Multivariate problems and matrix algebra


 Muriel Carson
 2 years ago
 Views:
Transcription
1 University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr
2 Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured on set of objects (sttisticl units) Exmple : exmintion mrks, bout courses (Mechnics, Vectors, lgebr, nlysis, Sttistics), chieved by 88 students Exmple : weights of cork deposites (centigrms) for 8 trees in the four directions (N, E, S, W) Exmple : flower mesurements (sepl length, sepl width, petl length, petl width) on flowers belonging to certein species of iris
3 Multivrite problems n sttisticl units nk pieces of informtion k vribles vilble informtion Dtset n k mtrix Exmple: dt mtrix with students where X ge in yers t entry to university, X mrks out of in n exmintion t the end of the first yer nd X sex Vribles units X X X
4 Multivrite problems Some multivrite problems: Exmple : study how the mrk in the exmintion of «Sttistics» (dependent vrible) is ffected by or cn be predicted s function of the mrks in other exmintions or other vribles such s ge, sex, etc (explntory vribles) regression problem Exmple : study how to combine the informtion on the performnce of the students on the exmintions to determine the globl performnce of ech student with just one, or two or less thn vlues fctor nlysis, principl component nlysis, composite indictor Exmple : study how to group students with similr performnces by considering the whole set of exmintions cluster nlysis
5 Multivrite problems The generl n k mtrix which represents dtset with n sttisticl units nd k vribles cn be written s follows: Vribles Units X X v X k x x v x k u x u x uv x uk n x n x nv x nk This mtrix cn be denoted X or (x uv ) x u xu x uv xuk x ( v) x v x uv xnv
6 m n mtrix is tble with m rows nd n columns: In this cse the mtrix hs rows nd columns If mn then it is clled squre mtrix ij i denotes the row j denotes the column
7 mtrix with dimension n is clled row vector: ( ) mtrix with dimension m is clled column vector or simply vector: c unit vector is vector of ones:
8 Given the mtrices nd B, their sum is defined s C B, where c b ij Exmple: ij ij 9 8 8, B B C b c 8
9 The product of m n mtrix nd sclr (single vlue) λ is clled sclr multipliction nd it consists in mtrix with the sme dimension of, obtined by multiplying ech element of by λ Cλ c λ ij ij Exmple: λ
10 B B C ) ( ' j i ij c b
11 where the elements of C re equl to: c c c c c c C
12 Note tht: B C ( m n) ( n h) ( m h) Thus the product between row vector nd column vector is sclr; the product between column vector nd row vector is mtrix: b c n n b C n n n n
13 Exmples: ( ) b 8 b b ( ) 8 b
14 The trnspose of the mtrix ( ij ) is the mtrix ( ji ) whose rows correspond to the columns of : Exmple: The squre mtrix ( ij ) is symmetric if ij ji or equivlently if Exmple: 9 9 8
15 null mtrix is mtrix with ll elements equl to digonl mtrix is squre mtrix whose elements not in the min digonl re ll equl to ( ) n n dig,, L
16 The trnspose stisfies the following properties: ( ) (B) B (B) B digonl mtrix is squre mtrix whose elements not in the min digonl re ll equl to
17 The trce of ( ij ) is the sum of the elements in the min digonl of : Exmple: tr()σ i ii 8 tr 9 ( ) Min digonl
18 The trce stisfies the following properties for (m m), B (m m), C (m n), D (n m) nd sclr λ: tr(λ) λ tr()tr( ) tr(b)tr()tr(b) tr(cd)tr(dc)σ i,j c ij d ji tr(cc )tr(c C)Σ i,j c ij 8
19 Given the mtrix The determinnt of is det ( ) 9
20 Given the m m mtrix The determinnt of is det m ( ) ij ij j m i ij where the cofctor ij is the product of () ij nd the determinnt of the mtrix obtined fter deleting ith row nd jth column of (minor) ij for ny i,j Cse m: det( ) ( ) ( ) ( )
21 Computtion of the determinnt of rd order mtrix (Srrus rule): det ( ) ( )
22 det() ( ) Exmple: ( ) ( ) ( ) ( ) 8 det or lterntively:
