Math 1272 Solutions for Fall 2004 Final Exam

Size: px
Start display at page:

Download "Math 1272 Solutions for Fall 2004 Final Exam"

Transcription

1 Mth 272 Solutios for Fll 2004 Fil Exm ) This itgrl pprs i Prolm of th udtd-2002? xm; solutio c foud i tht solutio st (B) 2) O of th first thigs tht should istigtd i plig th itgrtio of rtiol fuctio of polyomils is wht th dgrs of th polyomils i th umrtor d domitor r If th polyomil i th umrtor hs dgr grtr th or qul to tht of th polyomil i th domitor, polyomil diisio should crrid out first Prtil frctio dcompositio would th crrid out o th rmidr rtiol fuctio, if o xists For th fuctio 9x 4 + 5x x x + 4 (3x + 2) 2 (x 2 + 2), multiplyig out th fctors i th domitor gis polyomil for which th ldig trm is (3x) 2 x 2 9x 4 Th highst powr of x i th domitor is th sm s i th umrtor, so diisio cuic polyomil should crrid out first This would ld to th rsult of + (3x + 2) 2 (x 2 + 2), i which cs strict pplictio of th mthod of prtil frctios would show tht o of th idictd dcompositios would corrct s thy std, mkig th swr to th qustio (E) If w itrprt th qustio to m tht w r ig skd for th dcompositio of th rmidr ftr th diisio, w would th look t th fctors i th domitor Thr is rptd lir fctor, (3x + 2) 2, d irrducil (ot fctorl) qudrtic trm, x Rptd lir fctors r rprstd i prtil frctio dcompositio y trms with domitors hig first powrs of th lir fctor, scod powrs, tc, up to th powr pprig i th rtiol fuctio Th umrtor of ths trms r simply costt lus, so for our fuctio, w will h two trms of th form C (3x + 2) + C 2 (3x + 2) 2 Th irrducil qudrtic fctor is rprstd y trm usig tht fctor i th domitor d lir fctor i th umrtor, thusly, C 3 x + C 4 x Th prtil frctio dcompositio trms for our rtiol fuctio r th Ax + B x C (3x + 2) 2 + D (3x + 2) (B) [if (E) ws t itdd]

2 3) Th mout of rdiocti sustc (xprssd i mss or umr of ucli) follows xpotil dcy fuctio, which hs th form m(t) m(0) r ct m(0) kt W r told tht th iitil mss of this mtril is m(0) 90 grms, so th rmiig ukows w will d to work out r r d c, with t i yrs W r gi tht thr r 40 grms of th rdiocti sustc rmiig ftr 4 yrs, so w c writ m(4) ( ) 90 ( 4 9 ) This tlls us tht r c 4 4/9 W ow wt to fid th mout of mtril rmiig ftr 7 yrs, which c xprssd s m(7) m(0) r c 7 m(0) r c 4 (7/4) m(0) ( r c 4 ) (7/4) 90 ( 4/9 ) (7/4) grms (D) 4) This itgrl pprs i Prolm 3 of th udtd-2002? xm; solutio c foud i tht solutio st (D) 5) Th sic itgrl for fidig th r oudd y polr cur r f(θ) tw θ 2 two gls is A [ f (θ)] 2 dθ, which rprsts th r of wdg hig th θ 2 origi s its rtx For th cur r l θ d th gls spcifid, our r itgrl will A, 2 [lθ]2 dθ which c lutd usig itgrtio y prts (twic): A 2 [lθ]2 dθ u d u (lθ) 2 du 2 lθ θ dθ ; d dθ θ 2 (lθ)2 θ u 2 θ (lθ)2 2 lθ θ w θ (2 lθ θ dθ) du θ θ dθ dw 2 θ (lθ)2 [ 2 θ lθ + 2 θ ] 2 θ (lθ)2 [ 2 lθ dθ w d ] w lθ dw θ dθ 2 θ (lθ)2 [ 2 (l)2 l + ] [ 2 (l)2 l + ] 2 { θ lθ dθ } 2 θ (lθ)2 [ θ lθ + θ] (cotiud)

