TIME EVOLUTION OF SU(1,1) COHERENT STATES

Size: px
Start display at page:

Download "TIME EVOLUTION OF SU(1,1) COHERENT STATES"

Transcription

1 TIME EVOLUTION OF SU() COHERENT STATES J ZALEŚNY Istitut of Physics Tchicl Uivrsity of Szczci Al Pistów Szczci Pold Mthmticl spcts of th SU() group prmtr ξ dymics govrd by Hmiltois xhibitig som spcil typs of tim dpdc hs b prstd o lmtry lvl from th poit of viw of Möbius trsformtio of complx pl Th trjctoris of ξ i cotiuous d mppigs i discrt dymics r cosidrd Som simpl xmpls hv b xmid Alyticl cosidrtios d umricl rsults hv b giv PACS umbrs: 365Fd Sv

2 INTRODUCTION A grl mthod for costructig cohrt stts for rbitrry Li group hs b giv by Prlomov [3] I this ppr w r itrstig i tim volutio of th SU() cohrt stts Vrious spcts of th dymics wr xmid by my uthors Som rlvt xmpls cocrig cotiuos dymics th rdr my fid i rticls [4789] d discrt dymics i [356] For rviw ppr o costructio d clssifictio of cohrt stts s [5] Th dymics driv by SU() Hmiltoi hs b much ivstigtd mily i th cotxt of th two-photo procsss th grtio of squzd stts of light by olir opticl procsss (g dgrt prmtric mplifirs or dow-covrtrs) th propgtio of lctromgtic wv i ohomogous mdium with qudrtic dpdc of th rfrctiv idx o th trsvrs coordits d tim-dpdt hrmoic oscilltors Th rdr my fid my rfrcs i th rviw rticl [4] Th volutio of qutum stts ruld by th tim-dpdt cohrcprsrvig SU() Hmiltoi c b lyzd usig th Wi-Norm mthod which llows th possibility of rprstig th tim-volutio oprtor s fiit product of xpotil oprtors whr ch xpot cotis product of group grtor d tim-dpdt complx fuctio [4] Th fuctios oby systm of Riccti typ olir diffrtil qutios Solutios of thm cot b obtid i grl I this ppr w do ot us th Wi-Norm mthod Our tttio is focusd o th SU() group prmtr ξ Nvrthlss th qutio of motio obyd by this prmtr is lso Riccti typ qutio Bcus its grl solutios r ukow i ordr to gi th id bout th SU() dymics w xmi som itrstig xmpls of spcil timdpdc Both cotiuous d discrt dymics is studid d coctios btw th two css r show As fr s w kow th discrt dymics ws cosidrd i th cs of ifiitly rrow δ-lik fuctio pulss [36] For istc Grry t l [6] us modultd

3 rl δ-lik pulsig fuctio d Bchlr t l[3] cosidr so clld kickd dymics with o-modultd complx couplig prmtr I this ppr modl with modultd pulss of fiit width d mgitud is usd which is myb mor rlistic ssumptio i compriso to th kickd-lik dymics modls Though our trtmt is clssicl rthr th qutum but i th cosidrd cs of th cohrc-prsrvig Hmiltoi () it is quivlt to th gui qutum mchicl problm Th ppr is orgizd s follows I sctio w itroduc brifly th id of SU() cohrt stts d th qutio of motio of th SU() group prmtr ξ I sctio 3 w ivstigt som of th most chrctristic fturs of th cotiuous dymics bsd upo th qutio of motio for ξ W try to clssify th typs of trjctoris of th SU() group prmtr ξ o th phs spc obtid for vrious frqucis of couplig prmtr W giv hr som umricl d lyticl rsults I sctio 4 w costruct itrtio qutio for th discrt vlus of th prmtr ξ Th volutio is dscribd by Poicré-typ volutio mps W giv som umricl xmpls of th mps for vrious pulsig fuctios W ot hr tht ll stroboscopic qutios i cs of SU() group hv th form of Möbius utomorphism of th uit circl At th d w show how th chi of Möbius trsformtios my b rplcd by th chi of lir trsformtios of th complx pl W us this pproch to xprss i o-tim-dpdt pulsig cs th stp of itrtio vi th iitil coditio Th lst sctio 5 cotis summry of th ppr d vry brif discussio of Lpuov xpot d th qustio of chos i SU() systms THE MODEL W cosidr modl dscribd by th Hmiltoi giv s lir combitio of th SU() group grtors with tim-dpdt cofficits 3

