CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

Size: px
Start display at page:

Download "CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS"

Transcription

1 CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3 REDUCED ORDER CONTROLLER DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.4 REDUCED ORDER DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.5 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.6 NUMERICAL EXAMPLE 8.7 SUMMARY 57

2 CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 Introduction Thi chapter dicue the deign o oberver-baed reduced order controller or the tabilization o large cale linear dicrete-time control ytem. Thi deign i carried out via deriving a reduced-order model or the given linear plant uing the dominant tate o the linear plant. Uing thi reduced-order linear model, uicient condition are derived or the deign o oberver-baed reduced order controller. A eparation principle ha been etablihed in thi paper which demontrate that the oberver pole controller pole can be eparated hence the pole-placement problem oberver deign are independent o each other. Thi chapter ha been organized a ollow. Section 8.2 decribe the reduced order model deign or linear dicrete-time control ytem. Section 8.3 decribe the reduced order controller deign or linear dicrete-time control ytem. Section 8.4 decribe the reduced order oberver deign or linear dicrete-time control ytem. Section 8.5 decribe the oberver baed reduced order controller deign or linear dicrete-time control ytem. Section 8.6 contain a numerical example illutrating the deign procedure. Section 8.7 contain a ummary o the main reult derived in thi chapter. 8.2 Reduced Order Model Deign or Linear Dicrete-Time Control Sytem Conider a large cale dicrete-time linear ytem modelled by the equation x( k 1) Ax Bu y Cx (8.1) n x R i the tate, m u R i the control or input 58 p y R i the ytem output. Aume that A, B C are real, contant matrice o dimenion nn, nm pn, repectively. Firt, aume that an identiication o the dominant (low) non-dominant (at) tate o the original linear ytem (8.1) were made uing the modal approach a decribed in Chapter 4.

3 Without lo o generality, it i aumed that x x, x (8.2) r x R repreent the dominant tate x nr R repreent the non-dominant tate o the ytem (8.1). The tate x correpond to the low mode o the ytem, while the tate to the at mode o the ytem. Then the linear ytem (8.1) become x correpond x ( k 1) A A x B u ( k ) x ( k 1) A A x B x y C C x (8.3) From (8.3), the plant equation can be written a x ( k 1) A x A x B u x ( k 1) A x A x B u y C x C x (8.4) Next, it i aumed that ytem matrix A i diagonalizable. In mot practical ituation, the matrix A will have ditinct eigenvalue hence thi aumption will be eaily atiied ince the eigenvector o a matrix correponding to dierent eigenvalue are linearly independent. Then there exit a modal matrix M coniting o n linearly independent eigenvector o A uch that M 1 AM, (8.5) i a diagonal matrix coniting o the n eigenvalue o A. A change o coordinate i introduced on the tate pace, which i given by Nx, N M 1 (8.6) 59

4 In the new coordinate (8.6), the linear ytem (8.3) become ( k 1) NBu y CM (8.7) Thu, ( k 1) NBu ( k 1) y CM (8.8) are r r ( n r) ( n r) diagonal matrice, repectively, coniting o the low at eigenvalue o A. Next, deine matrice,, by NB CM (8.9),, are r m, ( n r) m, pr p( n r) matrice, repectively. From (8.8) (8.9), it i een that the linear plant (8.3) ha the ollowing imple tructure in the new coordinate (8.6) ( k 1) u ( k 1) u y (8.10) Next, the ollowing two aumption are made: (H1) A k, ( k 1), i.e. take a contant value in the teady tate. (H2) The matrix I i invertible. Uing the aumption (H1), the econd equation in (8.10) become (or large value o k ) u (8.11) From Eq. (8.11) the aumption (H2), it ollow that 1 ( I ) u (8.12) 60