3 [ ] [ ] ( 2 / 2 (D) + / ) (0 0 + ) 6) Th fct tht will usful to us is tht Typ I impropr itgrl of th form x p dx oly corgs (producs fiit lu) for p < Sic α will d to gti umr, whil x > 0, w c writ th iqulity (x 4 / 3 + 5) < α (x 4 / 3 ) α x 4 3 α This tlls us (y th itgrl compriso proprtis [Sctio 52]) tht (x 4 / 3 + 5) α 3 dx < x α dx This compriso itgrl corgs for p 4 3 α <, so w must h α < 3 4 By th itgrl compriso thorm (Sctio 78), whr this itgrl corgs, so dos ours Th oly choic ill for which this is th cs is (C) 4 7) Th grl xprssio for th coordits of th ctr of mss (or ctroid) of r oudd low y th x-xis d o y th cur y f(x) is x M x ρ(x) f (x) dx y m, y M ρ(x) x m ρ(x) f (x) dx 2 [ f (x)]2 dx, ρ(x) f (x) dx with ρ(x) ig th dsity fuctio for mss i th rgio Sic it is ot sttd xplicitly i th prolm, it my ssumd tht th dsity of th smicirculr plt is uiform, so th dsity fuctio is costt, ρ(x) ρ o, rducig th ctroid formuls to x f (x) dx x, y [ f (x)]2 dx 2 f (x) dx f (x) dx (cotiud)

4 Thr r coupl of othr simplifictios w c mk i this prolm With th costt dsity diidd out, th itgrl i th domitors of th formuls is just th r of th plt: for smi-circl of rdius 0, this is ½ π π W c lso tk dtg of th symmtry of th plt Sic th full circl would symmtric out its ctr t (, 0 ), th plt hs symmtry xis of x ; thus, w must h x Th qutio of circl ctrd t (, 0 ) d hig rdius of 0 is ( x ) 2 + y W c sol this for y, i ordr to oti th qutio for th smi-circl y 00 (x ) 2 Th itgrtio for this plt will xtd from x 0 9 to x + 0, mkig th rsult for th y-coordit y [ 00 (x ) 2 ] 2 dx π 00π 9 00 (x )2 dx u x du dx x : 9 u x : π 0 00 u2 du 00π (00u 3 u3 0 00π ( ) ( ) [ { } 3 { 0}3 )] 00π 2 ( ) / 0 / 0 π / 00 / 40 3π (A) Thr is quick wy of fidig th y-coordit of th ctroid usig th (Scod) Thorm of Pppus (d of Sctio 83) If th smi-circulr plt wr rold out th x-xis, it would swp out th olum of sphr of rdius 0, which 4 is By Pppus Thorm, this is th product of th r of th plt, 3 π π 3 50π (s foud o), tims th circumfrc of th circl swpt out y th ctroid wh th plt is rold, which is 2π y W thus fid 4000π 3 50π 2π y y 40/ 00 / / π 3 5 / 0 / / π 2 / π 40 3π

5 8) This sris pprs i Prolm 20 of th udtd-2002? xm; solutio is discussd i tht solutio st (C) 9) This sris pprs i Prolm 0 of th udtd-2002? xm; solutio c foud i tht solutio st (E) 0) This olum pprs i Prolm 6 of th udtd-2002? xm; solutio c foud i tht solutio st (C) ) This fuctio pprs i Prolm 3 of th udtd-2002? xm; solutio c foud i tht solutio st (C) 2) Th ky to solig this prolm is i rcogizig th rsmlc of th gi sris to th Mcluri sris for cos(x), " x 2 + x 4 2! 4! " x 6 + K 6! Thus, w r l to sy tht 22 2! ! 26 6! + K cos 2 (rdis) (C) It is lgitimt to us th Mcluri sris for cos(x), which is ctrd o x 0, i this wy, sic its rdius of corgc is ifiit 3) Th cross product of two ctors is third ctor which is orthogol (prpdiculr) to th two usd i th product For th ctors u <, 2, 3 > d < 2, 3, 4 >, th cross product is u ""* ˆ i ˆ j ˆ k ˆ i ˆ j * th 3 x 3 dtrmit is usd hr s clcultio id, ut it is ot dfiitio [ (2)(4) (3)(3) ] i [ ()(4) (2)(3) ] j + [ ()(3) (2)(2) ] k <, 2, > Ay sclr multipl of this ctor is lso orthogol to u d ; mog th ill choics, th oly o for which this is tru is ( ) <, 2, > <, 2, > ˆ k (E)