4 H hω K + ( K ( K hχ hχ + + () Th grtors oby th followig ruls of commuttio [ K K ± ] ± K ± [ K K + ] K () Th br ovr symbols ms complx cojugtio A Schwigr-Wigr-typ rliztio of SU() c b giv i trms of (mor fmilir to physicists) hrmoic-oscilltor crtio d ihiltio oprtors ( + ) ( ) + K 4 K K (3) Bcus th Hmiltoi is lir i th grtors th cohrt chrctr of th grlizd cohrt stts ssocitd with th ocompct Li group SU() udr tim volutio is prsrvd which ms tht th qutum d clssicl volutios r sstilly idticl [3 4] Th grlizd SU() cohrt stts ξ r dfid d costructd i th wy first proposd by Prlomov [ 3] Thy r chrctrizd by th complx prmtr ξ for which ξ < W shll us th SU() group prmtr ξ s rprsttio of th phs spc Th clssicl qutio of motio for ξ is [4] ξ & { ξ H} (4) whr { } is th Poisso brckt dfid s ( ξ ) { A B} ik A B A B ξ ξ ξ ξ (5) d H ξ ( K K ξ H ± (6) Th costt k i (5) is th Brgm idx d o might tk it s k / 4 hr Th rsultig qutio from (4) is ξ& iωξ iχξ iχ (7) As w hv quivlc of clssicl d qutum dscriptio of th dymics i th ss 4

5 tht prmtr ξ xctly follows th qutum stt ξ w c rstrict our tttio to th motio of th poit ξ i th uit circl o th complx pl It rmis tru lso i th discrt cs Aothr drivtio of qutio (7) th rdr my fid i [3 ] I this ppr w xmi dymics i cotiuous d discrt cs followd from q (7) ssumig tht χ is tim-dpdt 3 CONTINUOUS APPROACH 3 Formultio of th problm Th phs-spc for solutios of th qutio (7) is uit circl i th complx pl Bcus of tim-dpdt cofficit χ( th qutio blogs to th clss of outoomic i f t diffrtil qutios I grl χ( is complx d my b writt i form χ ( c( whr c( f( r rl fuctios Howvr furthr w rstrict our cosidrtios to lss grl form wh f( k ω t (k is rl umbr) W c com to rottig frm with frqucy ω i ordr to limit this frqucy from th motio It is quivlt to us th itrctio pictur So w put k +k d our choic for χ( is () W sk solutio of (7) i th form χ( c( i ( + k ) ωt (8) ξ ( ( i ( + k ) ωt (9) whr ukow complx fuctio ( dscribs motio i th rottig frm It is lso limitd to th itrior of th uit circl i ( < Substitutig (9) ito (7) w obti [ ( ) + ] & ( iωk( ic( t () This qutio is som cs of th Riccti qutio A grl solutio of it is ukow To ivstigt it w cosidr som simpl css 5

6 3 Som xct solutios For k (k ) th solutio c b foud xplicitly W hv i this cs () t ( ) ( ) () ( i / i t i ) ( + / + i ) S t + ( i whr S( S c( τ ) dτ () d is th iitil vlu of ( I prticulr for w gt ξ ( i th iω t ( S( ) () Th bhvior of ξ( dpds o fuctio S( Wh S( fulfills th coditio t () t lim S (3) th ξ( forms mor or lss rgulr spirl i th trjctory coms up closr d closr to th uit circl without howvr rchig it Furthr w will us th m spirl to dscrib such ocompct trjctory isstil how much th curv rsmbls ordiry rgulr spirl Arisig of spirl i this cs is vry chrctristic ftur for frqucy ω idpdt of th iitil coditios s Fig s xmpl Fig: ω frqucy cs Prmtrs: c( si t + 5; ω ; k ; ξ 3+i Th spirl is formd bcus of puttig th movmt ( towrd th circumfrc o th rottio with frqucy ω O of th most rgulr spirl c b obtid for costt c d Th poit ( rus from th poit () log imgiry xis of th complx pl to th circumfrc of th uit circl Th tim dpdc of ( is giv by th fuctio 6