5 Subtituting (8.12) into (8.10), the reduced-order model o the linear ytem (8.1) in the coordinate can be written a ( k 1) u y k k I u k 1 ( ) (8.13) The reduced-order ytem model o the linear ytem (8.13) in the x coordinate obtained a ollow. i Set N 1 N N M, N N (8.14) N, N, N N are r r, r ( n r), ( n r) r ( n r) ( n r) matrice repectively. By the change o coordinate (8.6), it ollow that 1 M x Nx (8.15) Thu, x N N N x N N (8.16) From (8.13) (8.16), it ollow that 1 N x N x ( I ) u (8.17) i.e. N x k N x k I u k (8.18) 1 ( ) Next, the ollowing aumption i made. (H3) The matrix N i invertible. Uing (H3), the equation (8.18) become x k N N x k N I u k (8.19) ( ) 61

6 To impliy notation, deine the matrice R N N S N ( I ) (8.20) Uing (8.20), the equation (8.19) can be impliied a x R x S u (8.21) Subtituting (8.21) into (8.4), the reduced-order ytem model o the linear ytem (8.4) i obtained a x ( k 1) A x B u y C x D u (8.22) the matrice A, B, C D are deined a ollow: A A A R, B B A S C C C R, D C S (8.23) 8.3 Reduced Order Controller Deign or Linear Dicrete-Time Control Sytem In thi ection, the reduced order controller deign or a large cale dicrete-time linear ytem, whoe tate are ully obervable i decribed. Conider the linear control ytem given by x( k 1) Ax Bu (8.24) Under the aumption (H1)-(H3), the reduced order ytem model o the ytem (8.24) i obtained a x ( k 1) A x B u (8.25) A B are decribed by (8.23). Next, an ueul reult that precribe a imple method i derived or tabilizing the dominant tate x o the reduced-order linear plant (8.25). 62

7 Theorem 8.1 For the reduced-order ytem model (8.25), uppoe that the ytem pair ( A, B ) i completely controllable. Then there exit a tate eedback control law u F x (8.26) that tabilize the dominant tate x o the reduced order model (8.25) yielding any deired et o table eigenvalue or the cloed-loop ytem matrix A B F. Proo. Since the ytem pair ( A, B ) i completely controllable, it ollow by linear ytem theory that the pole o the eedback control ytem, which are the eigenvalue o the cloed-loop ytem matrix A B F can be arbitrarily placed by a tate eedback law o the orm (8.26). In particular, it ollow that the eigenvalue o the cloed-loop ytem matrix A B F can be placed in the table region given by : 1. Thu, it ollow that the tate eedback control law (8.26) tabilize the dominant tate x o the reduced order model (8.25) yielding any deired et o table eigenvalue or the cloed-loop ytem matrix A B F. Thi complete the proo. 8.4 Reduced Order Oberver Deign or Linear Dicrete-Time Control Sytem In thi ection, the reduced order oberver deign or a large cale linear dicrete-time control ytem i decribed. Conider the linear control ytem given by x( k 1) Ax Bu y Cx (8.27) Under the aumption (H1)-(H3), the reduced order ytem model o the ytem (8.27) i obtained a x ( k 1) A x B u y C x D u (8.28) A, B, C D are deined by (8.23). 63

8 Theorem 8.2 For the reduced order linear ytem (8.28), uppoe that the pair ( C, A ) i completely obervable. Then the ytem (8.28) ha a global exponential oberver deined by z ( k 1) A z B u K y C z D u (8.29) K i an output gain matrix that can be choen uch that the etimation error matrix E A K C (8.30) ha an arbitrarily aigned et o table eigenvalue. Proo. Deine the etimation error by e z x Then the error atiie the dierence equation e( k 1) E e, E A KC Then it ollow that k k e E e(0) ( A KC) e(0) or all k. Since the pair ( C, A ) i completely obervable, an oberver gain matrix K can be choen o that the oberver pole or the eigenvalue o the matrix E A KC can be arbitrarily placed in the table region : 1. Thi how that the etimation error e i globally exponentially table. 8.5 Oberver Baed Reduced Order Controller Deign or Linear Dicrete-Time Control Sytem In mot o the practical application, the dominant tate x o the reduced-order model (8.28) o the large cale linear ytem (8.27) may not be directly available or meaurement hence a tate eedback control law o the orm u F x cannot be implemented to tabilize the tate dynamic. To overcome thi practical diiculty, an important theorem i derived, called a the Separation Principle, which irt etablihe that the oberver-baed reduced-order controller indeed tabilize the dominant tate o the given linear control ytem (8.27) alo demontrate that the oberver pole the cloed-loop controller pole can be eparated. Z 64