23 Properties of the determinnt If dig(,, n ) then det() n Π i i det(λ) λ λ n det(b) B B If hs two equl rows or two equl columns then det() If hs row of zeros or column of zeros then det() If B is the mtrix obtined exchnging the position of two rows or two columns of then det(b) det() det()det( ) 8 If B is the mtrix obtined by summing to row or column of liner combintion of the other rows or columns of respectively then det(b)det() 9 squre mtrix is nonsingulr if det() ; otherwise is singulr
24 Exmple: B 9 ) det( 9 ) det( B 9) ( 9 ) det( ) det( B 9 B 9 ) det( B
25 The inverse of the squre mtrix is the unique mtrix  stisfying: I dig() Identity mtrix I The inverse  exists if nd only if is non singulr, tht is, if nd only if det()
26 The identity mtrix is digonl mtrix where ll the elements in the min digonl re equl to I Properties of I I I I I
27 ( ) ) ( 9 B B B
28 Exmple : Let us consider the following system of equtions The solution is 8
29 squre mtrix is orthogonl if I The following properties hold:  I ± i j, i j; i i, i; (i) (j), i j; (i) (i), i; Exmple: 9
30 Vectors x,,x k re clled linerly dependent if there exist numbers λ,, λ K not ll zero such tht λ x λ K x k Otherwise the k vectors re linerly independent Let W be subspce of R n Then bsis of W is mximl linerly independent set of vectors Every bsis of W contins the sme (finite) number of elements This number is the dimension of W If x,,x k is bsis for W then every element x in W cn be expressed s liner combintion of x,,x k Exmple: The dimension of WR is bsis for R is x (,,), x (,,) nd x (,,) s mtter of fct x, x nd x re linerly independent nd every vector (,, ) cn be expressed s liner combintion of x, x nd x : x x x
31 The rnk of n k mtrix is defined s the mximum number of linerly independent columns (rows) in The following properties hold for the rnk of, denoted with r(): r() is the lrgest order of those (squre) submtrices of with non null determinnts r() min(n,k) r()r( ) r( ) r( ) r() If nk then r()k if nd only if is nonsingulr Exmple: det 9 Thus the r() ( )
32 If is squre mtrix of order n, in some problems we re interested in finding vector x nd sclr λ which stisfy the following property: eigenvlue λ λ ( I) x x x eigenvector trivil solution is x, ny λ R
33 The n eigenvlues of λ,, λ n re the n solutions of the chrcteristic eqution λi Properties of the eigenvlues of : Π i λ i tr() Σ i λ i r() equls the number of nonzero eigenvlues The set of ll eigenvectors for n eigenvlue λ i is clled the eigenspce of for λ i ny symmetric n n mtrix cn be written s ΓΛΓ Σ i λ i γ (i) γ (i) where Λ is digonl mtrix of eigenvlues of nd Γ is n orthogonl mtrix whose columns re eigenvectors with γ ((i) γ (i)
34 Exmple: The chrcteristic eqution is: λ λ λ By computing the determinnt we hve: ( ) λ λ λ λ λ The solutions represent the eigenvlues of : λ λ λ ( )[ ] ( )( )( ) 9 λ λ λ λ λ λ λ
35 The eigenvlue with mximum bsolute vlue λ is clled dominnt There is n infinite number of eigenvectors x which stisfy (I)x x x x
Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More informationChapter 2. Determinants
Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if dbc0. The expression dbc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is
More informationElements of Matrix Algebra
Elements of Mtrix Algebr Klus Neusser Kurt Schmidheiny September 30, 2015 Contents 1 Definitions 2 2 Mtrix opertions 3 3 Rnk of Mtrix 5 4 Specil Functions of Qudrtic Mtrices 6 4.1 Trce of Mtrix.........................
More informationCHAPTER 2d. MATRICES
CHPTER d. MTRICES University of Bhrin Deprtment of Civil nd rch. Engineering CEG Numericl Methods in Civil Engineering Deprtment of Civil Engineering University of Bhrin Every squre mtrix hs ssocited
More informationMATRICES AND VECTORS SPACE
MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN SPACE AND SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR
More informationMatrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:
Mtrices Elementry Mtrix Theory It is often desirble to use mtrix nottion to simplify complex mthemticl expressions. The simplifying mtrix nottion usully mkes the equtions much esier to hndle nd mnipulte.
