# Matrices 13: determinant properties and rules continued

Size: px
Start display at page:

Transcription

1 Mtrices : determinnt properties nd rules continued nthony Rossiter Deprtment of utomtic Control nd Systems Engineering

2 Introduction Previous videos introduced the concepts of determinnt but it ws cler tht in generl these would be rther tedious to compute. This video introduces rules nd shortcuts which llow much esier computtion. For mtrix with coefficients ij nd cofctors ij, determinnt is defined from expnsion long ny row or column, tht is: n j1 ij ij n i1 ij ij

3 Reminder of video 1. For upper or lower tringulr nd digonl mtrices, the determinnt is the product of the digonl elements. 2. If mtrix hs n entire row or column of zeros, the determinnt is zero. 3. Scling ny row by λ results in scling of the determinnt by λ. 4. Multiplying n nxn mtrix by sclr λ modifies the determinnt by λ n. In this video we develop properties which identify when determinnt might be zero thus sving unnecessry computtion.

4 IF 2 ROWS/COLUMNS RE IDENTICL THEN THE DETERMINNT IS ZERO

5 If two rows re the sme, the (2x2) We begin with 2x2 exmple. determinnt is zero. b ; b b 0 b In this cse the result flls out directly from the definition. It is cler the sme result follows if two columns re the sme.

6 Exploiting results from 2x2 determinnts If two rows re the sme, the (3x3) determinnt is zero. Without loss of generlity, mke row 2 equl to row ; cof ( ) Use the determinnt definition long row

7 If two rows re the sme, the (3x3) determinnt is zero. Here we give n lterntive proof for 3x3 exmple ; cof ( ) In this cse the cofctors for row 2 must mtch those for row 1, but with opposite signs. Use the determinnt definition long row 1 nd row ( ) ( ) ( ) Clerly must be ZERO!!

8 If two rows re the sme, the determinnt of 4x4 is zero. This follows directly from the result for 3x3. Without loss of generlity we will illustrte with row 4. 3,1 4,1 3,2 4,2 3,3 4,3 3,4 4,4 It is cler tht every cofctor for the 4 th row is mde up of 3x3 determinnt, where the 3x3 determinnt hs common rows. Hence use result of previous slide Extension to common columns etc is obvious.

9 MTLB exmple Row 2 = row 1 col 2 = col 3

10 Corollry If row (or column) is multiple of nother row (or column) then the determinnt is zero. This follows directly from the rule tht: 1. Scling ny row by λ results in scling of the determinnt by λ. 2. Hence one could choose λ to scle the rows to be exctly equl which gives determinnt of ZERO; hence the originl determinnt must hve been zero.

11 MTLB exmple Row 2 is twice row 1 Column 3 is 3x column 2

12 DDING MULTIPLE OF NY ROW TO NOTHER ROW DOES NOT CHNGE THE DETERMINNT.

13 dding multiple of ny row to nother row does not chnge the determinnt. This results builds on the two erlier results. 1. If two rows re the sme, the determinnt is zero. 2. Scling ny row by λ results in scling of the determinnt by λ. This video demonstrtes the result for common rows. Extension to common columns is obvious/equivlent.

14 Define the determinnt fter dding row to nother row. Without loss of generlity we will illustrte with dding row 1 to row 2. 2,1 3,1 4,1 2,2 3,2 4,2 2,3 3,3 4,3 2,4 3,4 4,4 ; B 2,1 3,1 4,1 2,2 3,2 4,2 2,3 3,3 4,3 Extension to common columns etc is obvious. 2,4 3,4 4,4 B ( ) ( ) ( ) ( 14 ) B 14

15 Define the determinnt fter dding row to nother row. Rerrnge the determinnt clcultion bck to n underlying mtrix. B C C 2,1 3,1 4,1 2,2 3,2 4,2 2,3 3,3 4,3 2,4 3,4 4,4 ; C 3,1 4,1 3,2 4,2 3,3 4,3 3,4 4,4 Clerly det(c)=0 s it hs 2 common rows.