6 4) Th distc tw two prlll pls is msurd log li prpdiculr to ch pl, tht is, shrd orml li Th orml ctor to th pls x + y + z d x + y + z 0 is <,, > To gug th distc tw th pls log this dirctio, w will d to costruct orml li W my choos y poit i th pl x + y + z, sy, (, 0, 0 ), d crt th li prlll to <,, > which psss through it Th prmtric qutios for this li r x t, y 0 t, z 0 t x + t, y t, z t W xt fid whr this li, which is lso prpdiculr to th pl x + y + z 0, itrscts tht pl t th lu of th prmtr t gi y x + y + z ( + t ) + ( t ) + ( t ) + 3t 0 3t 9 t 3 Th itrsctio poit of this chos orml li with th scod pl is th ( +3, 3, 3 ) ( 4, 3, 3 ) Th two poits r o li prpdiculr to oth pls, so th distc tw thm is th dfid distc tw th two prlll pls: d ( 4 ) 2 + ( 3 0) 2 + ( 3 0) or 3 3 (B) 5) ) Hr r two pprochs tht c tk i solig this itgrl (Somthig w proly do ot wt to do is to us trigoomtric idtitis tht would itroduc othr rgumts for th fuctios, s this will complict our fforts) O mthod is to sprt out o fctor of si 2x to writ th itgrl s si 3 2x dx si 2x (si 2x) 2 dx ; w th pply th Pythgor Idtity to oti si 2x (si 2x) 2 dx si 2x ( cos 2 2x) dx si 2x dx si 2x (cos 2x) 2 dx Th first itgrl is strightforwrd ough, whil th scod c sold y usig th sustitutio u cos 2x du 2 si 2x dx ½ du si 2x dx : si 2x dx si 2x (cos 2x) 2 dx 2 cos 2x u2 ( du) 2 2 cos 2x + 2 u2 du 2 cos 2x + 2 ( 3 u3 ) + C 2 cos 2x + 6 (cos 2x)3 + C (cotiud)

7 From hr, w h optios s to wht form w d lik to xprss th ti-driti, icludig lig it s it stds Sic th origil itgrd is powr of si 2x, w could choos to writ th rsult i powrs of si x By pplyig th doul-gl formul for cosi, cos 2x cos 2 x si 2 x 2 si 2 x, w would h si 3 2x dx 2 ( 2 si2 x) + 6 ( 2 si2 x) 3 + C 2 ( 2 si2 x) + 6 ( 6 si2 x + 2 si 4 x 8 si 6 x) + C 2 si 4 x 4 3 si6 x + C (Th ritrry costt C swllows up th costt trm from th clcultio) Aothr pproch would to pply immditly th doul-gl formul for si, si 2x 2 si x cos x, to r-writ th itgrd s si 3 2x dx (2 si x cos x) 3 dx 8 si 3 x cos 3 x dx If w choos to oti ti-driti i trms of powrs of si x, w could sprt out o fctor of cos x d pply th Pythgor Idtity to produc 8 si 3 x cos 3 x dx 8 si 3 x cos 2 x cos x dx 8 si 3 x ( si 2 x) cos x dx W c ow sol this itgrl usig th sustitutio u si x du cos x dx : 8 si 3 x ( si 2 x) cos x dx 8 u 3 ( u 2 ) du 8 u 3 u 5 du 8 ( 4 u4 6 u6 ) + C 2 si 4 x 4 3 si6 x + C, s w foud o By similr rsoig, w c lso oti th ti-driti 4 3 cos6 x 2 cos 4 x + C ) A solutio to this itgrl iols sig th usful choic to mk It is clr tht thr is o dirct sustitutio tht will prmit progrss, d itgrtio y prts wo t of y hlp, sic th driti of will l wors x + x l x itgrtio to ttmpt It my ot sm to of much us, ut xtrctig fctor of dx, which th suggsts th /x will llow us to form th diffrtil du x sustitutio u l x : dx x + x l x + l x x dx du + u W r ow l to mk th furthr sustitutio + u d du, which ow prmits us to complt th itgrtio: du d l + C + u l + u + C l + l x + C