9 Theorem 8.3 (Separation Principle) Suppoe that the aumption (H1)-(H3) hold or the original linear ytem (8.27). Then it ha a reduced order linear ytem given by (8.28), the matrice A, B, C D are deined by (8.23). Suppoe that there exit matrice F K uch that A B F A K C are both convergent matrice. By Theorem 8.2, the ytem deined by (8.29) i an exponential oberver or the dominant tate x o the original linear ytem (8.27). Then the oberver pole the cloed-loop controller pole are eparated the oberver-baed control law u F z (8.31) alo tabilize the dominant tate x o the large-cale control ytem (8.27). Proo. Under the eedback control law (8.31), the oberver dynamic (8.29) become ( 1) z k A B F KC K D F z k K Cx k C x k (8.32) By (8.21), x Rx Su Rx SF z (8.33) Subtituting (8.29) into (8.28) impliying uing the deinition (8.16), z ( k 1) ( A B F K C ) z K C x (8.34) Subtituting the control law (8.27) into (8.3), x ( k 1) A x B F z (8.35) In matrix repreentation, equation (8.34) (8.35) can be written a x ( k 1) A B F x k z ( k 1) K z C A B F KC (8.36) Since the etimation error e i deined by e z x, it i eay to ee rom Eq. (8.36) that the error atiie the equation ( 1) e k A K C e ( k ) (8.37) 65

10 Uing the ( x, e) coordinate, the compoite ytem (8.37) can be impliied a x ( k 1) A B F B x k x k F M e ( k 1) 0 A e e KC (8.38) M A B F B F 0 A KC. (8.39) Since the matrix M i block-triangular, it i immediate that eig( M ) eig A B F eig A K C (8.40) which etablihe the irt part o the Separation Principle namely that the oberver pole are eparated rom the cloed-loop controller pole. To how that the oberved-baed control law (8.31) indeed work, it i noted that the cloed-loop regulator matrix A B F the oberver error matrix A K C are both convergent matrice. From Eq. (8.39), it i immediate that M i alo a convergent matrix. From Eq. (8.40), it i thu immediate that x 0 e 0 a k or all x (0) e (0). Thi complete the proo. 8.6 Numerical Example Conider a ourth-order linear dicrete-time control ytem decribed by x( k 1) A x B u y Cx (8.41) A, B C (8.42) The eigenvalue o the matrix A are , , (8.43)

11 From (8.43), it i noted that 1, 2 are untable (low) eigenvalue 3, 4 are table (at) eigenvalue o the ytem matrix A. For thi linear ytem, the dominant non-dominant tate are determined next. A imple calculation uing the procedure in Chapter 4 how that the irt two tate x x are the dominant (low) tate, while the lat two tate, 1, 2 (at) tate or the given ytem (8.41). x x are the non-dominant Uing the procedure decribed in Section 8.2, the reduced-order linear model or the given linear ytem (8.41) can be obtained a 3 4 x ( k 1) A x B u y C x D u (8.44) A , B C , , (8.45) D The impule repone o the original plant (8.41) the reduced order plant (8.44) are plotted in Figure 8.1. The tep repone o the original plant (8.41) the reduced order plant (8.44) are plotted in Figure

12 Figure 8.1 Impule Repone or the Original Reduced Order Linear Sytem Figure 8.2 Step Repone or the Original Reduced Order Linear Sytem 68

