fragmented and complex the decision boundaries can become.

6 Decision Boundaries With large number of examples and possible noise in the labels, the decision boundary can become nasty! We end up overfitting the data

7 Example: KNearest Neighbor K = 4 New example Find the k nearest neighbors and have them vote. Has a g smoothing effect. This is especially good when there is noise in the class labels.

8 knearest Neighbor: Probabilistic Interpretation Can interpret knn as Maximum Aposteriori (MAP) Classifier a.k.a. Baye s classifier. Posterior Probability = p(class example) knn uses MAP Rule:

9 Effect of K K=1 K=15 Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning) Larger k produces smoother boundary effect and can reduce the impact of class label noise. But when K = N, we always predict the majority class

10 Example I knn in action Threeclass 2D problem with nonlinearly separable, multimodal likelihoods We use the knn rule (k = 5) and the Euclidean distance The resulting decision boundaries and decision regions are shown below CSCE 666 Pattern Analysis Ricardo GutierrezOsuna CSE@TAMU 10

11 Example II Twodim 3class problem with unimodal likelihoods with a common mean; these classes are also not linearly separable We used the knn rule (k = 5), and the Euclidean distance as a metric CSCE 666 Pattern Analysis Ricardo GutierrezOsuna CSE@TAMU 11

12 Question: how to choose k? Can we choose k to minimize the mistakes that we make on training examples (training error)? K=20 K=1 A model selection problem that we will Model complexity study later

13 Characteristics of the knn Classifier Advantages: Simple interpretation of Baye s classifier Can discover complex nonlinear boundaries between classes Easy to Implement (10 effective lines of Matlab code) Disadvantages: Lazy learning algorithm: It defers the learning until a test example is given. Thus, it doesn t learn from the training data. It actually memorizes all the data. Considers all training data before it can classify a test example Large storage and computation requirements. Susceptible to curse of dimensionality.

14 .. ECL 4 (7 &ye s CI ~ss;j,, " ~,c~;re lea,.. ~:,) f~ o.f> " " t ~ :!),, s{j"..' ":,o~ Ce. f of~ c.. ~.(' ~Air/,, rriaf. ' v~ +;_~ A f ~ (~s 00/11/2017 co ~tdtt$ J<'. tc fo!v '/ 1 I t; okmj'r4 /' L, Sotn.?if(\l > Y to,,} (0 c, l~ n~j / f+o H, / ( "'a J.;.~ f,a,_..;~j ) ( h~ t!rlm8>$ I n (_ O rr r<> l.v\'v' t'~ e,ri S)H.s.l;c.!!,) 'Ob9P~c,..) ' X e tr J.e.kc.fo,... ~ Jk.\,..;,+ 6 r rice X ' } I, r,,_t lo Y) t,,,11, te~ t!s ho!cl (L) ~J lo,_... ' '() ::, \ I ~r J1n.e / ' / ~)~ ~r~~ )( i,j,1 r '> ' {~v C ~~~ ~0J ', \tj h ~+. ~1.e. /P,}. Cr t_).1'hg ftvo \, it~ \\Pl\e t: r dorlln.l'i ( ~~ ~ X ~'(r(y:<' 1.> )\) ~ lo,,.s 0 ' ' ' j? f'/) I(\ 1fY', I t...e '

15 X : 0 i.c!."'~ ~ C,_' ".) y ~ /,,J,,_I I <IA,, (,._. V ) ' y = ( y ;,. f Ae~ic l,.j (,J,,J / " I ~ (,., " ) t. ~ )(. y ~ ; ( 1',~$, x) ) r y t y / c1..,, c1.,~) <~ y 7 l 0 A M I? /J.,0/1 LornmWM~CH'~ ~~ ta,..s., ~5,\;"c3, I r,r i \ 'f ~ 1. ~~c..l'"'l L,~o I \ I {::!f R C~t~tvl. I A~) f"nf.e_m,()/.._, ( +Jk ~ ~~)