8 6) Th Trpzoid Rul stimts th lu of dfiit itgrl s f (x) dx 2 f (x ) + 2 f (x ) + 2 f (x ) + K + 2 f (x ) + f (x ) 0 2 with [ ] Δx, Δx d x i + i Δx By pplyig this Rul to th gi itgrl usig 6 suitrls, w h 0, π, Δx π/6, x i i (π/6), d thus π si(x 2 ) dx 2 f (0) + 2 f ( π 6 ) + 2 f ( π 3 ) + 2 f ( π 2 ) + 2 f ( 2π 3 ) + 2 f ( 5π 6 ) + f (π) 0 [ ] π 6 π 2 π 2 si(0) + 2si( 36 ) + 2si( π 2 9 ) + 2si( π 2 4 4π 2 25π 2 ) + 2si( ) + 2si( 9 36 ) + si(π 2 ) 7) ) Th gi diffrtil qutio is sprl, llowig us to writ y' dy dx x 2 y dy y x 2 dx dy x 2 dx l y y 3 x 3 + C, or, upo xpotitig oth sids of th qutio, l y 3 x 3 +C 3 x 3 C y A 3 x 3 (It might lso mtiod tht thr is scod triil solutio for th diffrtil qutio: if w simply st y 0, th qutio is stisfid for ll lus of x ) If w rquir tht this grl solutio stisfy th iitil lu y() 3, w fid y A 3 3 A 3 3 A 3 / 3, which mks th solutio to th iitil-lu prolm y 3 / 3 3 x x 3 3 or 3 3 ( x 3 ) ) This diffrtil qutio c sold y dirct itgrtio, usig th sustitutio u x 2 du 2x dx ½ du x dx : y' x si(x 2 ) y x si(x 2 ) dx siu ( 2 du) 2 cosu + C 2 cos(x 2 ) + C

9 8) Th grl trm for this powr sris is ( ) 4 x 2 + corgc for th sris is foud y pplictio of th Rtio Tst: Th rdius of lim + lim ( ) + (+) 4 + x + (+) 2 + ( ) 4 x 2 + lim ( ) + + ( ) 4 + x + 4 x lim ( ) + 4 x x < x < 4 R Th rdius of corgc of our sris is R ¼ Th itrl of corgc is ctrd o x 0 ; to dtrmi this itrl compltly, w must xmi th hior of th sris t ch dpoit: x 4 : ( ) 4 ( 4 ) ( ) (4 4 ) ( ) ; 0 + th grl trm i this sris, hrmoic sris, 2 + ; w fid tht lim y th Limit Compriso Tst, sic th hrmoic sris ( ) ( ) 2 + 0, c comprd to th grl trm i th lim lim ; dirgs, so dos our sris (w d to omit th 0 trm i our sris i ordr to mk th compriso, ut this hs o ffct o th mttr of dirgc) x 4 : ( ) 4 ( 4 ) ( ) (4 4 ) ( ) 2 + which is ltrtig sris with 2 + ; sic it is th cs tht + for ll, d lim 0, this sris stisfis th Altrtig Sris Tst d so corgs Hc, th itrl of corgc for our sris is ( -¼, ¼ ] 0 ( ), 2 + 0

10 9) ) Th grl trm i this sris, + 4, c comprd to th fuctio to fid tht lim 8 / 2 8 lim +4 lim + 4 Th sris dirgs ccordig to th p-tst, sic p ½ < By th Limit Compriso Tst, th, our sris lso dirgs This c lso show dirctly y th Itgrl Tst (of which th p-tst is cosquc), sic dx dirgs 8 x+4 ) Th p-tst is ot so hlpful hr, sic th fctor of corrspods to p d th fctors of log do ot ffct th lu of p t ll Istd, it will cssry to crry out Itgrl Tst for corgc: 3 (log ) 2 dx 3 x (l x) 2 u l x du x dx log ms l to mthmticis x : 3 u l x: l 3 du lim u 2 l 3 lim t t t t ( u l 3) ( ) ( l3) 0 + Sic th itgrl corgs, so dos our sris l3 20) Th gl tw th two pls will th sm s th gl tw th orml ctors of th pls For th gi pls, x + y + 3z 3 d 2x + 2y + z 5, ths ctors r <,, 3 > d < 2, 2, >, rspctily Thr r two pprochs to fidig this gl, ch usig o of th typs of ctor product Th dot product of ths two ctors c xprssd i two wys Th first is y th dfiitio r cos θ, whr θ is th gl tw th two ctors d rprsts th lgth of ctor Th scod proids th ms of computig th lu of th dot product from th Crtsi (rctgulr) compots of th ctors: th dtrmid from x x + y y + z z Th (shortr) gl tw th ctors c (cotiud)