7 th(c which for smll t is simply ct Thus for smll t i ξ pictur it is so clld Archimds spirl Quit diffrt bhvior w c obsrv if S( dos ot fulfill th coditio (3) For istc if d vlus of S( r limitd to itrvl i ξ(-pictur w obsrv mor or lss (it dpds o complxity of fuctio c( ) complictd figurs drw by poit ξ( o complx pl g s Fig Fig: ω frqucy cs Prmtrs: c( si π t; ω ; k ; ξ Not tht i this cs th trjctory rmis i r of rdius lss th uit This is tru lso for othr iitil vlus Furthr w will us th m compct figurs to dscrib bhvior lik this Aothr xct solutio of q() c b foud for rbitrry prmtr k d costt c It is k ( is ( ( k / k ) ( k )/( k ) is ( t ) ( k )/( k ) (4) whr k + k 4 α α α c α St () ct k ω For iitil x +iy th trjctory of th poit ( x(+iy( is giv s ( x B A) + y whr: x + y A x α B A + A α (5) Spirl solutios ppr oly wh circl (5) hs crossovr poits with uit circl Th o 7

8 of thm is ttrctig fixd poit d th othr o is rpulsig Th poit ( rus log th circl (5) but it cot chiv th ttrctig poit i fiit tim O th mps for ξ( w obsrv th spirl bcus of th rottig trm i q(9) Th coordits of th fix poits r giv by α x y ± 4α (6) Th obvious coditio x < givs us importt iqulity k < c /ω (7) For giv costt mplitud c it dtrmis th rottiol frqucy k ω for which spirl solutios ppr Eg for k i i frqucy ω cs th iqulity is vlid for y ozro c For k i zro frqucy it follows tht ω < c For vrious iitil vlus q(5) givs us whol mp of trjctoris i rottig frm which r ococtric circls with ctrs lyig o th rl xis For α < / ll th circls r tirly isid th uit circl Thr r lso two lliptic fixd poits o th rl xis but oly o of thm tht lyig isid th uit circl is itrstig for us (Fig3) Fig3: Th fmily of trjctoris i th rottig frm Prmtrs: c ; ω ; k ; i iitil vlus o rl xis: Th lgr is α th closr is th lliptic fixd poit to th boudry of th uit circl For α / th fixd poit chivs th uit circl d chgs its chrctr bcomig prbolic 8

9 fixd poit For lgr α th prbolic fixd poit splits ito two hyprbolic fixd poits ttrctor d rpulsr (Fig4) Fig4: Th fmily of trjctoris i th rottig frm Prmtrs: c 6; ω ; k ; sv iitil vlus o rl xis: At th d of this poit w xmi som lir pproximtio of q() This pproximtio my b usd r th ctr of th uit circl whr << Istd of q () o my us & ( iωk( ic( (8) A grl solutio of this qutio c b sily foud I prticulr for th most turl i this pproximtio iitil vlu th solutio (icludig lso th rottig trm) is ξ ( t iω t ikωτ ir( k whr R( k c( τ ) dτ (9) Not tht R(k S( For d costt c th trjctory obtid i th lir pproximtio is th sm s tht corrspodig to th xct solutio (th circl (5) ) Th diffrc btw xct d pproximtd solutios pprs oly i tim dpdc of th movmt log th trjctory 9