13 It i alo noted that the reduced-order linear ytem (8.44) i completely controllable completely obervable. Next, an exponential oberver i contructed or the reduced order ytem (8.44) with error dynamic having pole at {0.1,0.1}. Uing MATLAB, it i ound that the output gain matrix K (8.46) i uch that the error matrix E A KC ha eigenvalue {0.1,0.1}. Thu, a global exponential oberver or the linear ytem (8.44) i given by z ( k 1) A z B u K y C z D u (8.47) A, B, C, D I the etimation error i deined by K are deined by (8.45) (8.46). e z x, (8.48) then the error atiie the dierence equation e( k 1) Ee, E A KC (8.49) For imulation, take the initial value a z 2.1 (0) x (0) 4.8. The time-hitory o the etimation error correponding to thee initial condition i hown in Figure 8.3. A F , it i alo eay to ee that the cloed-loop eedback matrix Setting B F ha the eigenvalue {0.2,0.2}. Thu, by the reult in Section 8.6, it ollow that the oberver-baed tate eedback control law u F z alo tabilize the reduced-order linear ytem (8.44) a hown in Figure

14 Figure 8.3 Time-Hitory o the Etimation Error e1 e 2 Figure 8.4 Time-Hitory o the Oberver Baed Controller x 1 x 2 70

15 8.7 Summary In thi chapter, uing a modal approach an identiication o the dominant nondominant tate o large cale dicrete-time linear ytem, reduced order ytem model deign wa derived new reult or reduced order controller, reduced order oberver oberver-baed controller wa derived. A eparation principle in thi chapter or reduced order ytem model which how that the pole placement problem the oberver deign problem are independent o each other wa derived. A numerical example wa illutrated with a plot. 71

OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS International Journal o Computer Science, Engineering and Inormation Technology (IJCSEIT, Vol.1, No.5, December 2011 OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Chapter 9: Controller design. Controller design. Controller design

Chapter 9: Controller design. Controller design. Controller design Chapter 9. Controller Deign 9.. Introduction 9.2. Eect o negative eedback on the network traner unction 9.2.. Feedback reduce the traner unction rom diturbance to the output 9.2.2. Feedback caue the traner

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

Finite-Dimensional Control of Parabolic PDE Systems Using Approximate Inertial Manifolds

Finite-Dimensional Control of Parabolic PDE Systems Using Approximate Inertial Manifolds JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 16, 39840 1997 ARTICLE NO AY975649 Finite-Dimenional Control o Parabolic PDE Sytem Uing Approximate Inertial Maniold Panagioti D Chritoide and Prodromo

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH International Journal of Electrical, Electronic and Data Communication, ISSN: 232-284 Volume-3, Iue-8, Aug.-25 NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

More information

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty IOSR Journal of Electrical and Electronic Engineering (IOSR-JEEE) ISSN: 78-676Volume, Iue 6 (Nov. - Dec. 0), PP 4-0 Simple Oberver Baed Synchronization of Lorenz Sytem with Parametric Uncertainty Manih

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar DECOUPLING CONTROL M. Fikar Department of Proce Control, Faculty of Chemical and Food Technology, Slovak Univerity of Technology in Bratilava, Radlinkého 9, SK-812 37 Bratilava, Slovakia Keyword: Decoupling:

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems Control and Dynamical Sytem CDS 0 Problem Set #5 Iued: 3 Nov 08 Due: 0 Nov 08 Note: In the upper left hand corner of the econd page of your homework et, pleae put the number of hour that you pent on thi

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

Codes Correcting Two Deletions

Codes Correcting Two Deletions 1 Code Correcting Two Deletion Ryan Gabry and Frederic Sala Spawar Sytem Center Univerity of California, Lo Angele ryan.gabry@navy.mil fredala@ucla.edu Abtract In thi work, we invetigate the problem of

More information

Then C pid (s) S h -stabilizes G(s) if and only if Ĉpid(ŝ) S 0 - stabilizes Ĝ(ŝ). For any ρ R +, an RCF of Ĉ pid (ŝ) is given by

