Mechanical Systems Part A: State-Space Systems Lecture AL10. State estimation Compensator design

Size: px
Start display at page:

Download "Mechanical Systems Part A: State-Space Systems Lecture AL10. State estimation Compensator design"

Transcription

1 : 46-4 Mechnicl Stem Prt : Stte-Spce Stem ectre Stte etimtion ompentor deign combintion of control l nd etimtor eprtion principle

2 Stte etimtion We re ble to plce the P rbitrril b feeding bck ll the tte: K. t thee m not ll be vilble for merement. Hence e eek to etimte them b oberving the pln inpt nd otpt, nd e the etimted tte in the control l: Uing or model of the plnt, e cold mke open-loop etimte: Kˆ : Plnt model ˆ ŷ Plnt

3 Hoever or model m not be precie e don't kno the plnt' initil condition the plnt m be bject to nmodelled ditrbnce hence the etimted tte i likel to diverge from the ctl tte We therefore introdce feedbck to tr to get the etimted otpt ŷ to trck the mered otpt Etimtor : ˆ ˆ ŷ Plnt

4 :4 Th, e form or etimte from ( ) ˆ ˆ ˆ gin vector of feedbck i n eqtion to be implemented in etimtor Plnt Etimtor ŷ ˆ ˆˆˆ

5 Etimtor dnmic Given the plnt inpt nd mered otpt, the tte etimte evolve ccording to: ˆ ˆ ( ˆ ) Or plnt model i, Sbtrcting, nd ing the otpt eqtion, give: ˆ ˆ ˆ ( ) ( ) Denote the error in the tte etimte b ~ ˆ Then the error dnmic re: ~ ( ) ~ :5 I.e., given the mption of perfect plnt model, nd no ditrbnce, thi gget tht the etimtion error ~ cn be mde to go to zero in tble nd rpid mnner b itble choice of

6 The etimted tte hold then contine to trck the plnt tte ith zero error In relit there ill be etimtion error: plnt ditrbnce model imperfection Thee error cn be kept mll if the eigenvle of the error tem ~ ( ) ~ re ell dmped nd reltivel ft compred ith the cloed-loop plnt dnmic hrcteritic polnomil for error dnmic: [ I ( )] ( ) det Deired chrcteritic polnomil: α ( ) ( p )( p ) ( e n β pn) n β Provided tem i obervble, e cn olve for o tht () α e (), ing me techniqe for K n :6

7 :7 enefit of oberver c.f. The oltion for the etimtor gin mtri i trivil if the eqtion re in oberver cnonicl form The tem mtri for the error eqtion i then: [ ] o o Thi i till in oberver c.f., nd h the chr. pol ( ) ( ) ( ) ) ( ompre ith deired chr. pol: ) ( β β β α e Hence, b inpection: β, β, β

8 ckermnn' forml gin, ckermnn' forml cn be ed to effectivel implement the proce of: trnformtion of n obervble tem to oberver cnonicl form deign of etimtor gin b inpection trnformtion bck to originl tte :8 α e ( ) O MT: Specif deired etimtor pole, dep» cker(,, dep)» plce(,, dep)

9 Regltor ith etimted tte Plnt: Plnt :9 ontrol l: Kˆ Etimtor: K ˆ ˆ ˆ ( ˆ) Feedbck compentor ŷ Etimtor

10 Stte eqtion for cloed-loop tem Plnt: Etimtor: ontrol l:, ˆ ˆ Kˆ ombining thee eqtion: ( ˆ ) Kˆ ˆ ˆ Kˆ ˆ ( ) Th the cloed-loop tte eqtion re: ˆ [ ] K K ˆ ˆ :

11 Thee eqtion m lo be ritten in term of the etimtion error ~ ˆ. We hd: Kˆ Sbtrcting: ˆ ˆ Kˆ ~ ( ) ~ ( ˆ ) Sbtitting ˆ ~ in the firt eqtion ield: ( K) Kˆ With thi lterntive et of tte vrible the cloed-loop tem eqtion re: : ~ K ~ [ ] K ~

