CHAPTER 2d. MATRICES


 Chad Gregory
 3 years ago
 Views:
Transcription
1 CHPTER d. MTRICES University of Bhrin Deprtment of Civil nd rch. Engineering CEG Numericl Methods in Civil Engineering Deprtment of Civil Engineering University of Bhrin Every squre mtrix hs ssocited with it sclr clled determinnt. There re different methods to find the determinnt of squre mtrix. mong these methods, is the widely used method of finding the determinnt with expnsion by cofctors. Slide No.
2 Nottion Given squre mtrix, the determinnt of this mtrix is denoted by either det() or For exmple if then det ( ) 9 9 Slide No. Nottion 9 ( ) det Note tht represents mtrix, rectngulr rry, n entity unto itself, while det() represents sclr, number ssocited with the mtrix. The difference is only in the form. 9 Slide No.
3 Determinnt of mtrix The determinnt of mtrix [] is the sclr. Exmple The determinnt of the mtrix [] is nd the determinnt of the mtrix [.] is. Slide No. Determinnt of mtrix By definition, the determinnt of mtrix is given by c b d d bc Slide No.
4 Exmple: mtrix Find det() if det ( ) d bc ()() ()()   Slide No. Method for Finding the Determinnt of Higherorder Mtrices Expnsion by Cofctor Definition: Given mtrix, minor is the determinnt of ny squre submtrix of Tht is, given squre mtrix, minor is the determinnt formed by by removl of n equl number of rows nd columns Slide No. 9
5 Expnsion by Cofctor Exmples: Minors If 9 then nd 9 re both minors since Slide No. nd re both squre submtrices of, while nd 9 re not minors since 9 9 is not submtrix of nd [ ], lthough submtrix of, is not squre. Slide No.
6 Expnsion by Cofctor Definition: Given mtrix [ ij ], the cofctor of the element ij is sclr obtined by multiplying together the term () ij nd the minor obtined from by removing the i th row nd j th column In other words, to compute the cofctor of the element ij we first form submtrix of by crossing out both the row nd column in which the element ij ppers. Then we find the determinnt of the submtrix nd finlly multiply it by the number () ij Slide No. Exmple : Cofctor Find the cofctor of the element in the following mtrix 9 We first note tht ppers in the (,) position. The submtrix obtined by crossing out the second row nd first column is Slide No.
7 Exmple (cont d): Cofctor det (9) () 9 Since ppers in the (,) position, i, nd j. Thus, () ij () ()  Therefore, the cofctor of () () Slide No. Exmple : Cofctor Find the cofctor of the element 9 in the following mtrix 9 We first note tht 9 ppers in the (,) position. The submtrix obtined by crossing out the third row nd third column is Slide No.
8 Exmple (cont d): Cofctor det 9 () () Since 9 ppers in the (,) position, i, nd j. Thus, () ij () () Therefore, the cofctor of 9 () ()  Slide No. Expnsion by Cofctors To find the determinnt of squre mtrix of rbitrry order:. Pick ny one row or ny one column of the mtrix.. For ech element in the row or column selected, find its cofctor.. Multiply ech element in the row or column selected by its cofctor nd sum the results.. This sum is the determinnt of. Slide No.
9 Exmple : Mtrix Find the determinnt of the following mtrix: Expnding by the first row, the determinnt cn be evluted s follows: Slide No. Exmple (cont d): Mtrix det ( ) ( ) Cofctor of Cofctor of Cofctor of Slide No. 9 9
10 det ( ) Exmple (cont d): Mtrix Therefore, ( ) [ ] [ ] [ ] Slide No. Exmple : by Mtrix Find det() if First, check to see which row or column contins the most zeros nd expnd by it. Thus expnding by the second column gives Slide No.
11 Slide No. Exmple (cont d): by Mtrix ( ) ( ) ( ) ( ) ( ) ) (cofctor of cofctor of cofctor of cofctor of Slide No. Exmple (cont d): by Mtrix ( ) ( ) ( ) [ ] [ ] [ ] [ ] [ ] [ ] () () 9 ) ()( ()() ) ()( ()() ()() ()()
12 Exmple (cont d): by Mtrix ( ( ) ( ) ( ) [ )() ()()] [()() ()( ) ] [ ] [ ] Slide No. Exmple (cont d): by Mtrix Therefore, ( cofctor of ) ( cofctor of ) ( cofctor of ) ( ) ( ) ( ) ( ) 9 (cofctor of ) Slide No.