10 33 Arisig of spirls Udoubtdly w should xpct risig spirl if ξ( ( for t Tkig q() d qutio cojugtd to it o c obti qutio of motio for ( s d dt ( ( ) c( Im ( ( ( ) This qutio is k idpdt so it hv to b vlid for ll k Th forml solutio of it is () T ( ( ) t ( whr T ( c( τ )Im ( τ ) dτ () Th spirl-lik solutio occurs if T( ) Th most obvious wy i which th coditio c b fulfilld is c ( Im ( < for vry t () Th simpl xmpl is th cs of c costt i vlu but chgig its sig vry tim wh th poit ( (rottig with frqucy ω c c kω 4α ) crosss th x-x It rsults i spirl bhvior v for α < / Th coditio () is lso fulfilld i th ω frqucy cs It is itrstig howvr tht som ffctiv ω frqucis c b itroducd Eg lt th cofficit χ( is giv s χ ik ωt ( c si( κω whr c is costt (3) Th si(κω twic chgs sig i its priod τ i thr is π phs gi i tim itrvl τ Durig this tim th vctor -ik ωt turs by gl k ωτ Th totl gl α k ωτ + π so ffctiv frqucy ω ff α /τ k ω + π /τ i ω ff (k + κ) ω Not tht w c thik bout π phs ot s gi but s loss It lds to ffctiv frqucy ω ff (k κ) ω If w tk k d κ i th followig wy k + κ or k κ i κ k or κ k (4) th w hv ω ffctiv frqucy cs Morovr th coditio (3) is fulfilld Idd

11 i umricl xprimts w obsrv spirls similr to tht o show i Fig 34 Costt χ For compltss w giv th solutio of q (7) for costt χ It will b usd ltr to costruct th itrtio qutio i discrt cs For iitil vlu ξ() ξ th solutio is P( p ω) + ( p + ω) ξ ( ipt χ ( P ) ipt (5) whr: p ω χ χξ P χξ + ω + + ω p p For rl p th trjctoris of q (5) r o-coctric circls Thr is o lliptic fixd poit isid th uit circl For imgiry p two hyprbolic fixd poits o stbl d o ustbl ppr Both lyig o th uit circl I othr wy th rsult (5) my b obtid from q(4) if k d χc Th shp of trjctoris for rl p d imgiry p is xctly th sm s thos show i Fig3 d Fig4 Crtily t prst thy rprst trjctoris of poit ξ( For y complx χ c iβ w d oly to rott th bov pictur giv for c bout gl β At lst it is worth to mtio tht oly for ω > χ th dymics is wll dfid sic oly th th Hmiltoi () is boudd from blow [] 4 DISCRETE APPROACH 4 Formultio of th problm Our discrt modl is s follows W divid tim o sgmts of lgth T I ch sgmt volutio from ( )T to T t is fr (i χ ) d dscribd by ξ ( τ ) ξ (6) iω ( τ ) whr T > t d ξ is costt i sgmt For tim from T t to T w impos costt χ diffrt from zro so volutio is govrd

12 by th q (5) Diffrt vlus of χ c b i diffrt sgmts W xmi discrt vlus of ξ just ftr th pulss As rsult th pulsig dymics is dscribd by th itrtio qutio A ξ + B ξ Bξ + A (7) whr A B [ p iχ cos( p si( p iω ( T iω si( p] p iω ( T ω χ This form of A B is vlid for rl p (ω >χ) If o uss imgiry p g i kickd dymics th trigoomtric fuctios chg ito hyprbolic fuctios Formul (7) is spcil cs of so clld Möbius trsformtios wll kow i th complx pl thory Ths trsformtios form group Sic our phs spc is limitd to th itrior of th uit circl it is ough to xmi subgroup of ll Möbius trsformtios tht mp uit circl ito itslf i utomorphisms of th uit circl z + ( ) iθ z ( ) ( ) z (8) Th trsformtio dpds o o rl prmtr θ () d o complx prmtr () for which () < Th uppr idx idicts tht th prmtrs my b stp-dpdt Eq(7) is spcil cs of q(8) d th group prmtrs r dtrmid by ( i ) θ A A ( ) B A (9) Th form (8) is vry grl It mbrcs th modls of pulsd SU() dymics discussd prviously i litrtur g [3 6] Ev cotiuous dymics my b trtd s spcil cs of it if o puts T t d T Th group proprty of th utomorphism bls i pricipl to writ dow th form of th solutio ftr stps vi th iitil coditio z