16 Fw~ 1 RAASH :o 'fe ~ f' ( / f y) ' Z rry:ty '() / :::V \ / I /o I r ( ;* 'i) y f ( '/ ) r( y\p\fo)1(,::o) 1 71 fe 7'0 f'~,.. f Ar '?'1 1 ~ 1'0 "' \ 1 _ t) ~ 1' F" cf I f' 01 i h&/\ 001\ 0 bpj,; L '..$ J:;,J (_ s l 'f._ ',_;..,,..,.. ;,.,cl

17 ~r's ~~ ' >.+k f'e... \ ( '( ~ 1 \ x) F \ 'I i \ " ) f (Fr) 1 ") \ ( t h ~ 1). f (xjfo),.., r::o I 'f ": \ ~ " 'f: D " / 1:. \. 1 < I > HAf~ (M~x ~M~ + ~e. wf,~)

18 A k. t). 4,,_, ~{ µ_t<> ~ \; k~ U..1> L (x) 1 H /yc9 t>(xf 't~o) [ (r.) = 'cj L(<), '\.,~ ' : <=7 fg):: (; "~(h ~h.r c.:,. tw1t'1~+ LfJ.JJ, cc F (." f ~=o \ = 1"" c\ P O f ) l;lel.'h~ ~ '7 { ~IA< 1_ t ( x \, : I ) ~ " "' N ( µ, a;; ),wd Vo '.:. 6, X "' ~( (,M 1 / o; ) /J,, 7 J1 0 ~Z ( ~. /Jo) e. 2 (T 2 ~ t x fa,) e. 2 0 ~ 2.. \ huj L ( "\ : f ( )( \ 1 = I) f('(/y,:o)

19 0A,)2 (0 e. ~ d7\(j z t(x µ,) (,,P~ 2 u 2 I r 'l. '1' ( ",4., r e. ~ ~ { ~7\U '2 e 'l \ L (, ') ~ \ ( (. ~ JJ l )J.~) 'I, ;::: er <~ 'f'c ~1 :: 1 ' I 0/

20 e) ( (, a, J,_. cfv'"'' n""'.f ~.,,,) C l""m'",j. 7 ~ """"+ ~) ~,= 0 X rj N ( flo, <1"o ) )( N r{ C }I ' cr, ) [(x) w,1\ l,,_a t~ f,..j,,.,~, /,. e,, X (R..,,.,,J l~h=~), i("lr) ~~.. hi~1,j.. ~,, y: () ; y:: \ ' X N r{ ( ~~/ ~r>) X N N ( )),,_, :f1 )!'~ t. ~~ z ~o k / k~~, Lt> A.

21 t'' C. ' "' rf ( }J, z" ) I= I "I("' M( µ, /,) 2,f, / )J,;;,Mo ib $(~) ~ + / ~:' z~)r (l:( fl.~z~) x T ~ [ r l JJ, z, JJ. µ: ~o J t ~ )oa f> A.n,rio \e~ 7 ().L_ ~(xj MA~d 'Fi'~""' be+ccfo1 (Q vojµ,~;c. Dt'..~ Ce u. t 1,.....(<4.,,(;.., 4\ cr,jj

22 C~«,e1... ) ~ = o c "H1... ) r:: '.# X N rr( µ 0 / <r) X,v N(µ er) 11 :::: t, ' c ~ cr,,,.i :: (J" ~o l_~ ~r Gl 2,. ( ~) ; ( µ \ tfa/,} ~.(: d,eca~ " ),)Jc'..,y Jc~)~ ~\,Al~ 'J I ;2.. I / X ~ C () >( < ( / "" 1\.,_

23 / r~ : ti~ f A + 1', r,., ( "",JO 0). ' fe ( t) ~ ~ ~ ( ';_5) /0~ ) + fl 1 & ( M {v f., ( { y) i> Te ( t") < 1:>,, Ce) /

24 f'ect>t\ / _!,e,~;j:,,'j/ '' A C cwj). / fk re},,, VP p I r le> r1~.\,=.,/i\ j :~, +!,,, coo.vo!s.~ r) c rer,cl,.,,, 1 "', cit~; r? :. 1 c\),.fe +"e.: r 'P ;_ t~ se. +",_ 1 0 W it ~t f o,,h,.s :: T N f + \f' ::: 50 1~ ±1 ~ "'H'~ /' Tf' 1 PN ;;;.,oo