12 K K ~ ~ [ ] ~ The cloed-loop chrcteritic polnomil i th: I K K ( ) det( I c. l. ) det I hich i block tringlr. Hence: ( ) det( K) det( I ) K ( ) ( ) Th, the pole of the tem conit of the pole obtined b fll tte feedbck throgh K, together ith the etimtor pole determined b the election of I.e. the control l nd the etimtor cn be deigned independentl of ech other : Seprtion Principle

13 : Emple: regltion of ter level in to-tnk tem Eqilibrim inflo Q, Q eqil m tnk height H, H Reglte height in econd tnk Ditrbnce flo reqire reglting control flo Stte vrible re devition in tnk height from eqil m ineried model: vlve flo hed diff. / reitnce eqil m flo ctrl flo eqil m flo ditrbnce flo Q Q H R H R Q Q q Q q

14 Eercie: ho tht eqil m flo ctrl flo eqil m flo ditrbnce flo :4 H (R R )Q R Q Q Q H R Q R Q nd tht H R H R R R R R R For R R Q Q q Q q Y ( ) U ( ) (.6)(.8) Y ( ) W ( ) (.6)(.8)

15 :5 Spec: Reqired cloed-loop time contnt re τ., τ.5 ; i.e., deired chr. pol i 5 ) 5)( ( α c ontrol l: Demontrte ckermnn' forml: [ ] [ ] [ ] ; ; - - [ ] ) ( K c α α () c [ ] Hence: K [ 55]

16 :6 ; ; O O O Etimtor: Tr etim. pole controller pole; i.e., deired chr. pol i 4 5 4) )( ( α e Demontrte ckermnn' forml: α ) ( O e [ ] α e() 47 5 Hence

17 omplete tem :7 Eqivlent feedbck compentor: ˆ ( K )ˆ Kˆ Trnfer fnction for compentor: U ( ) H ( ) K Y ( ) 9(.7) 7 5 Plnt K Feedbck compentor ( I K ) ˆ ŷ Etimtor regltor i eentill eqivlent to led compentor ith dditionl filtering

18 licl control vie: root loc W() :8 U() plnt regltor 9(.7) 7 5 Y() 4 ( Dr root loc for.7 6) (5.4) Root oc (.8)(.6) K compentor pole Img i compentor zero cloed-loop pole for K 9 - plnt pole Rel i

19 licl control vie: freqenc repone OTF in horthnd nottion: 5.(.7) [.9,9.] (.8)(.6) :9 Phe (deg) Mgnitde (d) To: Y() To: Y() compented ode Digrm From: GM d ncompented PM increed to 67º Freqenc (rd/ec)

20 Performnce: repone to initil condition..8 Repone to initil condition See tnk.m, im_tnk.mdl ^ ^ ^ : Stte.6.4. Stte etimte converge in bence of ditrbnce Time ()

21 Performnce: repone to tep ditrbnce Step Repone From: : Open loop loed loop mplitde To: ted-tte error: gget need for integrl control -- ee lter Q H Q R H R Q. 5 5 Time (ec)

22 Repone to rndom ple ditrbnce : O tnk level tnk level control flo ditrbnce flo reltivel poor etimte of -- might need to look t choice of etimtor pole i etimted ell

Transfer Functions. Chapter 5. Transfer Functions. Derivation of a Transfer Function. Transfer Functions

Transfer Functions. Chapter 5. Transfer Functions. Derivation of a Transfer Function. Transfer Functions 5/4/6 PM : Trnfer Function Chpter 5 Trnfer Function Defined G() = Y()/U() preent normlized model of proce, i.e., cn be ued with n input. Y() nd U() re both written in devition vrible form. The form of