11 cos θ r x x + y y + z z 2 x ( y + z ) 2 x y + z ( ) For our orml ctors, w clcult , , ()(2) + ()(2) + (3)() 7, d thus cos θ Th si of this gl my th foud usig th Pythgor Idtity: si 2 θ cos 2 θ (99 49) si θ A ltrti mthod for solig this prolm is to us th mgitud or lgth of th ctor product of th two orml ctors, gi y ctor product (s rmrk i Prolm 3) is computd from r si θ This ˆ i ˆ j ˆ k i ˆ 3 2 ˆ j ˆ k [ ()() (3)(2) ] i [ ()() (3)(2) ] j + [ ()(2) ()(2) ] k < 5, 5, 0 > Th lgth of this ctor is of th gl tw th orml ctors is gi y si θ ( 5) , so th si r G Ruff /09

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

Chapter 5. Chapter 5 125

Chapter 5. Chapter 5 125 Chptr 5 Chptr 5: Itroductio to Digitl Filtrs... 6 5. Itroductio... 6 5.. No rcursiv digitl filtrs FIR... 7 5.. Rcursiv digitl filtr IIR... 8 5. Digitl Filtr Rlistio... 5.. Prlll rlistio... 5.. Cscd rlistio...

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

IV. The z-transform and realization of digital filters

IV. The z-transform and realization of digital filters www.tuworld.com www.tuworld.com Digitl Sigl Procssig 4 Dcmbr 6, 9 IV. Th -trsform d rlitio of digitl filtrs 7 Syllbus: Rviw of -trsforms, Applictios of -trsforms, Solutio of diffrc qutios of digitl filtrs,

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

( ) = A n + B ( ) + Bn

( ) = A n + B ( ) + Bn MATH 080 Test 3-SOLUTIONS Fll 04. Determie if the series is coverget or diverget. If it is coverget, fid its sum.. (7 poits) = + 3 + This is coverget geometric series where r = d

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

Advanced Calculus Test File Spring Test 1

Advanced Calculus Test File Spring Test 1 Advced Clculus Test File Sprig 009 Test Defiitios - Defie the followig terms.) Crtesi product of A d B.) The set, A, is coutble.) The set, A, is ucoutble 4.) The set, A, is ifiite 5.) The sets A d B re

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Lectures 5-8: Fourier Series

Lectures 5-8: Fourier Series cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

The Propagation Series

The Propagation Series //009 Th Progtio Sris rst /0 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms of

More information

The Propagation Series

The Propagation Series /9/009 Th Progtio Sris.doc /8 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

Inner Product Spaces (Chapter 5)

Inner Product Spaces (Chapter 5) Ier Product Spces Chpter 5 I this chpter e ler out :.Orthogol ectors orthogol suspces orthogol mtrices orthogol ses. Proectios o ectors d o suspces Orthogol Suspces We ko he ectors re orthogol ut ht out

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

The limit comparison test

The limit comparison test Roerto s Notes o Ifiite Series Chpter : Covergece tests Sectio 4 The limit compriso test Wht you eed to kow lredy: Bsics of series d direct compriso test. Wht you c ler here: Aother compriso test tht does

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2. Clculus II d Alytic Geometry Sectio 8.: Sequeces. Limit Rules Give coverget sequeces f g; fb g with lim = A; lim b = B. Sum Rule: lim( + b ) = A + B, Dierece Rule: lim( b ) = A B, roduct Rule: lim b =

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible)

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible) PG. Clculus BC Bile (rd most importt ook i the world) (To e used i cojuctio with the Clculus AB Bile) Topic Rectgulr d Prmetric Equtios (Arclegth, Speed) 4 Polr (Polr Are) 4 5 Itegrtio y Prts 5 Trigoometric

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth A Sigl-Itgrl Rprsttio for th Gr uctio of Stdy Ship low i Wtr of iit Dpth Thi Nguy & Xio-Bo Ch Costl Systs Sttio, P City, L 7 (USA x: --85-- Eil: NguyTC@csc.vy.il Rsrch Dprtt, BV, 7bis, Plc ds Rflts, 9

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible)

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible) PG. Clculus BC Bile (3rd most importt ook i the world) (To e used i cojuctio with the Clculus AB Bile) Topic Rectgulr d Prmetric Equtios (Arclegth, Speed) 3 4 Polr (Polr Are) 4 5 Itegrtio y Prts 5 Trigoometric

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information