25 L~4 ~ ~v4_«e,}e 41( it,.. ~ merkics?a 1 r 2o Ff J ~r.j 2 O f 20 t.3v ~ s ( ~A "'1 Tyt~ l" e /i.j..br~) T=N 1= N 1 'Tr' lo to + o 0 O ( r ire,,,(!._ /,J./.Jf. ) ~ f1> TP TP..i F N ao 10 + (0 Q, CJ t rm ( ~ :::.. 12e ao.jj Se r,_s,.j..; v, ~ TP R. ) T.P 11 : 0 82 '. lr1 t"' CA~,J "',.J b V"' C I ~.,.,._?.1,,,,,,_,t/,s. (o.ffks)

26 f f' ~o iore ~ J fe~ fteci'8'>&r'l 2 10 <r + I 4 \ ~1... /2f /7 f \ J tf> A e. 0 ~ F,~ 1 (_ wo''1) ( w+) r \iz.~ f ~e r,;.si 111\. 1~,µ I ~faf~~ low V/\ ( v.v 1 RerlA\\ 'O 9,... J=.;~ ;11J. ~ C,Of\~.: I I '.> (A, ~~ d~t.,,,, r.o~ejva\ I

27 NAME: Exam 2 Page 3 Problem 1 (20 points) You want to classify zoo animals. Your zoo only has two species: elephants and giraffes. There are more elephants than giraffes: if Y is the species, p Y (elephant) = p Y (giraffe) = e e e + 1 where e = is the base of the natural logarithm. The height of giraffes is Gaussian, with mean µ G = 5 meters and variance σg 2 = 1. The height of elephants is also Gaussian, with mean µ E = 3 and variance σe 2 = 1. Under these circumstances, the minimum probability of error classifier is { giraffe x > θ ŷ(x) = elephant x < θ Find the value of θ that minimizes the probability of error.

28 \/ ::: e r~f h~ :: o j;"~ffe = I e_ < f ( / c e I~ th~ ) F ( f: I te.. :.: <' I\ ~ ('~~) ( =. Ii<: I I yz O. 1 ~ \,. C \".,,,.;f.' 0 n fh.e. t, _:1) Q f }. X N N(::>/ )) X A) t( (5/,) ~ /.i ele r 1i is S? (t"~ t~ ~e.'3 ~ 15 g 'l I + '/ /,'4> f",r. t/\01 t ~J!h,. rn, fj fe,.,_,,._ M :.5 ~~: 3 r / CT~ \~ ~~I\ µ,.,4.,) )

29 t' In (e) ~ ;;) I 1 \ 4 45 " 4 2 / 0/ Vb rq + {~J?e f ( i o ~ ( / Po) t ('_ er / '>( ~ 4.s 'I< < 45 E> Q, (4.5 3 ) ' I te.. I It,, ve 7, ~ (}.I. f I( I + ) t e rr :: (_,J( Q ( 5 =~,i.?) Q \f E'

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A Name: ~s'~o--=-i Class; Date: U.;,..;...-h_D_Vl_5 _ MAC 2233 Chapter 4 Review for the test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the derivative

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology SE lecture revision 2013 Outline 1. Bayesian classification

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows Kn-Nearest

More information

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. ll. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S ll. \ (? >. 1! = * l >'r : ^, : - fr). ;1,!/!i ;(?= f: r*. fl J :!= J; J- >. Vf i - ) CJ ) ṯ,- ( r k : ( l i ( l 9 ) ( ;l fr i) rf,? l i =r, [l CB i.l.!.) -i l.l l.!. * (.1 (..i -.1.! r ).!,l l.r l ( i b i i '9,

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology COST Doctoral School, Troina 2008 Outline 1. Bayesian classification

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

o V fc rt* rh '.L i.p -Z :. -* & , -. \, _ * / r s* / / ' J / X - -

o V fc rt* rh '.L i.p -Z :. -* & , -. \, _ * / r s* / / ' J / X - - -. ' ' " / ' * * ' w, ~ n I: ».r< A < ' : l? S p f - f ( r ^ < - i r r. : '. M.s H m **.' * U -i\ i 3 -. y$. S 3. -r^ o V fc rt* rh '.L i.p -Z :. -* & --------- c it a- ; '.(Jy 1/ } / ^ I f! _ * ----*>C\