More information

CONTROL SYSTEMS LABORATORY ECE311 LAB 3: Control Design Using the Root Locus

CONTROL SYSTEMS LABORATORY ECE311 LAB 3: Control Design Using the Root Locus CONTROL SYSTEMS LABORATORY ECE311 LAB 3: Control Deign Uing the Root Locu 1 Purpoe The purpoe of thi lbortory i to deign cruie control ytem for cr uing the root locu. 2 Introduction Diturbnce D( ) = d

More information

positive definite (symmetric with positive eigenvalues) positive semi definite (symmetric with nonnegative eigenvalues)

positive definite (symmetric with positive eigenvalues) positive semi definite (symmetric with nonnegative eigenvalues) Chter Liner Qudrtic Regultor Problem inimize the cot function J given by J x' Qx u' Ru dt R > Q oitive definite ymmetric with oitive eigenvlue oitive emi definite ymmetric with nonnegtive eigenvlue ubject

More information

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM Interntionl Crpthin Control Conference ICCC 00 ALENOVICE, CZEC REPUBLIC y 7-30, 00 COOSING TE NUBER OF ODELS OF TE REFERENCE ODEL USING ULTIPLE ODELS ADAPTIVE CONTROL SYSTE rin BICĂ, Victor-Vleriu PATRICIU

More information

PHYSICS 211 MIDTERM I 22 October 2003

PHYSICS 211 MIDTERM I 22 October 2003 PHYSICS MIDTERM I October 3 Exm i cloed book, cloed note. Ue onl our formul heet. Write ll work nd nwer in exm booklet. The bck of pge will not be grded unle ou o requet on the front of the pge. Show ll

More information

STABILITY and Routh-Hurwitz Stability Criterion

STABILITY and Routh-Hurwitz Stability Criterion Krdeniz Technicl Univerity Deprtment of Electricl nd Electronic Engineering 6080 Trbzon, Turkey Chpter 8- nd Routh-Hurwitz Stbility Criterion Bu der notlrı dece bu deri ln öğrencilerin kullnımın çık olup,

More information

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes The Trnform nd it Invere 2.2 Introduction In thi Section we formlly introduce the Lplce trnform. The trnform i only pplied to cul function which were introduced in Section 2.1. We find the Lplce trnform

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Anlyi of Vrince nd Deign of Experiment-II MODULE VI LECTURE - 7 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr. Shlbh Deprtment of Mthemtic & Sttitic Indin Intitute of Technology Knpur Anlyi of covrince ith one

More information

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems (6) Fluid nd Mechnicl Engineering Sytem 008086. ) Cvittion in orifice In hydrulic ytem cvittion occur downtrem orifice with high preure drop. For n orifice with contnt inlet preure of p = 00 br cvittion

More information

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden Poton nd Speed Control Lund Unverty, Seden Generc Structure R poer Reference Sh tte Voltge Current Control ytem M Speed Poton Ccde Control * θ Poton * Speed * control control - - he ytem contn to ntegrton.

More information

7 Local bifurcation theory

7 Local bifurcation theory 7 Locl bifrction theory In or liner tbility nlyi of the Eckh eqtion we w tht netrl crve i generted, ketched gin below. k σ0 A the control prmeter R i moothly vried, the point t which σ = 0

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

EE Control Systems LECTURE 8

EE Control Systems LECTURE 8 Coyright F.L. Lewi 999 All right reerved Udted: Sundy, Ferury, 999 EE 44 - Control Sytem LECTURE 8 REALIZATION AND CANONICAL FORMS A liner time-invrint (LTI) ytem cn e rereented in mny wy, including: differentil

More information

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 5

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 5 Accelertor Phyic G. A. Krfft Jefferon L Old Dominion Univerity Lecture 5 ODU Accelertor Phyic Spring 15 Inhomogeneou Hill Eqution Fundmentl trnvere eqution of motion in prticle ccelertor for mll devition

More information

Reinforcement Learning and Policy Reuse

Reinforcement Learning and Policy Reuse Reinforcement Lerning nd Policy Reue Mnuel M. Veloo PEL Fll 206 Reding: Reinforcement Lerning: An Introduction R. Sutton nd A. Brto Probbilitic policy reue in reinforcement lerning gent Fernndo Fernndez