13 z z i θ z (3) whr θ my b clld s ffctiv prmtrs Not tht thy hv lowr idics i cotrry to th currt prmtrs θ () () It is sy to fid itrtio qutios for ffctiv prmtrs iθ + ( + ) iθ iθ + + ( + ) ( + ) iθ + ( + ) iθ + i ( + ) θ + (3) From qs (3) d (3) w ot tht if z for th lso d ivrsly Th cs z is crtily log of th spirl bhvior i th cotiuous dymics I th cotrry if th itrtig poit rmis i th clos r of rdius lss th uit th it is log of th compct bhvior Numricl rsults giv us both typs of th bhvior I Fig5 d Fig6 χ rotts with d simultously its bsolut vlu chgs priodiclly with itrtio Fig5: Discrt dymics for 55si (T) xp(it) Prmtrs: T ; t T; ω ; ξ 3

14 Fig6: Discrt dymics for 56si (T) xp(it) Prmtrs: T ; t T; ω ; ξ Ths picturs illustrt tht thr xist som criticl vlu of cofficit χ (for giv tim sgmts) wh bhvior drsticlly chgs from compct to spirl bhvior 4 Fixd poits Fixd poits for modls which r spcil css of Möbius utomorphisms of th uit circl hs b lrdy discussd i litrtur g [3] Hr w brifly xmi th grl itrtio q(8) Its fixd poits giv by th coditio z z + fulfill th qutio iθ iθ ( ) z whr θ std hr for () θ () Th solutios r z + (3) i z i θ θ si ± θ si (33) For si (θ /) > thr r two lliptic fixd poits ivrs to ch othr with rspct to th uit circl So oly o of thm lis i itrstig us r of th uit circl I prbolic cs wh si (θ /) both poits mt ch othr i th sm plc of th uit circl Ad for si (θ /) < thr r two hyprbolic fixd poits o th uit circl O of thm is ttrctiv d th othr is rpulsiv I grl χ is itrtio-dpdt d so r prmtrs () θ () Th th bov formul givs poits which r fixd oly i trsitio 4

15 from stp to + I fct w c trt q (33) s qutio of motio for fixd poits Filly w xplicitly writ dow th criticl qutio: si (θ /) For th spcil modl dscribd by q(7) it tks th form { p cos( p si[ ( T ] + ω si( p cos[ ω( T ] } χ si ( p ω (34) W plot th right sid of th qutio s fuctio of χ i th physicl rg ω > χ (Fig7) Fig7: Plot of fuctio f f ( χ ) (s q34) i rg ω > χ Prmtrs T ; t 5 T; ω O of th solutios of q(34) is χ ω idpdtly of prmtrs T t Not tht i cotrry to th cotius dymics thr r rgs whr hyprbolic poits ppr d rgs whr oly lliptic poit xists v for th itrtio-idpdt χ (for giv T 43 Lir trsformtios W show hr tht i som ss w my shift th problm from Möbius mppigs of th uit circl to th lir trsformtios of it Th volutio of th itrtd poit is ruld by th chi M of Möbius mppigs (8) M W W W W W (35) whr ch W k k ms uit circl Th bov chi c b xprssd by w o L 5

16 M W L W whr (36) L Z W W Z Z W W W Z W Z Z k Wk Wk Z k (37) d trsformtios W k Z k d Z k W k r ch othr rciprocl W lso ssum tht Z k r uit circls d mppigs W k Z k r som Möbius utomorphisms W wt to mk th trsformtio Z Z Z W W Z k k k k k k (38) lir i it should mp ifiity o ifiity Th L bcoms th chi of lir mppigs d lir mppigs of uit circl r simply rottios of th circl L Z Z Z Z Z (39) Th lir mppig L my b sily foud Th usig (36) o my fid xprssio for w (w ) Ufortutly i grl it is impossibl to ccomplish Th xcptio is if prmtrs θ do ot dpd of itrtio th (i vry stp) it is possibl to mk tht th first mppig i (right sid) (38) mps ifiity i fixd poit of th scod mppig i (38) d th th third mppig i (38) is rciprocl to th first Usig formul (36) w obti w vi iitil coditio w It tks o th form of q (3) with th followig ffctiv prmtrs ( ) K iθ / θ i iθ (4) ( + ) ( ) whr K d + + ( + ) ( ) ( + ) cos( θ / ) + ( ) cos( θ / ) si ( θ / ) (4) si ( θ / ) Th bov rsult c b obtid i my diffrt wys I th spcil cs of kickd dymics it ws giv i [3] but without prov 6