More informationa a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.
Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting
More informationIntroduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices
Introduction to Determinnts Remrks The determinnt pplies in the cse of squre mtrices squre mtrix is nonsingulr if nd only if its determinnt not zero, hence the term determinnt Nonsingulr mtrices re sometimes
More informationMath 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008
Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 25pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of
More informationChapter 5 Determinants
hpter 5 Determinnts 5. Introduction Every squre mtri hs ssocited with it sclr clled its determinnt. Given mtri, we use det() or to designte its determinnt. We cn lso designte the determinnt of mtri by
More informationINTRODUCTION TO LINEAR ALGEBRA
ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR
More informationECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
More informationAlgebra Of Matrices & Determinants
lgebr Of Mtrices & Determinnts Importnt erms Definitions & Formule 0 Mtrix  bsic introduction: mtrix hving m rows nd n columns is clled mtrix of order m n (red s m b n mtrix) nd mtrix of order lso in
More informationMatrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
More informationElementary Linear Algebra
Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร
More information4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.
4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX Some reliminries: Let A be rel symmetric mtrix. Let Cos θ ; (where we choose θ π for Cos θ 4 purposes of convergence of the scheme)
More informationGeometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio.
Geometric Sequences Geometric Sequence sequence whose consecutive terms hve common rtio. Geometric Sequence A sequence is geometric if the rtios of consecutive terms re the sme. 2 3 4... 2 3 The number
More informationHere we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.
Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4
More informationA Matrix Algebra Primer
A Mtrix Algebr Primer Mtrices, Vectors nd Sclr Multipliction he mtrix, D, represents dt orgnized into rows nd columns where the rows represent one vrible, e.g. time, nd the columns represent second vrible,
More informationN 0 completions on partial matrices
N 0 completions on prtil mtrices C. Jordán C. Mendes Arújo Jun R. Torregros Instituto de Mtemátic Multidisciplinr / Centro de Mtemátic Universidd Politécnic de Vlenci / Universidde do Minho Cmino de Ver
More informationNumerical Linear Algebra Assignment 008
Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com
More informationMatrices and Determinants
Nme Chpter 8 Mtrices nd Determinnts Section 8.1 Mtrices nd Systems of Equtions Objective: In this lesson you lerned how to use mtrices, Gussin elimintion, nd GussJordn elimintion to solve systems of liner
More informationModule 6: LINEAR TRANSFORMATIONS
Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for
More informationIntroduction To Matrices MCV 4UI Assignment #1
Introduction To Mtrices MCV UI Assignment # INTRODUCTION: A mtrix plurl: mtrices) is rectngulr rry of numbers rrnged in rows nd columns Exmples: ) b) c) [ ] d) Ech number ppering in the rry is sid to be
More informationMTH 5102 Linear Algebra Practice Exam 1  Solutions Feb. 9, 2016
Nme (Lst nme, First nme): MTH 502 Liner Algebr Prctice Exm  Solutions Feb 9, 206 Exm Instructions: You hve hour & 0 minutes to complete the exm There re totl of 6 problems You must show your work Prtil
More informationThe Algebra (aljabr) of Matrices
Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (ljbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense
More informationDeterminants Chapter 3
Determinnts hpter Specil se : x Mtrix Definition : the determinnt is sclr quntity defined for ny squre n x n mtrix nd denoted y or det(). x se ecll : this expression ppers in the formul for x mtrix inverse!
More informationCSCI 5525 Machine Learning
CSCI 555 Mchine Lerning Some Deini*ons Qudrtic Form : nn squre mtri R n n : n vector R n the qudrtic orm: It is sclr vlue. We oten implicitly ssume tht is symmetric since / / I we write it s the elements
More informationCS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 2
CS434/54: Pttern Recognition Prof. Olg Veksler Lecture Outline Review of Liner Algebr vectors nd mtrices products nd norms vector spces nd liner trnsformtions eigenvlues nd eigenvectors Introduction to
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationChapter 3 Polynomials
Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling
More informationEngineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: TuTh 11:0012:00
Engineering Anlysis ENG 3420 Fll 2009 Dn C. Mrinescu Office: HEC 439 B Office hours: TuTh 11:0012:00 Lecture 13 Lst time: Problem solving in preprtion for the quiz Liner Algebr Concepts Vector Spces,
More informationMATRIX DEFINITION A matrix is any doubly subscripted array of elements arranged in rows and columns.