More information

Approximation of continuous-time systems with discrete-time systems

Approximation of continuous-time systems with discrete-time systems Approximtion of continuou-time ytem with icrete-time ytem he continuou-time ytem re replce by icrete-time ytem even for the proceing of continuou-time ignl.. Impule invrince metho 2. Step invrince metho

More information

Artificial Intelligence Markov Decision Problems

Artificial Intelligence Markov Decision Problems rtificil Intelligence Mrkov eciion Problem ilon - briefly mentioned in hpter Ruell nd orvig - hpter 7 Mrkov eciion Problem; pge of Mrkov eciion Problem; pge of exmple: probbilitic blockworld ction outcome

More information

Reinforcement learning

Reinforcement learning Reinforcement lerning Regulr MDP Given: Trnition model P Rewrd function R Find: Policy π Reinforcement lerning Trnition model nd rewrd function initilly unknown Still need to find the right policy Lern

More information

VSS CONTROL OF STRIP STEERING FOR HOT ROLLING MILLS. M.Okada, K.Murayama, Y.Anabuki, Y.Hayashi

VSS CONTROL OF STRIP STEERING FOR HOT ROLLING MILLS. M.Okada, K.Murayama, Y.Anabuki, Y.Hayashi V ONTROL OF TRIP TEERING FOR OT ROLLING MILL M.Okd.Murym Y.Anbuki Y.yhi Wet Jpn Work (urhiki Ditrict) JFE teel orportion wkidori -chome Mizuhim urhiki 7-85 Jpn Abtrct: trip teering i one of the mot eriou

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Low-order simultaneous stabilization of linear bicycle models at different forward speeds

Low-order simultaneous stabilization of linear bicycle models at different forward speeds 203 Americn Control Conference (ACC) Whington, DC, USA, June 7-9, 203 Low-order imultneou tbiliztion of liner bicycle model t different forwrd peed A. N. Gündeş nd A. Nnngud 2 Abtrct Liner model of bicycle

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form 5 Solving Kepler eqution Conider the Kepler eqution ωt = ψ e in ψ We wih to find Fourier expnion of e in ψ o tht the olution cn be written in the form ψωt = ωt + A n innωt, n= where A n re the Fourier

More information

ELECTRICAL CIRCUITS 10. PART II BAND PASS BUTTERWORTH AND CHEBYSHEV

ELECTRICAL CIRCUITS 10. PART II BAND PASS BUTTERWORTH AND CHEBYSHEV 45 ELECTRICAL CIRCUITS 0. PART II BAND PASS BUTTERWRTH AND CHEBYSHEV Introduction Bnd p ctive filter re different enough from the low p nd high p ctive filter tht the ubject will be treted eprte prt. Thi

More information

Solution Set 2. y z. + j. u + j

Solution Set 2. y z. + j. u + j Soltion Set 2. Review of Div, Grd nd Crl. Prove:. () ( A) =, where A is ny three dimensionl vector field. i j k ( Az A = y z = i A A y A z y A ) ( y A + j z z A ) ( z Ay + k A ) y ( A) = ( Az y A ) y +

More information

a b b a pop push read unread

a b b a pop push read unread A Finite Automton A Pushdown Automton 0000 000 red unred b b pop red unred push 2 An Exmple A Pushdown Automton Recll tht 0 n n not regulr. cn push symbols onto the stck cn pop them (red them bck) lter

More information

Multiloop Control Systems

Multiloop Control Systems Mltiloop Control Stem. Introdction. The relative gain arra (RG) 3. Pairing inpt-otpt variable 4. Dnamic conideration 5. Mltiloop controller tning 6. Redcing control loop interaction Introdction Mltiloop

More information

Pusan National University

Pusan National University Chapter 12. DESIGN VIA STATE SPACE Puan National Univerity oratory Table of Content v v v v v v v v Introduction Controller Deign Controllability Alternative Approache to Controller Deign Oberver Deign