More information

K E L LY T H O M P S O N

K E L LY T H O M P S O N K E L LY T H O M P S O N S E A O LO G Y C R E ATO R, F O U N D E R, A N D PA R T N E R K e l l y T h o m p s o n i s t h e c r e a t o r, f o u n d e r, a n d p a r t n e r o f S e a o l o g y, a n e x

More information

ECE430 Name 5 () ( '-'1-+/~ Or"- f w.s. Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) TOTAL: USEFUL INFORMATION

ECE430 Name 5 () ( '-'1-+/~ Or- f w.s. Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) TOTAL: USEFUL INFORMATION " ~~~~~,",,_~"",,"cr,~ - r " ECE430 Name 5 () ( '-'1-+/~ Or"- f ws Exam #2 (print Name) Spring 2005 Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) Problem 1 Problem 2 Problem 3 Problem 4 TOTAL:

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class rhtr irt Cl.S. POSTAG PAD Cllnd, Ohi Prmit. 799 Cn't ttnd? P thi n t frind. \ ; n l *di: >.8 >,5 G *' >(n n c. if9$9$.jj V G. r.t 0 H: u ) ' r x * H > x > i M

More information

wo(..lr.i L"'J b]. tr+ +&..) i'> 't\uow).,...,. (o.. J \,} --ti \(' m'\...\,,.q.)).

wo(..lr.i L'J b]. tr+ +&..) i'> 't\uow).,...,. (o.. J \,} --ti \(' m'\...\,,.q.)). Applying Theorems in Calculus 11ter111ediate Value Theorem, Ettreme Value Theorem, Rolle 's Theorem, and l\ea11 Value Theorem Before we begin. let's remember what each of these theorems says about a function.

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#(

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 4200 Physics of Fluids Rotating Fluid Flow October 6, 2011 1.!! Hydrostatics of a Rotating Water Bucket (again) 2.! Bath Tub Vortex 3.! Ch. 5: Problem Solving 1 Key Definitions & Concepts Ω U Cylindrical

More information

,\ I. . <- c}. " C:-)' ) I- p od--- -;::: 'J.--- d, cl cr -- I. ( I) Cl c,\. c. 1\'0\ ~ '~O'-_. e ~.\~\S

,\ I. . <- c}.  C:-)' ) I- p od--- -;::: 'J.--- d, cl cr -- I. ( I) Cl c,\. c. 1\'0\ ~ '~O'-_. e ~.\~\S Math 3306 - Test 1 Name: An d {"0v\ ( _ roj ~ ed Date: l'( ~0 { 1\ Fall 2011 1. (to Pts) Let S == {I, 2, 3,4, 5,6,7,8,9, 10}. of each of the following types of mappings, provide justification for why the

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering:

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering: I Denne rapport thører L&U DOK. SENTER Returneres etter bruk UTLÅN FRA FJERNARKIVET. UTLÅN ID: 02-0752 MASKINVN 4, FORUS - ADRESSE ST-MA LANETAKER ER ANSVARLIG FOR RETUR AV DETTE DOKUMENTET. VENNLIGST

More information

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang /

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang / CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors Furong Huang / furongh@cs.umd.edu What we know so far Decision Trees What is a decision tree, and how to induce it from

More information

Last Name. First Name. General Instructions: (i) Use scratch paper at back of exam to work out answers; final answers must

Last Name. First Name. General Instructions: (i) Use scratch paper at back of exam to work out answers; final answers must Final Exam Chemistry 345 Professor Gellman 11 May 216 Last Name First Name General Instructions: (i) Use scratch paper at back of exam to work out answers; final answers must ff be recorded at the proper

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat Geometric View of Machine Learning Nearest Neighbor Classification Slides adapted from Prof. Carpuat What we know so far Decision Trees What is a decision tree, and how to induce it from data Fundamental