4.5 THEORETICL SOIL MECHNICS Vector nd Mtrix lger Review MTRIX DEFINITION mtrix is ny douly suscripted rry of elements rrnged in rows nd columns. m  Column Revised /0 n Row m,,,,,, n n mn ij nd Order
More informationMatrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24
Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the
More informationSeptember 13 Homework Solutions
College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are
More informationMatrix & Vector Basic Linear Algebra & Calculus
Mtrix & Vector Bsic Liner lgebr & lculus Wht is mtrix? rectngulr rry of numbers (we will concentrte on rel numbers). nxm mtrix hs n rows n m columns M x4 M M M M M M M M M M M M 4 4 4 First row Secon row
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=
More informationLINEAR ALGEBRA AND MATRICES. n ij. is called the main diagonal or principal diagonal of A. A column vector is a matrix that has only one column.
PART 1 LINEAR ALGEBRA AND MATRICES Generl Nottions Mtri (denoted by cpitl boldfce letter) A is n m n mtri. 11 1... 1 n 1... n A ij...... m1 m... mn ij denotes the component t row i nd column j of A. If
More informationThings to Memorize: A Partial List. January 27, 2017
Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors  Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved
More informationData Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading
Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3dVritionl Method
More informationStudent Activity 3: Single Factor ANOVA
MATH 40 Student Activity 3: Single Fctor ANOVA Some Bsic Concepts In designed experiment, two or more tretments, or combintions of tretments, is pplied to experimentl units The number of tretments, whether
More informationMatrices. Introduction
Mtrices Introduction Mtrices  Introduction Mtrix lgebr hs t lest two dvntges: Reduces complicted systems of equtions to simple expressions Adptble to systemtic method of mthemticl tretment nd well suited
More information1 Linear Least Squares
Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving
More information308K. 1 Section 3.2. Zelaya Eufemia. 1. Example 1: Multiplication of Matrices: X Y Z R S R S X Y Z. By associativity we have to choices:
8K Zely Eufemi Section 2 Exmple : Multipliction of Mtrices: X Y Z T c e d f 2 R S X Y Z 2 c e d f 2 R S 2 By ssocitivity we hve to choices: OR: X Y Z R S cr ds er fs X cy ez X dy fz 2 R S 2 Suggestion
More informationState space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies
Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response
More informationLinearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
More informationHW3, Math 307. CSUF. Spring 2007.
HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationHow do you know you have SLE?
Simultneous Liner Equtions Simultneous Liner Equtions nd Liner Algebr Simultneous liner equtions (SLE s) occur frequently in Sttics, Dynmics, Circuits nd other engineering clsses Need to be ble to, nd
More informationNOTE ON TRACES OF MATRIX PRODUCTS INVOLVING INVERSES OF POSITIVE DEFINITE ONES
Journl of pplied themtics nd Computtionl echnics 208, 7(), 2936.mcm.pcz.pl pissn 22999965 DOI: 0.752/jmcm.208..03 eissn 23530588 NOE ON RCES OF RIX PRODUCS INVOLVING INVERSES OF POSIIVE DEFINIE ONES
More informationThe Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11
The Islmic University of Gz Fculty of Engineering Civil Engineering Deprtment Numericl Anlysis ECIV 6 Chpter Specil Mtrices nd GussSiedel Associte Prof Mzen Abultyef Civil Engineering Deprtment, The Islmic
More informationDonnishJournals
DoishJournls 20411189 Doish Journl of Eductionl Reserch nd Reviews Vol 2(1) pp 001007 Jnury, 2015 http://wwwdoishjournlsorg/djerr Copyright 2015 Doish Journls Originl Reserch Article Algebr of Mtrices
More informationChapter 3. Vector Spaces
3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce
More informationMATHEMATICS FOR MANAGEMENT BBMP1103
T o p i c M T R I X MTHEMTICS FOR MNGEMENT BBMP Ojectives: TOPIC : MTRIX. Define mtri. ssess the clssifictions of mtrices s well s know how to perform its opertions. Clculte the determinnt for squre mtri
More informationPredict Global Earth Temperature using Linier Regression
Predict Globl Erth Temperture using Linier Regression Edwin Swndi Sijbt (23516012) Progrm Studi Mgister Informtik Sekolh Teknik Elektro dn Informtik ITB Jl. Gnesh 10 Bndung 40132, Indonesi 23516012@std.stei.itb.c.id
More informationRudimentary Matrix Algebra
Rudimentry Mtrix Alger Mrk Sullivn Decemer 4, 217 i Contents 1 Preliminries 1 1.1 Why does this document exist?.................... 1 1.2 Why does nyone cre out mtrices?................ 1 1.3 Wht is mtrix?...........................