16 MTLB exmples dd row 1 to row 2 dd col 4 to col 3

17 Define the determinnt fter dding multiple of row to nother row. Without loss of generlity we will illustrte by dding λ x row 1 to row 2. B B B 2,1 3,1 4,1 ( 2,2 3,2 4,2 C 2,3 3,3 4,3 ) 2,4 3,4 4,4 ; ( B 2,1 3,1 4,1 ) ( 2,2 14 3,2 4,2 ) 2,3 3,3 4,3 ( Extension to common columns etc is obvious. 2,4 14 3,4 4,4 )

18 MTLB exmples dd 0.4 row 2 to row 3 Subtrct 0.5 col 3 from col 1

19 Find the determinnt (using properties) B

20 Find the determinnt (using properties)

21 Summry of rules 1. For upper or lower tringulr nd digonl mtrices, the determinnt is the product of the digonl elements. 2. If mtrix hs n entire row or column of zeros, the determinnt is zero. 3. Scling ny row by λ results in scling of the determinnt by λ. 4. Multiplying n nxn mtrix by sclr λ modifies the determinnt by λ n. 5. dding multiple of ny row to nother row does not chnge the determinnt. 6. If two rows (or two columns) re equl then the determinnt is zero. 7. If multiple of row (col) is equl to nother row (col) then the determinnt is zero.

### Chapter 2. Determinants

Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if d-bc0. The expression d-bc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is

### a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.

Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting

### CHAPTER 2d. MATRICES

CHPTER d. MTRICES University of Bhrin Deprtment of Civil nd rch. Engineering CEG -Numericl Methods in Civil Engineering Deprtment of Civil Engineering University of Bhrin Every squre mtrix hs ssocited

### MATRICES AND VECTORS SPACE

MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR

### Introduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices

Introduction to Determinnts Remrks The determinnt pplies in the cse of squre mtrices squre mtrix is nonsingulr if nd only if its determinnt not zero, hence the term determinnt Nonsingulr mtrices re sometimes

### INTRODUCTION TO LINEAR ALGEBRA

ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

### Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

### Introduction To Matrices MCV 4UI Assignment #1

Introduction To Mtrices MCV UI Assignment # INTRODUCTION: A mtrix plurl: mtrices) is rectngulr rry of numbers rrnged in rows nd columns Exmples: ) b) c) [ ] d) Ech number ppering in the rry is sid to be

### Chapter 5 Determinants

hpter 5 Determinnts 5. Introduction Every squre mtri hs ssocited with it sclr clled its determinnt. Given mtri, we use det() or to designte its determinnt. We cn lso designte the determinnt of mtri by

### ECON 331 Lecture Notes: Ch 4 and Ch 5

Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve

### Determinants Chapter 3

Determinnts hpter Specil se : x Mtrix Definition : the determinnt is sclr quntity defined for ny squre n x n mtrix nd denoted y or det(). x se ecll : this expression ppers in the formul for x mtrix inverse!

### Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

Mtrices Elementry Mtrix Theory It is often desirble to use mtrix nottion to simplify complex mthemticl expressions. The simplifying mtrix nottion usully mkes the equtions much esier to hndle nd mnipulte.

### 308K. 1 Section 3.2. Zelaya Eufemia. 1. Example 1: Multiplication of Matrices: X Y Z R S R S X Y Z. By associativity we have to choices:

8K Zely Eufemi Section 2 Exmple : Multipliction of Mtrices: X Y Z T c e d f 2 R S X Y Z 2 c e d f 2 R S 2 By ssocitivity we hve to choices: OR: X Y Z R S cr ds er fs X cy ez X dy fz 2 R S 2 Suggestion

### Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00

Engineering Anlysis ENG 3420 Fll 2009 Dn C. Mrinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 Lecture 13 Lst time: Problem solving in preprtion for the quiz Liner Algebr Concepts Vector Spces,

### September 13 Homework Solutions

College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

### Bases for Vector Spaces

Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

### SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

### Computing The Determinants By Reducing The Orders By Four

Applied Mthemtics E-Notes, 10(2010), 151-158 c ISSN 1607-2510 Avilble free t mirror sites of http://wwwmthnthuedutw/ men/ Computing The Determinnts By Reducing The Orders By Four Qefsere Gjonblj, Armend

### Matrix Solution to Linear Equations and Markov Chains

Trding Systems nd Methods, Fifth Edition By Perry J. Kufmn Copyright 2005, 2013 by Perry J. Kufmn APPENDIX 2 Mtrix Solution to Liner Equtions nd Mrkov Chins DIRECT SOLUTION AND CONVERGENCE METHOD Before

### How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

### Chapter 14. Matrix Representations of Linear Transformations

Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

### Geometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio.

Geometric Sequences Geometric Sequence sequence whose consecutive terms hve common rtio. Geometric Sequence A sequence is geometric if the rtios of consecutive terms re the sme. 2 3 4... 2 3 The number

### Matrices and Determinants

Nme Chpter 8 Mtrices nd Determinnts Section 8.1 Mtrices nd Systems of Equtions Objective: In this lesson you lerned how to use mtrices, Gussin elimintion, nd Guss-Jordn elimintion to solve systems of liner

### Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.

Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous

### Multivariate problems and matrix algebra

University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured

### MATRIX DEFINITION A matrix is any doubly subscripted array of elements arranged in rows and columns.

4.5 THEORETICL SOIL MECHNICS Vector nd Mtrix lger Review MTRIX DEFINITION mtrix is ny douly suscripted rry of elements rrnged in rows nd columns. m - Column Revised /0 n -Row m,,,,,, n n mn ij nd Order

### The Algebra (al-jabr) of Matrices

Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (l-jbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense

### Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

### Algebra Of Matrices & Determinants

lgebr Of Mtrices & Determinnts Importnt erms Definitions & Formule 0 Mtrix - bsic introduction: mtrix hving m rows nd n columns is clled mtrix of order m n (red s m b n mtrix) nd mtrix of order lso in

### Matrix & Vector Basic Linear Algebra & Calculus

Mtrix & Vector Bsic Liner lgebr & lculus Wht is mtrix? rectngulr rry of numbers (we will concentrte on rel numbers). nxm mtrix hs n rows n m columns M x4 M M M M M M M M M M M M 4 4 4 First row Secon row

### State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

### DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ

All Mthemticl truths re reltive nd conditionl. C.P. STEINMETZ 4. Introduction DETERMINANTS In the previous chpter, we hve studied bout mtrices nd lgebr of mtrices. We hve lso lernt tht system of lgebric

### DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ

DETERMINANTS Chpter 4 All Mthemticl truths re reltive nd conditionl. C.P. STEINMETZ 4. Introduction In the previous chpter, we hve studied bout mtrices nd lgebr of mtrices. We hve lso lernt tht sstem of

### SCHOOL OF ENGINEERING & BUILT ENVIRONMENT

SCHOOL OF ENGINEERING & BUIL ENVIRONMEN MARICES FOR ENGINEERING Dr Clum Mcdonld Contents Introduction Definitions Wht is mtri? Rows nd columns of mtri Order of mtri Element of mtri Equlity of mtrices Opertions

### HW3, Math 307. CSUF. Spring 2007.

HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem

### Operations with Matrices

Section. Equlit of Mtrices Opertions with Mtrices There re three ws to represent mtri.. A mtri cn be denoted b n uppercse letter, such s A, B, or C.. A mtri cn be denoted b representtive element enclosed

### set is not closed under matrix [ multiplication, ] and does not form a group.

Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

### Lesson 25: Adding and Subtracting Rational Expressions

Lesson 2: Adding nd Subtrcting Rtionl Expressions Student Outcomes Students perform ddition nd subtrction of rtionl expressions. Lesson Notes This lesson reviews ddition nd subtrction of frctions using

### Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

### MATHEMATICS FOR MANAGEMENT BBMP1103

T o p i c M T R I X MTHEMTICS FOR MNGEMENT BBMP Ojectives: TOPIC : MTRIX. Define mtri. ssess the clssifictions of mtrices s well s know how to perform its opertions. Clculte the determinnt for squre mtri

### How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

### 4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX Some reliminries: Let A be rel symmetric mtrix. Let Cos θ ; (where we choose θ π for Cos θ 4 purposes of convergence of the scheme)

### AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives

AMATH 731: Applied Functionl Anlysis Fll 214 Additionl notes on Fréchet derivtives (To ccompny Section 3.1 of the AMATH 731 Course Notes) Let X,Y be normed liner spces. The Fréchet derivtive of n opertor

### Chapter 3 Polynomials

Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

### Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

### Numerical Linear Algebra Assignment 008

Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com

### 1 From NFA to regular expression

Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work

### Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

### Elements of Matrix Algebra

Elements of Mtrix Algebr Klus Neusser Kurt Schmidheiny September 30, 2015 Contents 1 Definitions 2 2 Mtrix opertions 3 3 Rnk of Mtrix 5 4 Specil Functions of Qudrtic Mtrices 6 4.1 Trce of Mtrix.........................