More information

Section 4.2 Analysis of synchronous machines Part II

Section 4.2 Analysis of synchronous machines Part II Section 4. Anlyi of ynchronou mchine Prt 4.. Sttor flux linkge in non-lient pole ynchronou motor due to rotor The ir-gp field produced by the rotor produce flux linkge with individul phe winding. Thee

More information

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a D Motor Bic he D pernent-gnet otor i odeled reitor ( ) in erie with n inductnce ( ) nd voltge ource tht depend on the ngulr velocity of the otor oltge generted inide the rture K ω (ω i ngulr velocity)

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

13.3. The Area Bounded by a Curve. Introduction. Prerequisites. Learning Outcomes

13.3. The Area Bounded by a Curve. Introduction. Prerequisites. Learning Outcomes The Are Bounded b Curve 3.3 Introduction One of the importnt pplictions of integrtion is to find the re bounded b curve. Often such n re cn hve phsicl significnce like the work done b motor, or the distnce

More information

MIXED MODELS (Sections ) I) In the unrestricted model, interactions are treated as in the random effects model:

MIXED MODELS (Sections ) I) In the unrestricted model, interactions are treated as in the random effects model: 1 2 MIXED MODELS (Sections 17.7 17.8) Exmple: Suppose tht in the fiber breking strength exmple, the four mchines used were the only ones of interest, but the interest ws over wide rnge of opertors, nd

More information

Chapter 11 Design of State Variable Feedback Systems

Chapter 11 Design of State Variable Feedback Systems Chpter Desig of Stte Vrible Feedbck Systems This chpter dels with the desig of cotrollers utilizig stte feedbck We will cosider three mjor subjects: Cotrollbility d observbility d the the procedure for

More information

What's Your Body Composition?

What's Your Body Composition? Wht' Your Body Compoition? DETERMINING YOUR BODY FAT The firt tep determ your compoition i clculte your body ft percente of your tl weiht. Refer now the workheet for comput your percente of body ft. (The

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

spring from 1 cm to 2 cm is given by

spring from 1 cm to 2 cm is given by Problem [8 pts] Tre or Flse. Give brief explntion or exmple to jstify yor nswer. ) [ pts] Given solid generted by revolving region bot the line x, if we re sing the shell method to compte its volme, then

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M.

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M. Solution Prolem Set 2 Prolem.4 () Let M denote the DFA contructed y wpping the ccept nd non-ccepting tte in M. For ny tring w B, w will e ccepted y M, tht i, fter conuming the tring w, M will e in n ccepting

More information

ELG4156 Design of State Variable Feedback Systems

ELG4156 Design of State Variable Feedback Systems ELG456 Desig of Stte Vrible Feedbck Systems This chpter dels with the desig of cotrollers utilizig stte feedbck We will cosider three mjor subjects: Cotrollbility d observbility d the the procedure for

More information

Now, given the derivative, can we find the function back? Can we antidifferenitate it?

Now, given the derivative, can we find the function back? Can we antidifferenitate it? Fundmentl Theorem of Clculus. Prt I Connection between integrtion nd differentition. Tody we will discuss reltionship between two mjor concepts of Clculus: integrtion nd differentition. We will show tht

More information

Chapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables

Chapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables Copyright 013 Peron Eduction, Inc. Tble nd Formul for Sullivn, Sttitic: Informed Deciion Uing Dt 013 Peron Eduction, Inc Chpter Orgnizing nd Summrizing Dt Reltive frequency = frequency um of ll frequencie

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Ph2b Quiz - 1. Instructions

Ph2b Quiz - 1. Instructions Ph2b Winter 217-18 Quiz - 1 Due Dte: Mondy, Jn 29, 218 t 4pm Ph2b Quiz - 1 Instructions 1. Your solutions re due by Mondy, Jnury 29th, 218 t 4pm in the quiz box outside 21 E. Bridge. 2. Lte quizzes will

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

y b y y sx 2 y 2 z CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

y b y y sx 2 y 2 z CHANGE OF VARIABLES IN MULTIPLE INTEGRALS ECION.8 CHANGE OF VAIABLE IN MULIPLE INEGAL 73 CA tive -is psses throgh the point where the prime meridin (the meridin throgh Greenwich, Englnd) intersects the eqtor. hen the ltitde of P is nd the longitde

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

Control Systems. State Estimation.