More informationMatrices 13: determinant properties and rules continued
Mtrices : determinnt properties nd rules continued nthony Rossiter http://controleduction.group.shef.c.uk/indexwebbook.html http://www.shef.c.uk/cse Deprtment of utomtic Control nd Systems Engineering
More informationDETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ
DETERMINANTS Chpter 4 All Mthemticl truths re reltive nd conditionl. C.P. STEINMETZ 4. Introduction In the previous chpter, we hve studied bout mtrices nd lgebr of mtrices. We hve lso lernt tht sstem of
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics
SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose
More informationMath Theory of Partial Differential Equations Lecture 29: SturmLiouville eigenvalue problems (continued).
Mth 412501 Theory of Prtil Differentil Equtions Lecture 29: SturmLiouville eigenvlue problems (continued). Regulr SturmLiouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT
SCHOOL OF ENGINEERING & BUIL ENVIRONMEN MARICES FOR ENGINEERING Dr Clum Mcdonld Contents Introduction Definitions Wht is mtri? Rows nd columns of mtri Order of mtri Element of mtri Equlity of mtrices Opertions
More informationOperations with Matrices
Section. Equlit of Mtrices Opertions with Mtrices There re three ws to represent mtri.. A mtri cn be denoted b n uppercse letter, such s A, B, or C.. A mtri cn be denoted b representtive element enclosed
More informationQuadratic Forms. Quadratic Forms
Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte
More informationTHE DISCRIMINANT & ITS APPLICATIONS
THE DISCRIMINANT & ITS APPLICATIONS The discriminnt ( Δ ) is the epression tht is locted under the squre root sign in the qudrtic formul i.e. Δ b c. For emple: Given +, Δ () ( )() The discriminnt is used
More informationREVIEW Chapter 1 The Real Number System
Mth 7 REVIEW Chpter The Rel Number System In clss work: Solve ll exercises. (Sections. &. Definition A set is collection of objects (elements. The Set of Nturl Numbers N N = {,,,, 5, } The Set of Whole
More informationMatrices, Moments and Quadrature, cont d
Jim Lmbers MAT 285 Summer Session 201516 Lecture 2 Notes Mtrices, Moments nd Qudrture, cont d We hve described how Jcobi mtrices cn be used to compute nodes nd weights for Gussin qudrture rules for generl
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationDETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ
All Mthemticl truths re reltive nd conditionl. C.P. STEINMETZ 4. Introduction DETERMINANTS In the previous chpter, we hve studied bout mtrices nd lgebr of mtrices. We hve lso lernt tht system of lgebric
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More informationEcuaciones Algebraicas lineales
Ecuciones Algebrics lineles An eqution of the form x+by+c=0 or equivlently x+by=c is clled liner eqution in x nd y vribles. x+by+cz=d is liner eqution in three vribles, x, y, nd z. Thus, liner eqution
More informationMath 61CM  Solutions to homework 9
Mth 61CM  Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ
More informationPavel Rytí. November 22, 2011 Discrete Math Seminar  Simon Fraser University
Geometric representtions of liner codes Pvel Rytí Deprtment of Applied Mthemtics Chrles University in Prgue Advisor: Mrtin Loebl November, 011 Discrete Mth Seminr  Simon Frser University Bckground Liner
More informationMath 270A: Numerical Linear Algebra
Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner
More informationLecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.
Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one
More informationSTUDY GUIDE FOR BASIC EXAM
STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There
More informationLecture Solution of a System of Linear Equation
ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville  D. Keffer, 5/9/98 (updted /) Lecture 8  Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationREPRESENTATION THEORY OF PSL 2 (q)
REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory
More informationContents. Outline. Structured Rank Matrices Lecture 2: The theorem Proofs Examples related to structured ranks References. Structure Transport
Contents Structured Rnk Mtrices Lecture 2: Mrc Vn Brel nd Rf Vndebril Dept. of Computer Science, K.U.Leuven, Belgium Chemnitz, Germny, 2630 September 2011 1 Exmples relted to structured rnks 2 2 / 26
More informationGeneralized Fano and nonfano networks
Generlized Fno nd nonfno networks Nildri Ds nd Brijesh Kumr Ri Deprtment of Electronics nd Electricl Engineering Indin Institute of Technology Guwhti, Guwhti, Assm, Indi Emil: {d.nildri, bkri}@iitg.ernet.in
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationChapter 1: Fundamentals
Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,
More informationMath Lecture 23
Mth 8  Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of
More informationMATH 260 Final Exam April 30, 2013
MATH 60 Finl Exm April 30, 03 Let Mpn,Rq e the spce of nyn mtrices with rel entries () We know tht (with the opertions of mtrix ddition nd sclr multipliction), M pn, Rq is vector spce Wht is the dimension
More informationIn Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)
678 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 13.1 TWOPOINT BOUNDARY VALUE PROBLEMS In Section 5.3 we considered initil vlue problems for the liner second order eqution
More informationEE263 homework 8 solutions
EE263 Prof S Boyd EE263 homework 8 solutions 37 FIR filter with smll feedbck Consider cscde of 00 onesmple delys: u z z y () Express this s liner dynmicl system x(t + ) = Ax(t) + Bu(t), y(t) = Cx(t) +
More informationHilbert Spaces. Chapter Inner product spaces
Chpter 4 Hilbert Spces 4.1 Inner product spces In the following we will discuss both complex nd rel vector spces. With L denoting either R or C we recll tht vector spce over L is set E equipped with ddition,
More information8 Laplace s Method and Local Limit Theorems
8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved
More informationarxiv: v2 [math.nt] 2 Feb 2015
rxiv:407666v [mthnt] Fe 05 Integer Powers of Complex Tridigonl AntiTridigonl Mtrices Htice Kür Duru &Durmuş Bozkurt Deprtment of Mthemtics, Science Fculty of Selçuk University Jnury, 08 Astrct In this
More informationInner Product Space. u u, v u, v u, v.
Inner Product Spce Definition Assume tht V is ector spce oer field of sclrs F in our usge this will e. Then we define inry opertor.. :V V F [once gin in our usge this will e ] so tht the following properties
More informationLECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for
ECTURE 3 Orthogonl Functions 1. Orthogonl Bses The pproprite setting for our iscussion of orthogonl functions is tht of liner lgebr. So let me recll some relevnt fcts bout nite imensionl vector spces.
More informationRecitation 3: Applications of the Derivative. 1 HigherOrder Derivatives and their Applications
Mth 1c TA: Pdric Brtlett Recittion 3: Applictions of the Derivtive Week 3 Cltech 013 1 HigherOrder Derivtives nd their Applictions Another thing we could wnt to do with the derivtive, motivted by wht
More informationAQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system
Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex
More informationBases for Vector Spaces
Bses for Vector Spces 22625 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything
More informationMathCity.org Merging man and maths
MthCity.org Merging mn nd mths Exercise.8 (s) Pge 46 Textbook of Algebr nd Trigonometry for Clss XI Avilble online @ http://, Version: 3.0 Question # Opertion performed on the twomember set G = {0, is
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More informationDEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS
3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationVariational Techniques for SturmLiouville Eigenvalue Problems
Vritionl Techniques for SturmLiouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment
More information