Then C pid (s) S h -stabilizes G(s) if and only if Ĉpid(ŝ) S 0 - stabilizes Ĝ(ŝ). For any ρ R +, an RCF of Ĉ pid (ŝ) is given by 9 American Control Conference Hyatt Regency Riverfront, St. Loui, MO, USA June -, 9 WeC5.5 PID Controller Synthei with Shifted Axi Pole Aignment for a Cla of MIMO Sytem A. N. Gündeş and T. S. Chang Abtract

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems A Simplified Methodology for the Synthei of Adaptive Flight Control Sytem J.ROUSHANIAN, F.NADJAFI Department of Mechanical Engineering KNT Univerity of Technology 3Mirdamad St. Tehran IRAN Abtract- A implified

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD S.P. Teeuwen, I. Erlich U. Bachmann Univerity of Duiburg, Germany Department of Electrical Power Sytem

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi International Journal of Innovative Computing, Information Control ICIC International c 206 ISSN 349-498 Volume 2, Number 2, April 206 pp. 357 370 THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY

More information

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Proceeding of IMAC XXXI Conference & Expoition on Structural Dynamic February -4 Garden Grove CA USA THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Yung-Sheng Hu Neil S Ferguon

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification www.ccenet.org/ma Modern Applied Science Vol. 6, No. ; February Hybrid Projective Dilocated Synchronization of Liu Chaotic Sytem Baed on Parameter Identification Yanfei Chen College of Science, Guilin

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

DYNAMIC MODELS FOR CONTROLLER DESIGN

DYNAMIC MODELS FOR CONTROLLER DESIGN DYNAMIC MODELS FOR CONTROLLER DESIGN M.T. Tham (996,999) Dept. of Chemical and Proce Engineering Newcatle upon Tyne, NE 7RU, UK.. INTRODUCTION The problem of deigning a good control ytem i baically that

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach Proceeding of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '8) Control of Delayed Integrating Procee Uing Two Feedback Controller R MS Approach LIBOR

More information

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48) Chapter 5 SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lecture 41-48) 5.1 Introduction Power ytem hould enure good quality of electric power upply, which mean voltage and current waveform hould

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank. Lecture Note II Example 6 Continuou Stirred-Tank Reactor (CSTR) Chemical reactor together with ma tranfer procee contitute an important part of chemical technologie. From a control point of view, reactor

More information

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document.

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document. SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU CİHAN BAHRAN I will collect my olution to ome of the exercie in thi book in thi document. Section 2.1 1. Let A = k[[t ]] be the ring of

More information

This paper proposes a composite approach between

This paper proposes a composite approach between Advance Reearch Journal o Multi-Diciplinary Dicoverie ISSN NO : 456-45 ASSIVIY AND ISS FOR SINGULARLY ERURBED SYSEMS WIH EXOGENOUS DISURBANCE Original Reearch Article ISSN CODE: 456-45 (Online) (ICV-AS/Impact

More information

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking A Simple Approach to Syntheizing Naïve Quantized Control for Reference Tracking SHIANG-HUA YU Department of Electrical Engineering National Sun Yat-Sen Univerity 70 Lien-Hai Road, Kaohiung 804 TAIAN Abtract:

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Pusan National University

Pusan National University Chapter 12. DESIGN VIA STATE SPACE Puan National Univerity oratory Table of Content v v v v v v v v Introduction Controller Deign Controllability Alternative Approache to Controller Deign Oberver Deign

More information

To appear in International Journal of Numerical Methods in Fluids in Stability analysis of numerical interface conditions in uid-structure therm

To appear in International Journal of Numerical Methods in Fluids in Stability analysis of numerical interface conditions in uid-structure therm To appear in International Journal of Numerical Method in Fluid in 997. Stability analyi of numerical interface condition in uid-tructure thermal analyi M. B. Gile Oxford Univerity Computing Laboratory