### Consolidation Worksheet

Cmbridge Essentils Mthemtics Core 8 NConsolidtion Worksheet N Consolidtion Worksheet Work these out. 8 b 7 + 0 c 6 + 7 5 Use the number line to help. 2 Remember + 2 2 +2 2 2 + 2 Adding negtive number is

### Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

### Lecture 09: Myhill-Nerode Theorem

CS 373: Theory of Computtion Mdhusudn Prthsrthy Lecture 09: Myhill-Nerode Theorem 16 Ferury 2010 In this lecture, we will see tht every lnguge hs unique miniml DFA We will see this fct from two perspectives

### Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

### Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

### Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

### Ecuaciones Algebraicas lineales

Ecuciones Algebrics lineles An eqution of the form x+by+c=0 or equivlently x+by=c is clled liner eqution in x nd y vribles. x+by+cz=d is liner eqution in three vribles, x, y, nd z. Thus, liner eqution

### Lecture Solution of a System of Linear Equation

ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

### Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

Vectors 1-23-2018 I ll look t vectors from n lgeric point of view nd geometric point of view. Algericlly, vector is n ordered list of (usully) rel numers. Here re some 2-dimensionl vectors: (2, 3), ( )

TABLE OF CONTENTS 3 CHAPTER 1 Set Lnguge & Nottion 3 CHAPTER 2 Functions 3 CHAPTER 3 Qudrtic Functions 4 CHAPTER 4 Indices & Surds 4 CHAPTER 5 Fctors of Polynomils 4 CHAPTER 6 Simultneous Equtions 4 CHAPTER

### Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

### ODE: Existence and Uniqueness of a Solution

Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

### Rudimentary Matrix Algebra

Rudimentry Mtrix Alger Mrk Sullivn Decemer 4, 217 i Contents 1 Preliminries 1 1.1 Why does this document exist?.................... 1 1.2 Why does nyone cre out mtrices?................ 1 1.3 Wht is mtrix?...........................

### Section 3.2: Negative Exponents

Section 3.2: Negtive Exponents Objective: Simplify expressions with negtive exponents using the properties of exponents. There re few specil exponent properties tht del with exponents tht re not positive.

### DonnishJournals

DoishJournls 2041-1189 Doish Journl of Eductionl Reserch nd Reviews Vol 2(1) pp 001-007 Jnury, 2015 http://wwwdoishjournlsorg/djerr Copyright 2015 Doish Journls Originl Reserch Article Algebr of Mtrices

### Contents. Outline. Structured Rank Matrices Lecture 2: The theorem Proofs Examples related to structured ranks References. Structure Transport

Contents Structured Rnk Mtrices Lecture 2: Mrc Vn Brel nd Rf Vndebril Dept. of Computer Science, K.U.Leuven, Belgium Chemnitz, Germny, 26-30 September 2011 1 Exmples relted to structured rnks 2 2 / 26

### More on automata. Michael George. March 24 April 7, 2014

More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

### THE DISCRIMINANT & ITS APPLICATIONS

THE DISCRIMINANT & ITS APPLICATIONS The discriminnt ( Δ ) is the epression tht is locted under the squre root sign in the qudrtic formul i.e. Δ b c. For emple: Given +, Δ () ( )() The discriminnt is used

### Year 11 Matrices. A row of seats goes across an auditorium So Rows are horizontal. The columns of the Parthenon stand upright and Columns are vertical

Yer 11 Mtrices Terminology: A single MATRIX (singulr) or Mny MATRICES (plurl) Chpter 3A Intro to Mtrices A mtrix is escribe s n orgnise rry of t. We escribe the ORDER of Mtrix (it's size) by noting how

### A Matrix Algebra Primer

A Mtrix Algebr Primer Mtrices, Vectors nd Sclr Multipliction he mtrix, D, represents dt orgnized into rows nd columns where the rows represent one vrible, e.g. time, nd the columns represent second vrible,

### Torsion in Groups of Integral Triangles

Advnces in Pure Mthemtics, 01,, 116-10 http://dxdoiorg/1046/pm011015 Pulished Online Jnury 01 (http://wwwscirporg/journl/pm) Torsion in Groups of Integrl Tringles Will Murry Deprtment of Mthemtics nd Sttistics,

### dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

### Exponentials - Grade 10 [CAPS] *

OpenStx-CNX module: m859 Exponentils - Grde 0 [CAPS] * Free High School Science Texts Project Bsed on Exponentils by Rory Adms Free High School Science Texts Project Mrk Horner Hether Willims This work

### Coalgebra, Lecture 15: Equations for Deterministic Automata

Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

### ELE B7 Power System Engineering. Unbalanced Fault Analysis

Power System Engineering Unblnced Fult Anlysis Anlysis of Unblnced Systems Except for the blnced three-phse fult, fults result in n unblnced system. The most common types of fults re single lineground

### n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

### Chapter 10: Symmetrical Components and Unbalanced Faults, Part II

Chpter : Symmetricl Components nd Unblnced Fults, Prt.4 Sequence Networks o Loded Genertor n the igure to the right is genertor supplying threephse lod with neutrl connected through impednce n to ground.