17 5 FINAL REMARKS I th first prt of th ppr som fturs of th cotius dymics of SU() hv b dscribd W fid two distictiv typs of bhvior Th first o whr trjctoris td to th uit circl s limit (spirl bhvior) d th scod o whr trjctoris form mor or lss complictd figurs isid uit circl d do ot td to th limit (compct bhvior) I th xt prt of th ppr w hv show tht it is covit to xmi ll pulsd SU() group modls from th grl poit of viw of Möbius utomorphism of th uit circl Th two distictiv typs of bhvior occurrig i cotiuous cs c lso b idtifid i pulsig css As xmpl of pulsd systm srvs us th modl of fiit width d mgitud of pulsig pk Som umriclly obtid picturs g Fig5 look lik chotic Nvrthlss it c b sily provd tht th motio is i fct rgulr bcus th Lpuov xpot is ithr zro or gtiv I th lttr cs it my b fiit or ifiit Th zro Lpuov xpot corrspods to th compct bhvior Th gtiv Lpuov xpots corrspod to spirls Thr is o positiv Lpuov xpot d it ms thr is o clssicl chos i th systm Thr wr som ttmpts to look for figrprits of qutum chos i SU() systms bcus it sms tht th qutum utocorrltio fuctio xhibits som dcy [6] (s lso []) Howvr tht dcy pprs wh th typ of motio chgs from th dymics dscribd by zro Lpuov xpot to th dymics dscribd by gtiv Lpuov xpot (compr Fig5 d 6) Th clssicl d qutum mppigs bsd o th Hmiltoi () r quivlt W thik it is rthr strg to look for figrprits of qutum chos wh th clssicl coutrprt bcoms v mor rgulr th bfor trsitio 7

18 ACKNOWLEDGMENTS I would lik to thk Prof A Bchlr for my usful discussios durig prprtio of th ppr Without his ssistc this ppr would vr hv com ito xistc Rfrcs [] AFR d Toldo Piz PhysRv A5 6 (995) [] T Lisowski J Phys A: Mth G 5 L95 (99) [3] A Bchlr T Lisowski Phys Ltt A6 6 (99) [4] CC Grry J Kifr J Phys A: Mth G (99) [5] CC Grry RGrob ER Vrscy Phys Rv A43 36 (99) [6] CC Grry ER Vrscy Phys Rv A (989) [7] CC Grry PhK M ER Vrscy Phys Rv A (989) [8] A Orłowski K Wódkiwicz Jour Mod Optics (99) [9] PK Arvid JOptSocAm B5 545 (988) [] PW Miloi JR Ackrhlt ME Goggi Phys Rv A35 74 (987) [] HP Yu Phys Rv A3 6 (976) [] AM Prlomov Commu Mth Phys 6 (97) [3] AM Prlomov Usp Fiz Nuk 3 3 (977) (i Russi) [4] G Dttoli J C Gllrdo d A Torr Rvist dl Nuovo Cimto (988) [5] W M Zhg D H Fg d R Gilmor Rv Mod Phys (99) 8

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Lectures 5-8: Fourier Series

Lectures 5-8: Fourier Series cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Chapter 5. Chapter 5 125

Chapter 5. Chapter 5 125 Chptr 5 Chptr 5: Itroductio to Digitl Filtrs... 6 5. Itroductio... 6 5.. No rcursiv digitl filtrs FIR... 7 5.. Rcursiv digitl filtr IIR... 8 5. Digitl Filtr Rlistio... 5.. Prlll rlistio... 5.. Cscd rlistio...

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Chem 4502 Prof. Doreen Leopold 10/18/2017 Name (Please print) Quantum Chemistry and Spectroscopy Exam 2 (100 points, 50 minutes, 13 questions)

Chem 4502 Prof. Doreen Leopold 10/18/2017 Name (Please print) Quantum Chemistry and Spectroscopy Exam 2 (100 points, 50 minutes, 13 questions) Chm 5 Prof. Dor Lopold ANSWER KEY /8/7 Nm Pls prit Qutum Chmistry d Spctroscopy Em poits, 5 miuts, qustios Pls chck hr if you would prfr your grdd m to b rturd to you dirctly rthr th big icludd mog lphbtizd

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

IV. The z-transform and realization of digital filters

IV. The z-transform and realization of digital filters www.tuworld.com www.tuworld.com Digitl Sigl Procssig 4 Dcmbr 6, 9 IV. Th -trsform d rlitio of digitl filtrs 7 Syllbus: Rviw of -trsforms, Applictios of -trsforms, Solutio of diffrc qutios of digitl filtrs,

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1.