More information

I I. R E L A T E D W O R K

I I. R E L A T E D W O R K A c c e l e r a t i n g L a r g e S c a l e C e n t r o i d - B a s e d C l u s t e r i n g w i t h L o c a l i t y S e n s i t i v e H a s h i n g R y a n M c C o n v i l l e, X i n C a o, W e i r u L

More information

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2... Math 3298 Exam 1 NAME: SCORE: l. Given three points A(I, l, 1), B(l,;2, 3), C(2, - l, 2). (a) Find vectors AD, AC, nc. (b) Find AB+ DC, AB - AC, and 2AD. -->,,. /:rf!:,-t- f1c =-

More information

Сборник 2 fhxn "HeHo, Dolty!" HAL LEONARD D/X/ELAND COMBO PAK 2 Music and Lyric by JERRY HERMÁN Arranged by PAUL SEVERSON CLARNET jy f t / / 6f /* t ü.. r 3 p i

More information

APPENDIX F WATER USE SUMMARY

APPENDIX F WATER USE SUMMARY APPENDX F WATER USE SUMMARY From Past Projects Town of Norman Wells Water Storage Facltes Exstng Storage Requrements and Tank Volume Requred Fre Flow 492.5 m 3 See Feb 27/9 letter MACA to Norman Wells

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

SOLUTION SET. Chapter 8 LASER OSCILLATION ABOVE THRESHOLD "LASER FUNDAMENTALS" Second Edition

SOLUTION SET. Chapter 8 LASER OSCILLATION ABOVE THRESHOLD LASER FUNDAMENTALS Second Edition SOLUTION SET Chapter 8 LASER OSCILLATION ABOVE THRESHOLD "LASER FUNDAMENTALS" Second Edition By William T. Silfvast - 1. An argon ion laser (as shown in Figure 10-S(b)) operating at 488.0 nm with a gainregion

More information

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Overview Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Probabilistic Interpretation: Linear Regression Assume output y is generated

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

Keep this exam closed until you are told to begin.

Keep this exam closed until you are told to begin. Name: (please print) Signature: ECE 2300 -- Exam #1 October 11, 2014 Keep this exam closed until you are told to begin. 1. This exam is closed book, closed notes. You may use one 8.5 x 11 crib sheet, or

More information

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

'NOTASCRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

More information

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances.

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances. 5 s Tble f Generl rinnes. q=! j-j 3 -ri j -s 3s m s3 0,0 0) fife s fert " 7- CN i-l r-l - p D fife s- 3 Ph' h ^q 3 3 (j; fe QtL. S &&X* «««i s PI 0) g #r

More information

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~ " ^ o ^ * n 9 C"r * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O.

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~  ^ o ^ * n 9 Cr * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O. THE PENALTY FR MAKING A FALSE STATEMENT IN THIS REPRT AND/R CERTIFICATE IS S5. R SIX MNTHS IMPRISNMENT R BTH "D "? y. " cr TJ Xl^ " Q. rt 5' "g s r ^.. C i :? S :.. y ' : s s ^ST (X. I ^^ ^ ^ S : t ^ :

More information

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 *

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 * B. - - F -.. * i r > --------------------------------------------------------------------------- ^ l y ^ & * s ^ C i$ j4 A m A ^ v < ^ 4 ^ - 'C < ^y^-~ r% ^, n y ^, / f/rf O iy r0 ^ C ) - j V L^-**s *-y

More information

> DC < D CO LU > Z> CJ LU

> DC < D CO LU > Z> CJ LU C C FNS TCNCAL NFRMATN CNTR [itpfttiiknirike?fi-'.;t C'JM.V TC hs determined n \ _\}. L\\ tht this Technicl cment hs the istribtin Sttement checked belw. The crnt distribtin fr this dcment cn be telind

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

Machine Learning, Fall 2012 Homework 2

Machine Learning, Fall 2012 Homework 2 0-60 Machine Learning, Fall 202 Homework 2 Instructors: Tom Mitchell, Ziv Bar-Joseph TA in charge: Selen Uguroglu email: sugurogl@cs.cmu.edu SOLUTIONS Naive Bayes, 20 points Problem. Basic concepts, 0

More information

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t I n t e r n a t i o n a l E l e c t r o n i c J o ue rlne am l e not fa r y E d u c a t i o n, 2 0 1 4, 1 37-2 ( 16 ). H o w R e a d i n g V o l u m e A f f e c t s b o t h R e a d i n g F l u e n c y

More information

MPM 2D Final Exam Prep 2, June b) Y = 2(x + 1)2-18. ~..: 2. (xl- 1:'}")( t J') -' ( B. vi::: 2 ~ 1-'+ 4 1<. -t-:2 -( 6! '.