### REPRESENTATION THEORY OF PSL 2 (q)

REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory

### In this skill we review equations that involve percents. review the meaning of proportion.

6 MODULE 5. PERCENTS 5b Solving Equtions Mening of Proportion In this skill we review equtions tht involve percents. review the mening of proportion. Our first tsk is to Proportions. A proportion is sttement

### Uses of transformations. 3D transformations. Review of vectors. Vectors in 3D. Points vs. vectors. Homogeneous coordinates S S [ H [ S \ H \ S ] H ]

Uses of trnsformtions 3D trnsformtions Modeling: position nd resize prts of complex model; Viewing: define nd position the virtul cmer Animtion: define how objects move/chnge with time y y Sclr (dot) product

### The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11

The Islmic University of Gz Fculty of Engineering Civil Engineering Deprtment Numericl Anlysis ECIV 6 Chpter Specil Mtrices nd Guss-Siedel Associte Prof Mzen Abultyef Civil Engineering Deprtment, The Islmic

### DISCRETE MATHEMATICS HOMEWORK 3 SOLUTIONS

DISCRETE MATHEMATICS 21228 HOMEWORK 3 SOLUTIONS JC Due in clss Wednesdy September 17. You my collborte but must write up your solutions by yourself. Lte homework will not be ccepted. Homework must either

### Matrices. Introduction

Mtrices Introduction Mtrices - Introduction Mtrix lgebr hs t lest two dvntges: Reduces complicted systems of equtions to simple expressions Adptble to systemtic method of mthemticl tretment nd well suited

### EE263 homework 8 solutions

EE263 Prof S Boyd EE263 homework 8 solutions 37 FIR filter with smll feedbck Consider cscde of 00 one-smple delys: u z z y () Express this s liner dynmicl system x(t + ) = Ax(t) + Bu(t), y(t) = Cx(t) +

### On the free product of ordered groups

rxiv:703.0578v [mth.gr] 6 Mr 207 On the free product of ordered groups A. A. Vinogrdov One of the fundmentl questions of the theory of ordered groups is wht bstrct groups re orderble. E. P. Shimbirev [2]

### Mathematics Number: Logarithms

plce of mind F A C U L T Y O F E D U C A T I O N Deprtment of Curriculum nd Pedgogy Mthemtics Numer: Logrithms Science nd Mthemtics Eduction Reserch Group Supported y UBC Teching nd Lerning Enhncement

### Basics of space and vectors. Points and distance. Vectors

Bsics of spce nd vectors Points nd distnce One wy to describe our position in three dimensionl spce is using Crtesin coordintes x, y, z) where we hve fixed three orthogonl directions nd we move x units

### SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

### Differential Geometry: Conformal Maps

Differentil Geometry: Conforml Mps Liner Trnsformtions Definition: We sy tht liner trnsformtion M:R n R n preserves ngles if M(v) 0 for ll v 0 nd: Mv, Mw v, w Mv Mw v w for ll v nd w in R n. Liner Trnsformtions

### INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT

IC/69/7 INTERNAL REPORT (Limited distribution) INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM Lot. IXARQ * Institute of

### Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

### N 0 completions on partial matrices

N 0 completions on prtil mtrices C. Jordán C. Mendes Arújo Jun R. Torregros Instituto de Mtemátic Multidisciplinr / Centro de Mtemátic Universidd Politécnic de Vlenci / Universidde do Minho Cmino de Ver

### Homework 5 solutions

Section.: E ; AP, Section.: E,,; AP,,, Section. Homework solutions. Consider the two upper-tringulr mtrices: b b b A, B b b. b () Show tht their product C = AB is lso upper-tringulr. The product is b b

### 1 Error Analysis of Simple Rules for Numerical Integration

cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

### 9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

The Vector Product 9.4 Introduction In this section we descrie how to find the vector product of two vectors. Like the sclr product its definition my seem strnge when first met ut the definition is chosen

### Markscheme May 2016 Mathematics Standard level Paper 1

M6/5/MATME/SP/ENG/TZ/XX/M Mrkscheme My 06 Mthemtics Stndrd level Pper 7 pges M6/5/MATME/SP/ENG/TZ/XX/M This mrkscheme is the property of the Interntionl Bcclurete nd must not be reproduced or distributed

### ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil