Homework 12 Solution - AME30315, Spring 2013

Size: px
Start display at page:

Download "Homework 12 Solution - AME30315, Spring 2013"

Transcription

1 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified the following plant model for the X axi: ( ) ( ) P () = ( +.57) ( ) ( ). (a)ue the Matlab GUI rltool or iotool and hand-calculation to deign a controller uch that the overhoot i < 2% and rie time i le than. ec for a tep reference ignal, e for a unit ramp reference i le than., the gain margin i greater than 6dB, and the cloed-loop bandwidth i greater than 3 rad/ec. Some pecification may already be met by the uncompenated ytem. General Procedure to do o: Ue the open-loop bode plot to determine the uncompenated phae margin Deign a controller K() that ha a low-frequency gain and phae margin uch that you can achieve the deign pecification. Etimate the ytem cloed-loop ytem bandwidth from the complementary enitivity function. Iterate on deign if neceary Diplay any plot and ueful inight ued in your controller deign. For time-domain plot, plot your reference ignal on the ame plot a the output. (b) A moothed tep input ignal i attached to the homework problem; 5mm move in econd, hold at 5mm for econd. With the moothed tep a a reference ignal, evaluate the controller performance. Doe your e calculation compare well with the ramped portion of the moothed tep imulation? Doe the error increae during the parabolic region of the moothed tep? Plot your reference ignal on the ame plot a the output. (c)change your reference ignal to a ine wave. Tet two different ine wave reference. One with a frequency 2 rad/ lower than your cloed loop bandwidth, one with a frequency 2 rad/ higher than your cloed loop bandwidth. Dicu your oberved relationhip between the frequency of a reference ignal, cloed-loop bandwidth, and the tracking error. Plot your reference ignal on the ame plot a the output. Solution: Plotting the ytem on io tool reveal that the ytem i untable. The ytem ha a gain margin of db and a phae margin of degree. We will be tabilizing the ytem with a lead controller. For now we will look at the e for a ramp. From cloed loop repone Steady tate repone error i Y () R() = K()P () + K()P () E() = R() + K()P () e = lim + K()P () R() Want e <. for ramp input R() = 2 e = lim + K()P () 2 = lim + K()P ()

2 LetP () = ˆP () 2 Recap: If K() = K z + +, zα e = e = lim + K() ˆP ()) 2 = lim + K() ˆP ()) = lim + K() ˆP () = lim + K() ˆP () = lim K()(258.28) = lim K() e = lim K() < lim K + + Our final deign mut have a K>.49.[3 pt] = K <. Next we deign uch that the rie time i about.5 econd and overhoot i le than 2. See Fig. Start with the uncompenated ytem K=. Aume a K() of the form K() = K z + +. zα A K=, the phae margin i φ m =.866. To achieve < 2%,ζ >.45 from our v. ζ map. Alo we know that ζ = φm, o we want φ m 45 o. We want to deign a lead controller with φ max to boot our phae margin. Allowing o extra, we want φ max = 55 o. From fig..3, α hould be. ω max hould be choen at the frequency where K()P () db = db. ω max = 34 rad/ec. ω max = z α, z=.75, αz = 7.5. Thi give a controller deign of.75 K() = Fig.2 demontrate the t deign iteration. A you can ee, we did not quite reach the deired φ m = 45. We can make α larger to achieve thi. By moving the pole to higher frequencie, we achieve the deired φ m (ee Fig.3 ).75 K() = Fig.4 demontrate that we now achieve the deired pecification.[5 pt] Tet with moothed tep input. Our deign appear to do quite well ince the deigned teady tate error i almot.. The error doe increae during the parabolic region.[ pt]. Smoothed tep performance Fig.5. Zoomed in region demontrate that the performance i wore in parabolic region, Fig.6. [5 pt] CL bandwidth i approximately 85 rad/ec. Tet a ine wave at 65 rad/ec Fig.7 and at 5 rad/ec Fig.8. [5 pt] If the frequency i le than the bandwidth, there i an increae in amplitude, however not that much. The

3 3 phae differ only by a little bit.if the frequency i greater than the bandwidth, the amplitude of the repone i decreaed and the phae differ quite a bit. [ pt] Overall the tracking error maller for frequencie inide the bandwidth compared to frequencie outide the bandwidth. Figure : Controller plot

4 Figure 2: Controller plot 4

5 Figure 3: Controller plot 5

6 6 Figure 4: tep repone Figure 5: moothed tep ignal

7 7 Figure 6: Zoomed in region of moothed tep ignal Figure 7: Sine wave of 65 rad/ec

8 Figure 8: Sine wave of 5 rad/ec 8

9 9 Bonu Problem 2: pt added to HW2 homework grade. For the ytem hown in Fig. 9, uppoe that: P () = 5 ( + ) (/5 + ). Deign a lead compenator K() o that the φ m > 4 uing Bode plot ketche. You mut how all your calculation to receive full credit. Once deigned by hand, verify and refine your deign uing Matlab. R() + - K() P() Y() Figure 9: Feedback Loop for Bonu Problem 2. Solution: Plot uncompenated ytem uing the tandard bode plotting procedure(fig. ) G(iω) db = at approximated 2 rad/ec. Here, our hand drawn bode plot tell u that we are untable, φ m o. Therefore, we need to increae φ m by 5 o to achieve a φ m of 4 o. Chooe φ max = 5 o + o = 6 o. From Fig..3, thi mean α = 2. Chooe ω max to be frequency where G(iω) db = db. ω max = z α for a lead controller [2t]. z = ω max α.5rad/ec p = α z = rad/ec Here we replot the change in phae and magnitude on the ame plot a Fig.. Notice that we did not achieve the φ m we deired. Plot in Matlab confirm thi(ee Fig.). The hand drawn plot give u a bai for further improvement. By moving the zero to -.8 and the pole to -36 we get the phae margin we deire (ee Fig. 2).

10 Figure : Bode plot [3pt uncompenated, 3pt compenated]

11 Root Locu Editor for Open Loop (OL) Open Loop Bode Editor for Open Loop (OL) Bode Editor for Cloed Loop (CL) 5 45 G.M.: 4.8 db Freq: 7.58 rad/ Stable loop P.M.: 6.7 deg Freq: 5.68 rad/ Frequency (rad/) Frequency (rad/) Figure : Controller plot

12 2 5 5 Root Locu Editor for Open Loop (OL) Open Loop Bode Editor for Open Loop (OL) Bode Editor for Cloed Loop (CL) 2 9 G.M.: 7.3 db Freq: 3.6 rad/ Stable loop P.M.: 44. deg Freq: 4.32 rad/ Frequency (rad/) Frequency (rad/) Figure 2: Controller plot [2pt]

13 3 Bonu Problem 3: pt added to HW2 homework grade, kernel of knowledge added to your brain. Thi problem i imilar to Problem. of Goodwine (with ome extra and without the typo). The tandard lead or lag compenator ha the general form: K() = z + p +. Find the frequency, ω max, at which K() ha a maximum phae lead or lag, φ max. Then calculate φ max. Your olution hould verify the equation jut prior to Eqn. (.3) and the phae lead calculation in Eqn. (.4). Solution: K(iω) i a function of frequency. We wih to find the frequency at which K(iω) i maximized and the value of that maximum point. To find the frequency of maximum phae (ω max ), we differentiate K(iω) with repect to ω and et equal to. d dω K(iω) = z Set d dω K(iω) = ω 2 K() = z + p + K(iω) = iω z + iω p + K(iω) = tan ω z ω tan p u = ω z, du dω = z dy y = a tan u, du = u 2 + dy dω = z ( ω z )2 + ( ω z )2 + p ( ω p )2 + = p(( ω p )2 + ) z(( ω z )2 + ) zp(( ω z )2 + )(( ω p )2 + ) [2pt] p + p ω2 z z = ω 2 ( p z ) = z p ω 2 = z p p = z p z p = pz z pz ω max = zp[3pt]

14 We next ubtitute ω max into K(iω) to olve for the maximum phae angle, φ max : 4 φ max = tan p z tan z p = tan p z p z + p z z p = tan 2 ( p z z p ) = tan p z 2 zp zp + 4 (p2 2pz + z 2 ) = 4 p2 + 2 pz + 4 z2 = 2 p2 + 2pz + z 2 = (p + z) 2 Therefore, φ max = θ = in 2 (p z) 2 (p + z) = in p z p + z [5pt]

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with : 376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD Therefore by applying the lead compenator with ome gain adjutment : D() =.12 4.5 +1 9 +1 we get the compenated ytem with : PM =65, ω c = 22 rad/ec, o

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-0 Linear Control Sytem Spring 04, Exam No calculator or computer allowed, you may leave your anwer a fraction. All problem are worth point unle noted otherwie. Total /00 Problem - refer to the unit

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

Lecture 8 - SISO Loop Design

Lecture 8 - SISO Loop Design Lecture 8 - SISO Loop Deign Deign approache, given pec Loophaping: in-band and out-of-band pec Fundamental deign limitation for the loop Gorinevky Control Engineering 8-1 Modern Control Theory Appy reult

More information

6.447 rad/sec and ln (% OS /100) tan Thus pc. the testing point is s 3.33 j5.519

6.447 rad/sec and ln (% OS /100) tan Thus pc. the testing point is s 3.33 j5.519 9. a. 3.33, n T ln(% OS /100) 2 2 ln (% OS /100) 0.517. Thu n 6.7 rad/ec and the teting point i 3.33 j5.519. b. Summation of angle including the compenating zero i -106.691, The compenator pole mut contribute

More information

G(s) = 1 s by hand for! = 1, 2, 5, 10, 20, 50, and 100 rad/sec.

G(s) = 1 s by hand for! = 1, 2, 5, 10, 20, 50, and 100 rad/sec. 6003 where A = jg(j!)j ; = tan Im [G(j!)] Re [G(j!)] = \G(j!) 2. (a) Calculate the magnitude and phae of G() = + 0 by hand for! =, 2, 5, 0, 20, 50, and 00 rad/ec. (b) ketch the aymptote for G() according

More information

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot SKEE 3143 CONTROL SYSTEM DESIGN CHAPTER 3 Compenator Deign Uing the Bode Plot 1 Chapter Outline 3.1 Introduc4on Re- viit to Frequency Repone, ploang frequency repone, bode plot tability analyi. 3.2 Gain

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances ECE 350 Root Locu Deign Example Recall the imple crude ervo from lab G( ) 0 6.64 53.78 σ = = 3 23.473 PI To eliminate teady-tate error (for contant input) & perfect reection of contant diturbance Note:

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial :. PT_EE_A+C_Control Sytem_798 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar olkata Patna Web: E-mail: info@madeeay.in Ph: -4546 CLASS TEST 8-9 ELECTRICAL ENGINEERING Subject

More information

The Root Locus Method

The Root Locus Method The Root Locu Method MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

Chapter 9: Controller design. Controller design. Controller design

Chapter 9: Controller design. Controller design. Controller design Chapter 9. Controller Deign 9.. Introduction 9.2. Eect o negative eedback on the network traner unction 9.2.. Feedback reduce the traner unction rom diturbance to the output 9.2.2. Feedback caue the traner

More information

Function and Impulse Response

Function and Impulse Response Tranfer Function and Impule Repone Solution of Selected Unolved Example. Tranfer Function Q.8 Solution : The -domain network i hown in the Fig... Applying VL to the two loop, R R R I () I () L I () L V()

More information

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis MEM 355 Performance Enhancement of Dynamical Sytem Root Locu Analyi Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan in

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Lecture 5 Introduction to control

Lecture 5 Introduction to control Lecture 5 Introduction to control Tranfer function reviited (Laplace tranform notation: ~jω) () i the Laplace tranform of v(t). Some rule: ) Proportionality: ()/ in () 0log log() v (t) *v in (t) () * in

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

The state variable description of an LTI system is given by 3 1O. Statement for Linked Answer Questions 3 and 4 :

The state variable description of an LTI system is given by 3 1O. Statement for Linked Answer Questions 3 and 4 : CHAPTER 6 CONTROL SYSTEMS YEAR TO MARKS MCQ 6. The tate variable decription of an LTI ytem i given by Jxo N J a NJx N JN K O K OK O K O xo a x + u Kxo O K 3 a3 OKx O K 3 O L P L J PL P L P x N K O y _

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Homework Assignment No. 3 - Solutions

Homework Assignment No. 3 - Solutions ECE 6440 Summer 2003 Page 1 Homework Aignment o. 3 Problem 1 (10 point) Aume an LPLL ha F() 1 and the PLL parameter are 0.8V/radian, K o 100 MHz/V, and the ocillation frequency, f oc 500MHz. Sketch the

More information

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach. hapter 6 ontrol Sytem Deign by Root-Lou Method Lag-Lead ompenation Lag lead ompenation ehnique Baed on the Root-Lou Approah. γ β K, ( γ >, β > ) In deigning lag lead ompenator, we onider two ae where γ

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Compensation Techniques

Compensation Techniques D Compenation ehnique Performane peifiation for the loed-loop ytem Stability ranient repone Æ, M (ettling time, overhoot) or phae and gain margin Steady-tate repone Æ e (teady tate error) rial and error

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20) 1 Homework 7 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pt] Ue partial fraction expanion to compute x(t) when X 1 () = 4 2 + 2 + 4 Ue partial fraction expanion to compute x(t) when X 2 () = ( )

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

1 Routh Array: 15 points

1 Routh Array: 15 points EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() 2 ++2 2(+). Find the cloed loop tranfer function Y () R(), and range of k

More information

Multivariable Control Systems

Multivariable Control Systems Lecture Multivariable Control Sytem Ali Karimpour Aociate Profeor Ferdowi Univerity of Mahhad Lecture Reference are appeared in the lat lide. Dr. Ali Karimpour May 6 Uncertainty in Multivariable Sytem

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

Figure 1: Unity Feedback System

Figure 1: Unity Feedback System MEM 355 Sample Midterm Problem Stability 1 a) I the following ytem table? Solution: G() = Pole: -1, -2, -2, -1.5000 + 1.3229i, -1.5000-1.3229i 1 ( + 1)( 2 + 3 + 4)( + 2) 2 A you can ee, all pole are on

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2018

ECEN620: Network Theory Broadband Circuit Design Fall 2018 ECEN60: Network Theory Broadband Circuit Deign Fall 08 Lecture 6: Loop Filter Circuit Sam Palermo Analog & Mixed-Signal Center Texa A&M Univerity Announcement HW i due Oct Require tranitor-level deign

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Lag-Lead Compensator Design

Lag-Lead Compensator Design Lag-Lead Compenator Deign ELEC 3 Spring 08 Lag or Lead Struture A bai ompenator onit of a gain, one real pole and one real zero Two type: phae-lead and phae-lag Phae-lead: provide poitive phae hift and

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

Control Theory and Congestion

Control Theory and Congestion Control Theor and Congetion Glenn Vinnicombe and Fernando Paganini Cambridge/Caltech and UCLA IPAM Tutorial March 2002. Outline of econd part: 1. Performance in feedback loop: tracking, diturbance rejection,

More information

Analysis of Stability &

Analysis of Stability & INC 34 Feedback Control Sytem Analyi of Stability & Steady-State Error S Wonga arawan.won@kmutt.ac.th Summary from previou cla Firt-order & econd order ytem repone τ ωn ζω ω n n.8.6.4. ζ ζ. ζ.5 ζ ζ.5 ct.8.6.4...4.6.8..4.6.8

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

16.400/453J Human Factors Engineering. Manual Control II

16.400/453J Human Factors Engineering. Manual Control II 16.4/453J Human Factor Engineering Manual Control II Pilot Input 16.4/453 Pitch attitude Actual pitch error 8 e attitude 8 Deired pitch attitude 8 c Digital flight control computer Cockpit inceptor Fly-by-wire

More information

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems Wolfgang Hofle Wolfgang.Hofle@cern.ch CERN CAS Darmtadt, October 9 Feedback i a mechanim that influence a ytem by looping back an output to the input a concept which i found in abundance in nature and

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

Lecture 12: Examples of Root Locus Plots. Dr. Kalyana Veluvolu. Lecture 12: Examples of Root Locus Plots Dr. Kalyana Veluvolu

Lecture 12: Examples of Root Locus Plots. Dr. Kalyana Veluvolu. Lecture 12: Examples of Root Locus Plots Dr. Kalyana Veluvolu ROOT-LOCUS ANALYSIS Example: Given that G( ) ( + )( + ) Dr. alyana Veluvolu Sketch the root locu of 1 + G() and compute the value of that will yield a dominant econd order behavior with a damping ratio,

More information

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Copyright 22 IFAC 5th Triennial World Congre, Barcelona, Spain CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Tritan Pérez Graham C. Goodwin Maria M. Serón Department of Electrical

More information

What is automatic control all about? Welcome to Automatic Control III!! "Automatic control is the art of getting things to behave as you want.

What is automatic control all about? Welcome to Automatic Control III!! Automatic control is the art of getting things to behave as you want. What i automatic control all about? Welcome to Automatic Control III!! Lecture Introduction and linear ytem theory Thoma Schön Diviion of Sytem and Control Department of Information Technology Uppala Univerity.

More information

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response. EE202 HOMEWORK PROBLEMS SPRING 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on the web. Quote for your Parent' Partie: 1. Only with nodal analyi i the ret of the emeter a poibility. Ray DeCarlo 2. (The need

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot

More information

arxiv: v1 [cs.sy] 24 May 2018

arxiv: v1 [cs.sy] 24 May 2018 No More Differentiator in : Development of Nonlinear Lead for Preciion Mechatronic Arun Palanikumar, Niranjan Saikumar, S. Haan HoeinNia arxiv:5.973v [c.sy] May Abtract Indutrial conit of three element:

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

( ) Zp THE VIBRATION ABSORBER. Preamble - A NEED arises: lbf in. sec. X p () t = Z p. cos Ω t. Z p () r. ω np. F o. cos Ω t. X p. δ s.

( ) Zp THE VIBRATION ABSORBER. Preamble - A NEED arises: lbf in. sec. X p () t = Z p. cos Ω t. Z p () r. ω np. F o. cos Ω t. X p. δ s. THE VIBRATION ABSORBER Preable - A NEED arie: Lui San Andre (c) 8 MEEN 363-617 Conider the periodic forced repone of a yte (Kp-Mp) defined by : 1 1 5 lbf in : 1 3 lb (t) It natural frequency i: : ec F(t)

More information

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters Linearteam tech paper The analyi of fourth-order tate variable filter and it application to Linkwitz- iley filter Janne honen 5.. TBLE OF CONTENTS. NTOCTON.... FOTH-OE LNWTZ-LEY (L TNSFE FNCTON.... TNSFE

More information

An estimation approach for autotuning of event-based PI control systems

An estimation approach for autotuning of event-based PI control systems Acta de la XXXIX Jornada de Automática, Badajoz, 5-7 de Septiembre de 08 An etimation approach for autotuning of event-baed PI control ytem Joé Sánchez Moreno, María Guinaldo Loada, Sebatián Dormido Departamento

More information

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS October 12-17, 28, Beijing, China USING NONLINEAR CONTR ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS T.Y. Yang 1 and A. Schellenberg 2 1 Pot Doctoral Scholar, Dept. of Civil and Env. Eng.,

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking A Simple Approach to Syntheizing Naïve Quantized Control for Reference Tracking SHIANG-HUA YU Department of Electrical Engineering National Sun Yat-Sen Univerity 70 Lien-Hai Road, Kaohiung 804 TAIAN Abtract:

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

HOMEWORK ASSIGNMENT #2

HOMEWORK ASSIGNMENT #2 Texa A&M Univerity Electrical Engineering Department ELEN Integrated Active Filter Deign Methodologie Alberto Valde-Garcia TAMU ID# 000 17 September 0, 001 HOMEWORK ASSIGNMENT # PROBLEM 1 Obtain at leat

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

Feedback Control System Fundamentals

Feedback Control System Fundamentals unam online continuing education coure Feedback ontrol ytem Fundamental by eter ennedy Feedback ontrol ytem Fundamental unam online continuing education coure Feedback ontrol ytem Fundamental. Introduction:

More information

CISE302: Linear Control Systems

CISE302: Linear Control Systems Term 8 CISE: Linear Control Sytem Dr. Samir Al-Amer Chapter 7: Root locu CISE_ch 7 Al-Amer8 ١ Learning Objective Undertand the concept of root locu and it role in control ytem deign Be able to ketch root

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Solution Dicrete Time Proceing of Continuou Time Signal Sampling à 2.. : Conider a inuoidal ignal and let u ample it at a frequency F 2kHz. xt 3co000t 0. a) Determine and expreion for the ampled

More information

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL POWE YEM MALL INAL ABILIY ANALYI BAE ON E INAL Zheng Xu, Wei hao, Changchun Zhou Zheang Univerity, Hangzhou, 37 PChina Email: hvdc@ceezueducn Abtract - In thi paper, a method baed on ome tet ignal (et

More information

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia Part A: Signal Proceing Chapter 5: Digital Filter Deign 5. Chooing between FIR and IIR filter 5. Deign Technique 5.3 IIR filter Deign 5.3. Impule Invariant Method 5.3. Bilinear Tranformation 5.3.3 Digital

More information

H DESIGN OF ROTOR FLUX ORIENTED CONTROLLED INDUCTION

H DESIGN OF ROTOR FLUX ORIENTED CONTROLLED INDUCTION H DESIGN OF ROTOR FLUX ORIENTED CONTROLLED INDUCTION MOTOR DRIVES: SPEED CONTROL, STABILITY ROBUSTNESS AND NOISE ATTENUATION João C. Bailio,, Joé A. Silva Jr.,, Jr., and Lui G. B. Rolim, Member, IEEE,

More information

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES ABCM Sympoium Serie in Mechatronic - Vol. 3 - pp.87-96 Copyright c 8 by ABCM A PLC BASE MIMO PI CONOLLE FO MULIVAIABLE INUSIAL POCESSES Joé Maria Galvez, jmgalvez@ufmg.br epartment of Mechanical Engineering

More information

Analysis and Design of a Third Order Phase-Lock Loop

Analysis and Design of a Third Order Phase-Lock Loop Analyi Deign of a Third Order Phae-Lock Loop DANIEL Y. ABRAMOVITCH Ford Aeropace Corporation 3939 Fabian Way, MS: X- Palo Alto, CA 94303 Abtract Typical implementation of a phae-lock loop (PLL) are econd

More information