MPM 2D Final Exam Prep 2, June b) Y = 2(x + 1)2-18. ~..: 2. (xl- 1:'})( t J') -' ( B. vi::: 2 ~ 1-'+ 4 1<. -t-:2 -( 6! '. MPM 2D Final Exam Prep 2 June 2017 1. Express each equation in standard form and factored form: ~ ~ +et's 'leu t W (.. ".>tak( a) y = (x + 5)2 + 1 on ::t~'t.{1'" ~heeh v 1' K 1 C'. T.) '. (J. lr lov J

More information

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk"

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk $ S, URCT,,MTD RGD 0C: 10/, VRDM G[ LL,R0D.44, ptmpur, DL114 C: l22ldll98l,c0224gb, eb:.nlmernte.m T, Dte: 17h tber, 201 BS Lmted hre ]eejeebhy Ter Dll Street Mumb 41 The Mnger (Ltng) Delh Stk xhnge /1,

More information

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Consider the function h(x) =IJ\ 4-8x 3-12x 2 + 24x {?\whose graph is

More information

~---~ ~----~ ~~

~---~ ~----~ ~~ t =n :! ::::t C) 7(...; f J t h r==n : t::r,,.! 7 m 7 m {J) :AT rn rn L. "; j i =t :;;;: t.. :, h ). ")?J.. r;..., X h U,< r Q.!. i: :J; :!"")EYJ },_. c ". " :( (;. ). " t? / t e t!r J t j "! t)! (j) N

More information

Tausend Und Eine Nacht

Tausend Und Eine Nacht Connecticut College Digital Commons @ Connecticut College Historic Sheet Music Collection Greer Music Library 87 Tausend Und Eine Nacht Johann Strauss Follow this and additional works at: https:digitalcommonsconncolledusheetmusic

More information

Boosting. 1 Boosting. 2 AdaBoost. 2.1 Intuition

Boosting. 1 Boosting. 2 AdaBoost. 2.1 Intuition Boosting 1 Boosting Boosting refers to a general and effective method of producing accurate classifier by combining moderately inaccurate classifiers, which are called weak learners. In the lecture, we

More information

PHYS 232 QUIZ minutes.

PHYS 232 QUIZ minutes. / PHYS 232 QUIZ 1 02-18-2005 50 minutes. This quiz has 3 questions. Please show all your work. If your final answer is not correct, you will get partial credit based on your work shown. You are allowed

More information

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~ Name: 1. Find the value of r., (r + 4) 2 = 48 4_ {1 1:. r l f 11i),_ == :r (t~ : t %J3 (t:; KL\J5 ~ ~ v~~f3] ntegrated : Unit 2 Study Guide 2. Find the value of s. (s 2) 2 = 200 ~ :!:[Uost ~~::~~n '!JJori

More information

SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition. By William T.

SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS LASER FUNDAMENTALS Second Edition. By William T. SOLUTION SET Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition By William T. Silfvast C.11 q 1. Using the equations (9.8), (9.9), and (9.10) that were developed

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

106 70/140H-8 70/140H-8

106 70/140H-8 70/140H-8 7/H- 6 H 7/H- 7 H ffffff ff ff ff ff ff ff ff ff f f f f f f f f f f f ff f f f H 7/H- 7/H- H φφ φφ φφ φφ! H 1 7/H- 7/H- H 1 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ff ff ff ff φ φ φ

More information

Dedicated to his friend H. A. M-ELLON I. CAP~ (s.s.memphis.). NEW ORLEANS, LOUIS GRUNEWALD. GRUNEWALD HALL.