13 Properties of. If the elements of ny two rows (columns) re equl, the determinnt equls zero. det( ) Slide No. Properties of. If the vlues in ny row (column) re proportionl to the corresponding vlues in nother row (column), the determinnt equls zero. det[] becuse colu m n colu m n or the first colu mn is proportionl to the third colu mn Slide No.
14 Properties of. If ll the elements in ny row (column) equl zero, the determinnt equl zero. 9 det( ) Slide No. Properties of. If mtrix B is obtined from mtrix by multiplying every element in one row (one column) of by constnt c, then B c. det, B () ( B) [ () () ] () Slide No. 9
15 Properties of. The vlue of the determinnt is not chnged by dding ny row (column) multiplied by constnt c to nother row (column)., () () M ultiplying the second row by () nd dding it to the first Row produces the following mtrix B B, B () ( )() Slide No. Properties of. If ny two rows (columns) re interchnged, the sign of the determinnt will be chnged. () () nd () () Slide No.
16 Properties of. For n n n nd ny constnt c, the det(c) c n det(). or () (), () () [ () () ], [ 9() () ] Slide No. Properties of. The determinnt of squre mtrix equls tht of its trnspose, tht is, T T,, () () B () () Slide No.
17 Properties of 9. If squre mtrix is plced in the digonl form using property, then the product of the elements on the digonl equls the determinnt of, () () M ultiplying the first row by / nd dding itto the sec Ro w produces mtrix with zero ele ment in the secon Row nd first colu mn s follows: Slide No. Then, multiplying the second row by / nd dding it to the first row results in the following digonl mtrix: Therefore, the determinnt of is Slide No.
18 Properties of.if mtrix hs zero determinnt, then is sid to be singulr mtrix, tht is, the inverse of does not exist. Slide No. Rnk of Mtrix Definition The rnk of mtrix, designted r(), is the order of the lrgest nonzero minor of. Slide No.
19 Rnk of Mtrix Exmple : Rnk of Mtrix Find the rnk of The lrgest minor tht cn be formed from is of order. There is only one such minor, nmely det(), nd it is zero. Thus, the rnk of will be or less. Checking ll the 9 minors of order, we find tht ech of them is lso equl to zero. Slide No. Rnk of Mtrix Exmple (cont d): Rnk of Mtrix i.e., i.e., () ( ) ( ) () Hence, the rnk of will be or zero. Checking minors of order, we find tht one which is not zero (in fct ll re nonzero); therefore, r ( ) Slide No. 9 9
20 Rnk of Mtrix Exmple : Rnk of Mtrix Find the rnk of ll minors of order equl zero, so the rnk of will be or less. Checking ll minors of order, we find one of them, nmely ( ) () differs from zero, so r() Slide No. Inverse of Mtrix by Cofctor nd djoint Mtrices Definition The cofctor mtrix ssocited with n n n mtrix is n n n mtrix c obtined from by replcing ech element of by its cofctor. Slide No.
21 Slide No. Inverse of Mtrix by Cofctor nd djoint Mtrices Exmple: Cofctor Mtrix Wht is the cofctor mtrix of, if Slide No. Inverse of Mtrix by Cofctor nd djoint Mtrices Exmple (cont d): Cofctor Mtrix ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( c
22 Inverse of Mtrix by Cofctor nd djoint Mtrices Definition The djoint of n n n mtrix is the trnspose of the cofctor mtrix of. If the djoint of is denoted by, then ( c ) T Slide No. Inverse of Mtrix by Cofctor nd djoint Mtrices Exmple: djoint of Mtrix Find for mtrix given the previous exmple. From previous exmple Therefore, c c T ( ) Slide No.
23 Inverse of Mtrix by Cofctor nd djoint Mtrices Theorem If, then the inverse of my be obtined by dividing the djoint of by the determinnt of, tht is Slide No. Inverse of Mtrix by Cofctor nd djoint Mtrices det ( ) c ( ) ( ) Exmple: Inverse of Mtrix Find the inverse of the following mtrix: () () () ( ) () () ( ) () c T ( ) Slide No.
Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More informationMatrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:
Mtrices Elementry Mtrix Theory It is often desirble to use mtrix nottion to simplify complex mthemticl expressions. The simplifying mtrix nottion usully mkes the equtions much esier to hndle nd mnipulte.