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1. PROBLEMS Us grhic rrsttio to dtrmi th zros of th followig fuctios to o corrct dciml : ( 4 4si ; (b ; (c ( ; (d 4 8 ; ( ; (f ; (g t I ordr to obti grhicl solutio of f ( o th itrvl [,b], ty th followig sttmts

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black Stf-Boltzm lw stts tht th powr mttd pr ut r of th surfc of blck body s proportol to th fourth powr of th bsolut tmprtur: 4 S T whr T s th bsolut tmprtur d th Stf-Boltzm costt= 5 4 k B 3 5c h ( Clcult 5

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Math 1272 Solutions for Fall 2004 Final Exam

Math 1272 Solutions for Fall 2004 Final Exam Mth 272 Solutios for Fll 2004 Fil Exm ) This itgrl pprs i Prolm of th udtd-2002? xm; solutio c foud i tht solutio st (B) 2) O of th first thigs tht should istigtd i plig th itgrtio of rtiol fuctio of polyomils

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Thermodynamic Properties and XAFS Debye Waller Factors of Metallic Nickel

Thermodynamic Properties and XAFS Debye Waller Factors of Metallic Nickel Itrtiol Jourl of Modr Physics d Applictios Vol. No. 5 pp. -8 http:www.iscic.orgjourlijmp Thrmodymic Proprtis d XAFS Dby Wllr Fctors of Mtllic Nickl Nguy V Hug * Dih Quoc Vuog Dprtmt of Physics Collg of

More information

CAPACITANCE CALCULATION USING EEM

CAPACITANCE CALCULATION USING EEM Act Elctrotchic t Iformtic Vol. 9, o., 009, 5 3 5 CAPACITACE CALCULATIO USIG EEM Slvoljub R. ALEKSIĆ, Mirj PERIĆ, Sš S. ILIĆ Dprtmt of Thorticl Elctricl Egirig, Fculty of Elctroic Egirig, Uivrsity of iš,

More information

Problem Session (3) for Chapter 4 Signal Modeling

Problem Session (3) for Chapter 4 Signal Modeling Pobm Sssio fo Cht Sig Modig Soutios to Pobms....5. d... Fid th Pdé oimtio of scod-od to sig tht is giv by [... ] T i.. d so o. I oth wods usig oimtio of th fom b b b H fid th cofficits b b b d. Soutio

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

The Propagation Series

The Propagation Series /9/009 Th Progtio Sris.doc /8 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

The Propagation Series

The Propagation Series //009 Th Progtio Sris rst /0 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms of

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Representation of linear operators by Gabor multipliers

Representation of linear operators by Gabor multipliers Rprsttio of lir oprtors Rprsttio of lir oprtors by Gbor multiplirs Ptr C Gibso, Michl P Lmourux, Gry F Mrgrv ABSTRACT W cosidr cotiuous vrsio of Gbor multiplirs: oprtors cosistig of short-tim Fourir trsform,

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Robust Estimation for ARMA models

Robust Estimation for ARMA models Robust Estimtio for ARMA modls Nor Mulr, Dil Pñ y d Víctor J. Yohi z Uivrsidd Torcuto di Tll, Uivrsidd Crlos III d Mdrid d Uivrsidd d Buos Airs d CONICET. Novmbr 8, 007 Abstrct This ppr itroducs w clss

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth A Sigl-Itgrl Rprsttio for th Gr uctio of Stdy Ship low i Wtr of iit Dpth Thi Nguy & Xio-Bo Ch Costl Systs Sttio, P City, L 7 (USA x: --85-- Eil: NguyTC@csc.vy.il Rsrch Dprtt, BV, 7bis, Plc ds Rflts, 9

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information