Control Systems. State Estimation. State Estimation chibum@seoultech.ac.kr Outline Dominant pole design Symmetric root locus State estimation We are able to place the CLPs arbitrarily by feeding back all the states: u = Kx. But these may

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Objective: To simplify quotients using the Laws of Exponents. Laws of Exponents. Simplify. Write the answer without negative exponents. 1.

Objective: To simplify quotients using the Laws of Exponents. Laws of Exponents. Simplify. Write the answer without negative exponents. 1. Qotients of Monomils Objetive: To simplif qotients sing the Lws of Eponents. Lws of Eponents m n = m n ( b ) m = m b m ( m ) n = m n n m n m = m n n m = m m m b b = Prtie Problems Simplif. Write the nswer

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances ECE 350 Root Locu Deign Example Recall the imple crude ervo from lab G( ) 0 6.64 53.78 σ = = 3 23.473 PI To eliminate teady-tate error (for contant input) & perfect reection of contant diturbance Note:

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time llowed Two hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions

More information

Flexible Beam. Objectives

Flexible Beam. Objectives Flexile Bem Ojectives The ojective of this l is to lern out the chllenges posed y resonnces in feedck systems. An intuitive understnding will e gined through the mnul control of flexile em resemling lrge

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

Problem set 5: Solutions Math 207B, Winter r(x)u(x)v(x) dx.

Problem set 5: Solutions Math 207B, Winter r(x)u(x)v(x) dx. Problem set 5: Soltions Mth 7B, Winter 6. Sppose tht p : [, b] R is continosly differentible fnction sch tht p >, nd q, r : [, b] R re continos fnctions sch tht r >, q. Define weighted inner prodct on

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Chemistry 362 Dr. Jen M. Stnr Problem Set 2 Solutions 1. Determine the outcomes of operting the following opertors on the functions liste. In these functions, is constnt.).) opertor: /x ; function: x e

More information

Problem-Solving Companion

Problem-Solving Companion ProblemSolving Compnion To ccompny Bic Engineering Circuit Anlyi Eight Edition J. Dvid Irwin Auburn Univerity JOHN WILEY & SONS, INC. Executive Editor Bill Zobrit Aitnt Editor Kelly Boyle Mrketing Mnger

More information

THE IMPORTANCE OF INCLUDING ELASTIC PROPERTY OF PENSTOCK IN THE EVALUATION OF STABILITY OF HYDROPOWEWR PLANTS

THE IMPORTANCE OF INCLUDING ELASTIC PROPERTY OF PENSTOCK IN THE EVALUATION OF STABILITY OF HYDROPOWEWR PLANTS 6 th IAHR Interntionl Meeting of the Workgroup on Cvittion nd Dynmic Problems in Hydrulic Mchinery nd Systems, September 9-, 05, jubljn, Sloveni THE IMPORTANCE OF INCUDING EASTIC PROPERTY OF PENSTOCK IN

More information

NPTEL >> Mechanical Engineering >> Modeling and Control of Dynamic electro-mechanical System Module 3- Lecture 22. Design

NPTEL >> Mechanical Engineering >> Modeling and Control of Dynamic electro-mechanical System Module 3- Lecture 22. Design NPTEL >> Mechnicl Engineering >> Moeling n Control of Dynmic electro-mechnicl Sytem Moule 3- Lecture Time Dely n Ue of MATLAB in Controller Deign Dr. Bihkh Bhttchry h Profeor, Deprtment of Mechnicl Engineering