Dedicated to his friend H. A. M-ELLON I. CAP~ (s.s.memphis.). NEW ORLEANS, LOUIS GRUNEWALD. GRUNEWALD HALL. Dedcaed o hs frend H A MELLON CAP (ssmemphs) == > NEW ORLEANS LOUS GRUNEWALD GRUNEWALD HALL THE MSSSSPP LNE WALTZES NTRODUCTON u + fw rf! } :V c Andane Maesoso 0 #+ q b T ff _ + := q T T T :e ] a! _ r

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

z E z * I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% fei 'Q f I % 4*? ll I - ü z /) I J (5 /) 2 - / J z Q. J X X J 5 G Q J s J J /J z *" J - LL L Q t-i ' '," ; i-'i S": t : i ) Q "fi 'Q f I»! t i TIS NT IS BST QALITY AVAILABL. T Y FRNIS T TI NTAIN A SIGNIFIANT NBR

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hours. Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s 5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! $ f 1 :.1 f.

More information

Properties of Graphs of Polynomial Functions Terminology Associated with Graphs of Polynomial Functions

Properties of Graphs of Polynomial Functions Terminology Associated with Graphs of Polynomial Functions Properties of Graphs of Polynomial Functions Terminology Associated with Graphs of Polynomial Functions Detennine what types of polynomial functions/, g, and hare graphed below Give a reason for your conclusions

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

'5E _ -- -=:... --!... L og...

'5E _ -- -=:... --!... L og... F U T U R E O F E M B E D D I N G A N D F A N - O U T T E C H N O L O G I E S R a o T u m m a l a, P h. D ; V e n k y S u n d a r a m, P h. D ; P u l u g u r t h a M. R a j, P h. D ; V a n e s s a S m

More information

DATA MINING LECTURE 10

DATA MINING LECTURE 10 DATA MINING LECTURE 10 Classification Nearest Neighbor Classification Support Vector Machines Logistic Regression Naïve Bayes Classifier Supervised Learning 10 10 Illustrating Classification Task Tid Attrib1

More information

Jsee x dx = In Isec x + tanxl + C Jcsc x dx = - In I cscx + cotxl + C

Jsee x dx = In Isec x + tanxl + C Jcsc x dx = - In I cscx + cotxl + C MAC 2312 Final Exam Review Instructions: The Final Exam will consist of 15 questions plus a bonus problem. All questions will be multiple choice, which will be graded partly on whether or not you circle

More information

A/P Warrants. June 15, To Approve. To Ratify. Authorize the City Manager to approve such expenditures as are legally due and

A/P Warrants. June 15, To Approve. To Ratify. Authorize the City Manager to approve such expenditures as are legally due and T. 7 TY LS ALATS A/P rrnts June 5, 5 Pges: To Approve - 5 89, 54.3 A/P rrnts 6/ 5/ 5 Subtotl $ 89, 54. 3 To Rtify Pges: 6-, 34. 98 Advnce rrnts 5/ 6/ 5-4 3, 659. 94 Advnce rrnts 6/ / 5 4, 7. 69 June Retirees

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

8. Relax and do well.

8. Relax and do well. CHEM 15 Exam II John II. Gelder March 4, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last two pages includes a periodic table, a solubility

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

CHEM 10113, Quiz 5 October 26, 2011

CHEM 10113, Quiz 5 October 26, 2011 CHEM 10113, Quiz 5 October 26, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

CHEM 10123/10125, Exam 2

CHEM 10123/10125, Exam 2 CHEM 10123/10125, Exam 2 March 7, 2012 (50 minutes) Name (please print) Please box your answers, and remember that significant figures, phases (for chemical equations), and units do count! 1. (13 points)

More information

WALL D*TA PRINT-OUT. 3 nmth ZONE

WALL D*TA PRINT-OUT. 3 nmth ZONE T A B L E A 4. 3 G L A S S D A T A P R I N T - O U T H T C L».>qth» H e ig h t n u «b»r C L A S S D A T A P R I N T O U T it************************************ 1*q o v»rh # n g recm oi*ion*l orient n