More information

Multi-dimensional Fuzzy Euler Approximation

Multi-dimensional Fuzzy Euler Approximation Mathematica Aeterna, Vol 7, 2017, no 2, 163-176 Multi-dimenional Fuzzy Euler Approximation Yangyang Hao College of Mathematic and Information Science Hebei Univerity, Baoding 071002, China hdhyywa@163com

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Solution Dicrete Time Proceing of Continuou Time Signal Sampling à 2.. : Conider a inuoidal ignal and let u ample it at a frequency F 2kHz. xt 3co000t 0. a) Determine and expreion for the ampled

More information

FRTN10 Exercise 3. Specifications and Disturbance Models

FRTN10 Exercise 3. Specifications and Disturbance Models FRTN0 Exercie 3. Specification and Diturbance Model 3. A feedback ytem i hown in Figure 3., in which a firt-order proce if controlled by an I controller. d v r u 2 z C() P() y n Figure 3. Sytem in Problem

More information

X R. U x U x B. U x U x B X R. U x U x B. U x U x B. one solution. solution. two solutions no solution. one. R two solutions no solution.

X R. U x U x B. U x U x B X R. U x U x B. U x U x B. one solution. solution. two solutions no solution. one. R two solutions no solution. CLASSIFICATION OF CODIMENSION-ONE RIEMANN SOLUTIONS STEPHEN SCHECTER, BRADLEY J. PLOHR, AND DAN MARCHESIN Abtract. We invetigate olution of Riemann problem for ytem of two conervation law in one patial

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

Stochastic Perishable Inventory Control in a Service Facility System Maintaining Inventory for Service: Semi Markov Decision Problem

Stochastic Perishable Inventory Control in a Service Facility System Maintaining Inventory for Service: Semi Markov Decision Problem Stochatic Perihable Inventory Control in a Service Facility Sytem Maintaining Inventory for Service: Semi Markov Deciion Problem R.Mugeh 1,S.Krihnakumar 2, and C.Elango 3 1 mugehrengawamy@gmail.com 2 krihmathew@gmail.com

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Deign and Analyi of Algorithm April 29, 2015 Maachuett Intitute of Technology 6.046J/18.410J Prof. Erik Demaine, Srini Devada, and Nancy Lynch Problem Set 8 Solution Problem Set 8 Solution Thi problem

More information

Research Article Least-Mean-Square Receding Horizon Estimation

Research Article Least-Mean-Square Receding Horizon Estimation Mathematical Problem in Engineering Volume 212, Article ID 631759, 19 page doi:1.1155/212/631759 Reearch Article Leat-Mean-Square Receding Horizon Etimation Bokyu Kwon 1 and Soohee Han 2 1 Department of

More information

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS October 12-17, 28, Beijing, China USING NONLINEAR CONTR ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS T.Y. Yang 1 and A. Schellenberg 2 1 Pot Doctoral Scholar, Dept. of Civil and Env. Eng.,

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Optimal Coordination of Samples in Business Surveys

Optimal Coordination of Samples in Business Surveys Paper preented at the ICES-III, June 8-, 007, Montreal, Quebec, Canada Optimal Coordination of Sample in Buine Survey enka Mach, Ioana Şchiopu-Kratina, Philip T Rei, Jean-Marc Fillion Statitic Canada New

More information

CSE 355 Homework Two Solutions

CSE 355 Homework Two Solutions CSE 355 Homework Two Solution Due 2 Octoer 23, tart o cla Pleae note that there i more than one way to anwer mot o thee quetion. The ollowing only repreent a ample olution. () Let M e the DFA with tranition

More information

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions Stochatic Optimization with Inequality Contraint Uing Simultaneou Perturbation and Penalty Function I-Jeng Wang* and Jame C. Spall** The John Hopkin Univerity Applied Phyic Laboratory 11100 John Hopkin

More information

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim Quantization of electromagnetic eld in a circular cylindrical cavity K. Kakazu Department of Phyic, Univerity of the Ryukyu, Okinawa 903-0, Japan Y. S. Kim Department of Phyic, Univerity of Maryland, College