More information

Homework Problem Set 1 Solutions

Homework Problem Set 1 Solutions Chemistry 460 Dr. Jen M. Stnr Homework Problem Set 1 Solutions 1. Determine the outcomes of operting the following opertors on the functions liste. In these functions, is constnt..) opertor: / ; function:

More information

CONSTRUCTIVE CHARACTERISTICS AND MATHEMATICAL MODELLING OF MECHANIC-HIDRAULIC NETWORKS FOR COMPENSATING THE DYNAMICS OF ASSYMETRIC HYDRAULIC MOTORS

CONSTRUCTIVE CHARACTERISTICS AND MATHEMATICAL MODELLING OF MECHANIC-HIDRAULIC NETWORKS FOR COMPENSATING THE DYNAMICS OF ASSYMETRIC HYDRAULIC MOTORS Scientific Bulletin of the Politehnic Univerity of Timior Trnction on Mechnic Specil iue The 6 th Interntionl Conference on Hydrulic Mchinery nd Hydrodynmic Timior, Romni, October -, 004 CONSTRUCTIVE CHRCTERISTICS

More information

The steps of the hypothesis test

The steps of the hypothesis test ttisticl Methods I (EXT 7005) Pge 78 Mosquito species Time of dy A B C Mid morning 0.0088 5.4900 5.5000 Mid Afternoon.3400 0.0300 0.8700 Dusk 0.600 5.400 3.000 The Chi squre test sttistic is the sum of

More information

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method TP 0:Importnce Smpling-The Metropoli Algorithm-The Iing Model-The Jckknife Method June, 200 The Cnonicl Enemble We conider phyicl ytem which re in therml contct with n environment. The environment i uully

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc * Note: Although every effort ws tken to get complete nd ccurte tble, the uhtor cn not be held responsible for ny errors. Vrious sources hd to be consulted nd MIF hd to be exmined to get s much informtion

More information

Working with Powers and Exponents

Working with Powers and Exponents Working ith Poer nd Eponent Nme: September. 00 Repeted Multipliction Remember multipliction i y to rite repeted ddition. To y +++ e rite. Sometime multipliction i done over nd over nd over. To rite e rite.

More information

Calculus - Activity 1 Rate of change of a function at a point.

Calculus - Activity 1 Rate of change of a function at a point. Nme: Clss: p 77 Mths Helper Plus Resource Set. Copright 00 Bruce A. Vughn, Techers Choice Softwre Clculus - Activit Rte of chnge of function t point. ) Strt Mths Helper Plus, then lod the file: Clculus

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

13.3. The Area Bounded by a Curve. Introduction. Prerequisites. Learning Outcomes

13.3. The Area Bounded by a Curve. Introduction. Prerequisites. Learning Outcomes The Are Bounded b Curve 3.3 Introduction One of the importnt pplictions of integrtion is to find the re bounded b curve. Often such n re cn hve phsicl significnce like the work done b motor, or the distnce

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

Chapter 3 The Schrödinger Equation and a Particle in a Box

Chapter 3 The Schrödinger Equation and a Particle in a Box Chpter 3 The Schrödinger Eqution nd Prticle in Bo Bckground: We re finlly ble to introduce the Schrödinger eqution nd the first quntum mechnicl model prticle in bo. This eqution is the bsis of quntum mechnics

More information

Optimizing LTS-Simulation Algorithm

Optimizing LTS-Simulation Algorithm Optimizing LTS-ltion Algorithm MEMICS 09 Lkáš Holík 1, Jiří Šimáček 1,2 emil: {holik,isimcek}@fit.tbr.cz, simcek@img.fr 1 FIT BUT, Božetěcho 2, 61266 Brno, Czech Repblic 2 VERIMAG, UJF, 2.. de Vignte,

More information

Functions and transformations

Functions and transformations Functions nd trnsformtions A Trnsformtions nd the prbol B The cubic function in power form C The power function (the hperbol) D The power function (the truncus) E The squre root function in power form