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Mathematics Extension 1

Mathematics Extension 1 BAULKHAM HILLS HIGH SCHOOL TRIAL 04 YEAR TASK 4 Mathematics Etension General Instructions Reading time 5 minutes Working time 0 minutes Write using black or blue pen Board-approved calculators may be used

More information

v f e - w e ^ C c ^ ^ o e s r v i c e ^ ^.

v f e - w e ^ C c ^ ^ o e s r v i c e ^ ^. * * >>'.* v. K *. V-Vv, : *. v - ' *.. v ;,-:-v -; v r ^ y c - : -, - r r : r * < : ~ : >, -. ^ * "--* * - * -ui.t-l.2,u?.:^_ a..., : w.--j.i: :-.; rr - a i r /-».. i v ' ^ 4. * '... ' J \ - ;/>»-

More information

Pledged_----=-+ ---'l\...--m~\r----

Pledged_----=-+ ---'l\...--m~\r---- , ~.rjf) )('\.. 1,,0-- Math III Pledged_----=-+ ---'l\...--m~\r---- 1. A square piece ofcardboard with each side 24 inches long has a square cut out at each corner. The sides are then turned up to form

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333. 0 fltu77jjiimviu«7mi^ gi^"ijhm?'ijjw?flfi^ V m 1 /14 il?mitfl?^i7wwuiinuvitgviiyiititvi2- imviitvi^ qw^ww^i fi!i-j?'u'uil?g'iqwuwiijmi.wti twwrlf^ imii2^

More information

Classification: The rest of the story

Classification: The rest of the story U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598 Machine Learning for Signal Processing Classification: The rest of the story 3 October 2017 Today s lecture Important things we haven t covered yet Fisher

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Th pr nt n f r n th f ft nth nt r b R b rt Pr t r. Pr t r, R b rt, b. 868. xf rd : Pr nt d f r th B bl r ph l t t th xf rd n v r t Pr, 00. http://hdl.handle.net/2027/nyp.33433006349173 P bl D n n th n

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

Advanced classifica-on methods

Advanced classifica-on methods Advanced classifica-on methods Instance-based classifica-on Bayesian classifica-on Instance-Based Classifiers Set of Stored Cases Atr1... AtrN Class A B B C A C B Store the training records Use training

More information

trawhmmry ffimmf,f;wnt

trawhmmry ffimmf,f;wnt r nsr rwry fff,f;wn My 26, $51 Swe, k "Te Srwberry Cp f e Vr,, c) [ re ers 6 (, r " * f rn ff e # s S,r,* )er*,3n*,.\ ) x 8 2 n v c e 6 r D r, } e ;s 1 :n..< Z r : 66 3 X f; 1r_ X r { j r Z r 1r 3r B s

More information

! J*UC4j u<s.< U l*4 3) U /r b A a ti ex Ou rta + s U fa* V. H lu< Y ^i«iy /( c * i U O rti^ ^ fx /i«w

! J*UC4j u<s.< U l*4 3) U /r b A a ti ex Ou rta + s U fa* V. H lu< Y ^i«iy /( c * i U O rti^ ^ fx /i«w p ) X 6 @ / [ j t [ l C ^ h u M q f» -» - * / ---- ---------------- ------ - Muuuka y Um tq/z/h*. Ik M tu ^ t j a s ^ #/ Jjfif*.! J*UC4j u

More information

B A P T IS M S solemnized. Hn the County of

B A P T IS M S solemnized. Hn the County of B A P T IS M S solemnized. Hn the County of Biptixcw Child * Parent* Name. By wlmiu the wa* performed. Page 7. B A P T IS M S solemnized in the Parish of in the County of CTV-^. ~ -" >. Child's Christian

More information

heliozoan Zoo flagellated holotrichs peritrichs hypotrichs Euplots, Aspidisca Amoeba Thecamoeba Pleuromonas Bodo, Monosiga

heliozoan Zoo flagellated holotrichs peritrichs hypotrichs Euplots, Aspidisca Amoeba Thecamoeba Pleuromonas Bodo, Monosiga Figures 7 to 16 : brief phenetic classification of microfauna in activated sludge The considered taxonomic hierarchy is : Kingdom: animal Sub kingdom Branch Class Sub class Order Family Genus Sub kingdom

More information