More information

A Class of Linearly Implicit Numerical Methods for Solving Stiff Ordinary Differential Equations

A Class of Linearly Implicit Numerical Methods for Solving Stiff Ordinary Differential Equations The Open Numerical Method Journal, 2010, 2, 1-5 1 Open Acce A Cla o Linearl Implicit Numerical Method or Solving Sti Ordinar Dierential Equation S.S. Filippov * and A.V. Tglian Keldh Intitute o Applied

More information

Preemptive scheduling on a small number of hierarchical machines

Preemptive scheduling on a small number of hierarchical machines Available online at www.ciencedirect.com Information and Computation 06 (008) 60 619 www.elevier.com/locate/ic Preemptive cheduling on a mall number of hierarchical machine György Dóa a, Leah Eptein b,

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem Chapter 5 Conitency, Zero Stability, and the Dahlquit Equivalence Theorem In Chapter 2 we dicued convergence of numerical method and gave an experimental method for finding the rate of convergence (aka,

More information

Compact finite-difference approximations for anisotropic image smoothing and painting

Compact finite-difference approximations for anisotropic image smoothing and painting CWP-593 Compact finite-difference approximation for aniotropic image moothing and painting Dave Hale Center for Wave Phenomena, Colorado School of Mine, Golden CO 80401, USA ABSTRACT Finite-difference

More information

Robust Decentralized Design of H -based Frequency Stabilizer of SMES

Robust Decentralized Design of H -based Frequency Stabilizer of SMES International Energy Journal: Vol. 6, No., Part, June 005-59 Robut Decentralized Deign of H -baed Frequency Stabilizer of SMES www.erd.ait.ac.th/reric C. Vorakulpipat *, M. Leelajindakrirerk *, and I.

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

The Laplace Transform , Haynes Miller and Jeremy Orloff

The Laplace Transform , Haynes Miller and Jeremy Orloff The Laplace Tranform 8.3, Hayne Miller and Jeremy Orloff Laplace tranform baic: introduction An operator take a function a input and output another function. A tranform doe the ame thing with the added

More information

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment Journal of Multidiciplinary Engineering Science and Technology (JMEST) ISSN: 59- Vol. Iue, January - 5 Advanced D-Partitioning Analyi and it Comparion with the haritonov Theorem Aement amen M. Yanev Profeor,

More information

An estimation approach for autotuning of event-based PI control systems

An estimation approach for autotuning of event-based PI control systems Acta de la XXXIX Jornada de Automática, Badajoz, 5-7 de Septiembre de 08 An etimation approach for autotuning of event-baed PI control ytem Joé Sánchez Moreno, María Guinaldo Loada, Sebatián Dormido Departamento

More information

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH Brazilian Journal of Chemical Engineering ISSN 004-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 26, No. 0, pp. 89-98, January - March, 2009 CONROL OF INEGRAING PROCESS WIH DEAD IME USING AUO-UNING

More information

Analysis and Design of a Third Order Phase-Lock Loop

Analysis and Design of a Third Order Phase-Lock Loop Analyi Deign of a Third Order Phae-Lock Loop DANIEL Y. ABRAMOVITCH Ford Aeropace Corporation 3939 Fabian Way, MS: X- Palo Alto, CA 94303 Abtract Typical implementation of a phae-lock loop (PLL) are econd

More information

Real Sources (Secondary Sources) Phantom Source (Primary source) LS P. h rl. h rr. h ll. h lr. h pl. h pr

Real Sources (Secondary Sources) Phantom Source (Primary source) LS P. h rl. h rr. h ll. h lr. h pl. h pr Ecient frequency domain ltered-x realization of phantom ource iet C.W. ommen, Ronald M. Aart, Alexander W.M. Mathijen, John Gara, Haiyan He Abtract A phantom ound ource i a virtual ound image which can

More information

New bounds for Morse clusters

New bounds for Morse clusters New bound for More cluter Tamá Vinkó Advanced Concept Team, European Space Agency, ESTEC Keplerlaan 1, 2201 AZ Noordwijk, The Netherland Tama.Vinko@ea.int and Arnold Neumaier Fakultät für Mathematik, Univerität

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

Assessment of Performance for Single Loop Control Systems

Assessment of Performance for Single Loop Control Systems Aement of Performance for Single Loop Control Sytem Hiao-Ping Huang and Jyh-Cheng Jeng Department of Chemical Engineering National Taiwan Univerity Taipei 1617, Taiwan Abtract Aement of performance in

More information

Function and Impulse Response

Function and Impulse Response Tranfer Function and Impule Repone Solution of Selected Unolved Example. Tranfer Function Q.8 Solution : The -domain network i hown in the Fig... Applying VL to the two loop, R R R I () I () L I () L V()

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis Proceeding of 01 4th International Conference on Machine Learning and Computing IPCSIT vol. 5 (01) (01) IACSIT Pre, Singapore Evolutionary Algorithm Baed Fixed Order Robut Controller Deign and Robutne

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R. Rouel June 21, 2004 1 Introduction When we apply the teady-tate approximation (SSA) in chemical kinetic, we typically argue that ome of the intermediate are highly

More information

An Inequality for Nonnegative Matrices and the Inverse Eigenvalue Problem

An Inequality for Nonnegative Matrices and the Inverse Eigenvalue Problem An Inequality for Nonnegative Matrice and the Invere Eigenvalue Problem Robert Ream Program in Mathematical Science The Univerity of Texa at Dalla Box 83688, Richardon, Texa 7583-688 Abtract We preent

More information

LOW ORDER MIMO CONTROLLER DESIGN FOR AN ENGINE DISTURBANCE REJECTION PROBLEM. P.Dickinson, A.T.Shenton

LOW ORDER MIMO CONTROLLER DESIGN FOR AN ENGINE DISTURBANCE REJECTION PROBLEM. P.Dickinson, A.T.Shenton LOW ORDER MIMO CONTROLLER DESIGN FOR AN ENGINE DISTURBANCE REJECTION PROBLEM P.Dickinon, A.T.Shenton Department of Engineering, The Univerity of Liverpool, Liverpool L69 3GH, UK Abtract: Thi paper compare

More information

Sensorless speed control including zero speed of non salient PM synchronous drives

Sensorless speed control including zero speed of non salient PM synchronous drives BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Senorle peed control including zero peed of non alient PM ynchronou drive H. RASMUSSEN Aalborg Univerity, Fredrik Bajer

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL

TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL GLASNIK MATEMATIČKI Vol. 38583, 73 84 TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL p-laplacian Haihen Lü, Donal O Regan and Ravi P. Agarwal Academy of Mathematic and Sytem Science, Beijing, China, National

More information

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS Otto J. Roech, Hubert Roth, Aif Iqbal Intitute of Automatic Control Engineering Univerity Siegen, Germany {otto.roech,

More information

Controllability and Observability

Controllability and Observability Controllability and Obervability Controllability and Obervability are propertie of ytem which relate to whether the tate can be driven to any arbitrary tate from a given input (controllable) or whether

More information

LTV System Modelling

LTV System Modelling Helinki Univerit of Technolog S-72.333 Potgraduate Coure in Radiocommunication Fall 2000 LTV Stem Modelling Heikki Lorentz Sonera Entrum O heikki.lorentz@onera.fi Januar 23 rd 200 Content. Introduction

More information

Convex Hulls of Curves Sam Burton

Convex Hulls of Curves Sam Burton Convex Hull of Curve Sam Burton 1 Introduction Thi paper will primarily be concerned with determining the face of convex hull of curve of the form C = {(t, t a, t b ) t [ 1, 1]}, a < b N in R 3. We hall

More information

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine Proceeding of the ASME 9 Dynamic Sytem and Control Conference DSCC9 October -4, 9, Hollywood, California, USA DSCC9-59 Control of a Dual-Fuel Sytem Internal Combution Engine Stephen Pace Department of

More information