More information

Linear predictive coding

Linear predictive coding Liner predictive coding Thi ethod cobine liner proceing with clr quntiztion. The in ide of the ethod i to predict the vlue of the current ple by liner cobintion of previou lredy recontructed ple nd then

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

SIMULATION OF TRANSIENT EQUILIBRIUM DECAY USING ANALOGUE CIRCUIT

SIMULATION OF TRANSIENT EQUILIBRIUM DECAY USING ANALOGUE CIRCUIT Bjop ol. o. Decemer 008 Byero Journl of Pure nd Applied Science, ():70 75 Received: Octoer, 008 Accepted: Decemer, 008 SIMULATIO OF TRASIET EQUILIBRIUM DECAY USIG AALOGUE CIRCUIT *Adullhi,.., Ango U.S.

More information

Section The Precise Definition Of A Limit

Section The Precise Definition Of A Limit Section 2.4 - The Precise Definition Of A imit Introduction So fr we hve tken n intuitive pproch to the concept of limit. In this section we will stte the forml definition nd use this definition to prove

More information

is the cut off frequency in rads.

is the cut off frequency in rads. 0 ELETRIAL IRUITS 9. HIGH RDER ATIVE FILTERS (With Tle) Introdution Thi development explin how to deign Butterworth (Mximlly Flt) or heyhev (Equl Ripple) Low P, High P or Bnd P tive filter. Thi tretment

More information

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters Linearteam tech paper The analyi of fourth-order tate variable filter and it application to Linkwitz- iley filter Janne honen 5.. TBLE OF CONTENTS. NTOCTON.... FOTH-OE LNWTZ-LEY (L TNSFE FNCTON.... TNSFE

More information

How do you know you have SLE?

How do you know you have SLE? Simultneous Liner Equtions Simultneous Liner Equtions nd Liner Algebr Simultneous liner equtions (SLE s) occur frequently in Sttics, Dynmics, Circuits nd other engineering clsses Need to be ble to, nd

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

This lecture covers Chapter 8 of HMU: Properties of CFLs

This lecture covers Chapter 8 of HMU: Properties of CFLs This lecture covers Chpter 8 of HMU: Properties of CFLs Turing Mchine Extensions of Turing Mchines Restrictions of Turing Mchines Additionl Reding: Chpter 8 of HMU. Turing Mchine: Informl Definition B

More information

UNIT # 07 (PART - II)

UNIT # 07 (PART - II) 9. ph ph [H + 0. [H + 0.0 V 50 V 50 [H + of miture i[h + N V N V V V 50(0. 0.0) 00 [H + 0. 0.055 ph.6. ph 7 [H + 0 7, [H 0 7 ne ph fter ddition of be ph [H + 0 [H 0 [H + concentrtion incree 0 5 time..

More information

MA FINAL EXAM INSTRUCTIONS

MA FINAL EXAM INSTRUCTIONS MA 33 FINAL EXAM INSTRUCTIONS NAME INSTRUCTOR. Intructor nme: Chen, Dong, Howrd, or Lundberg 2. Coure number: MA33. 3. SECTION NUMBERS: 6 for MWF :3AM-:2AM REC 33 cl by Erik Lundberg 7 for MWF :3AM-:2AM

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

Multivariate problems and matrix algebra

Multivariate problems and matrix algebra University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Electricity and Magnetism Electric Dipole Continuous Distribution of Charge

Electricity and Magnetism Electric Dipole Continuous Distribution of Charge Electricit nd Mgnetism Electric Dipole Continos Distribtion of Chrge Ln heridn De Anz College Jn 16, 2018 Lst time electric field lines electric field from point chrge net electric field from mn chrges

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir CSCI 2400 Models of Computtion, Section 3 Solutions to Homework 4 Problem 1. ll the solutions below refer to the Pumping Lemm of Theorem 4.8, pge 119. () L = f n b l k : k n + lg Let's ssume for contrdiction

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information