More informationChapter 2. Determinants
Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if dbc0. The expression dbc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is
More informationChapter 5 Determinants
hpter 5 Determinnts 5. Introduction Every squre mtri hs ssocited with it sclr clled its determinnt. Given mtri, we use det() or to designte its determinnt. We cn lso designte the determinnt of mtri by
More informationIntroduction To Matrices MCV 4UI Assignment #1
Introduction To Mtrices MCV UI Assignment # INTRODUCTION: A mtrix plurl: mtrices) is rectngulr rry of numbers rrnged in rows nd columns Exmples: ) b) c) [ ] d) Ech number ppering in the rry is sid to be
More informationECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
More informationMATRICES AND VECTORS SPACE
MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN SPACE AND SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR
More informationAlgebra Of Matrices & Determinants
lgebr Of Mtrices & Determinnts Importnt erms Definitions & Formule 0 Mtrix  bsic introduction: mtrix hving m rows nd n columns is clled mtrix of order m n (red s m b n mtrix) nd mtrix of order lso in
More informationIntroduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices
Introduction to Determinnts Remrks The determinnt pplies in the cse of squre mtrices squre mtrix is nonsingulr if nd only if its determinnt not zero, hence the term determinnt Nonsingulr mtrices re sometimes
More informationINTRODUCTION TO LINEAR ALGEBRA
ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR
More informationa a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.
Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting
More informationMatrix & Vector Basic Linear Algebra & Calculus
Mtrix & Vector Bsic Liner lgebr & lculus Wht is mtrix? rectngulr rry of numbers (we will concentrte on rel numbers). nxm mtrix hs n rows n m columns M x4 M M M M M M M M M M M M 4 4 4 First row Secon row
More informationDeterminants Chapter 3
Determinnts hpter Specil se : x Mtrix Definition : the determinnt is sclr quntity defined for ny squre n x n mtrix nd denoted y or det(). x se ecll : this expression ppers in the formul for x mtrix inverse!
More informationMatrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24
Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the
More informationGeometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio.
Geometric Sequences Geometric Sequence sequence whose consecutive terms hve common rtio. Geometric Sequence A sequence is geometric if the rtios of consecutive terms re the sme. 2 3 4... 2 3 The number
More informationEngineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: TuTh 11:0012:00
Engineering Anlysis ENG 3420 Fll 2009 Dn C. Mrinescu Office: HEC 439 B Office hours: TuTh 11:0012:00 Lecture 13 Lst time: Problem solving in preprtion for the quiz Liner Algebr Concepts Vector Spces,
More informationMultivariate problems and matrix algebra
University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured
More informationMatrices 13: determinant properties and rules continued
Mtrices : determinnt properties nd rules continued nthony Rossiter http://controleduction.group.shef.c.uk/indexwebbook.html http://www.shef.c.uk/cse Deprtment of utomtic Control nd Systems Engineering
More informationDETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ
DETERMINANTS Chpter 4 All Mthemticl truths re reltive nd conditionl. C.P. STEINMETZ 4. Introduction In the previous chpter, we hve studied bout mtrices nd lgebr of mtrices. We hve lso lernt tht sstem of
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics
SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose
More information4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.
4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX Some reliminries: Let A be rel symmetric mtrix. Let Cos θ ; (where we choose θ π for Cos θ 4 purposes of convergence of the scheme)
More informationHW3, Math 307. CSUF. Spring 2007.
HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem
More informationMATRIX DEFINITION A matrix is any doubly subscripted array of elements arranged in rows and columns.
4.5 THEORETICL SOIL MECHNICS Vector nd Mtrix lger Review MTRIX DEFINITION mtrix is ny douly suscripted rry of elements rrnged in rows nd columns. m  Column Revised /0 n Row m,,,,,, n n mn ij nd Order
More informationDETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ
All Mthemticl truths re reltive nd conditionl. C.P. STEINMETZ 4. Introduction DETERMINANTS In the previous chpter, we hve studied bout mtrices nd lgebr of mtrices. We hve lso lernt tht system of lgebric
More informationQuadratic Forms. Quadratic Forms
Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte
More informationElements of Matrix Algebra
Elements of Mtrix Algebr Klus Neusser Kurt Schmidheiny September 30, 2015 Contents 1 Definitions 2 2 Mtrix opertions 3 3 Rnk of Mtrix 5 4 Specil Functions of Qudrtic Mtrices 6 4.1 Trce of Mtrix.........................
More informationMatrices and Determinants
Nme Chpter 8 Mtrices nd Determinnts Section 8.1 Mtrices nd Systems of Equtions Objective: In this lesson you lerned how to use mtrices, Gussin elimintion, nd GussJordn elimintion to solve systems of liner
More informationThe Algebra (aljabr) of Matrices
Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (ljbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense
More informationModule 6: LINEAR TRANSFORMATIONS
Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4
More informationHere we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.
Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous
More informationN 0 completions on partial matrices
N 0 completions on prtil mtrices C. Jordán C. Mendes Arújo Jun R. Torregros Instituto de Mtemátic Multidisciplinr / Centro de Mtemátic Universidd Politécnic de Vlenci / Universidde do Minho Cmino de Ver
More informationComputing The Determinants By Reducing The Orders By Four
Applied Mthemtics ENotes, 10(2010), 151158 c ISSN 16072510 Avilble free t mirror sites of http://wwwmthnthuedutw/ men/ Computing The Determinnts By Reducing The Orders By Four Qefsere Gjonblj, Armend
More informationThings to Memorize: A Partial List. January 27, 2017
Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors  Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=
More information308K. 1 Section 3.2. Zelaya Eufemia. 1. Example 1: Multiplication of Matrices: X Y Z R S R S X Y Z. By associativity we have to choices:
8K Zely Eufemi Section 2 Exmple : Multipliction of Mtrices: X Y Z T c e d f 2 R S X Y Z 2 c e d f 2 R S 2 By ssocitivity we hve to choices: OR: X Y Z R S cr ds er fs X cy ez X dy fz 2 R S 2 Suggestion
More informationDonnishJournals
DoishJournls 20411189 Doish Journl of Eductionl Reserch nd Reviews Vol 2(1) pp 001007 Jnury, 2015 http://wwwdoishjournlsorg/djerr Copyright 2015 Doish Journls Originl Reserch Article Algebr of Mtrices
More informationTHE DISCRIMINANT & ITS APPLICATIONS
THE DISCRIMINANT & ITS APPLICATIONS The discriminnt ( Δ ) is the epression tht is locted under the squre root sign in the qudrtic formul i.e. Δ b c. For emple: Given +, Δ () ( )() The discriminnt is used
More informationSeptember 13 Homework Solutions
College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are
More informationMatrices. Introduction
Mtrices Introduction Mtrices  Introduction Mtrix lgebr hs t lest two dvntges: Reduces complicted systems of equtions to simple expressions Adptble to systemtic method of mthemticl tretment nd well suited
More informationMath 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008
Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 25pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of
More informationNumerical Linear Algebra Assignment 008
Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com
More informationSummary: Method of Separation of Variables
Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section
More informationA Matrix Algebra Primer
A Mtrix Algebr Primer Mtrices, Vectors nd Sclr Multipliction he mtrix, D, represents dt orgnized into rows nd columns where the rows represent one vrible, e.g. time, nd the columns represent second vrible,
More informationNOTE ON TRACES OF MATRIX PRODUCTS INVOLVING INVERSES OF POSITIVE DEFINITE ONES
Journl of pplied themtics nd Computtionl echnics 208, 7(), 2936.mcm.pcz.pl pissn 22999965 DOI: 0.752/jmcm.208..03 eissn 23530588 NOE ON RCES OF RIX PRODUCS INVOLVING INVERSES OF POSIIVE DEFINIE ONES
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT
SCHOOL OF ENGINEERING & BUIL ENVIRONMEN MARICES FOR ENGINEERING Dr Clum Mcdonld Contents Introduction Definitions Wht is mtri? Rows nd columns of mtri Order of mtri Element of mtri Equlity of mtrices Opertions
More informationMatrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
More informationMATHEMATICS FOR MANAGEMENT BBMP1103
T o p i c M T R I X MTHEMTICS FOR MNGEMENT BBMP Ojectives: TOPIC : MTRIX. Define mtri. ssess the clssifictions of mtrices s well s know how to perform its opertions. Clculte the determinnt for squre mtri
More informationOXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved.
Renshw: Mths for Econoics nswers to dditionl exercises Exercise.. Given: nd B 5 Find: () + B + B 7 8 (b) (c) (d) (e) B B B + B T B (where 8 B 6 B 6 8 B + B T denotes the trnspose of ) T 8 B 5 (f) (g) B
More informationLecture Solution of a System of Linear Equation
ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville  D. Keffer, 5/9/98 (updted /) Lecture 8  Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner
More informationJim Lambers MAT 169 Fall Semester Lecture 4 Notes
Jim Lmbers MAT 169 Fll Semester 200910 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of
More informationState space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies
Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response
More informationMTH3101 Spring 2017 HW Assignment 6: Chap. 5: Sec. 65, #68; Sec. 68, #5, 7; Sec. 72, #8; Sec. 73, #5, 6. The due date for this assignment is 4/06/17.
MTH30 Spring 07 HW Assignment 6: Chp. 5: Sec. 65, #68; Sec. 68, #5, 7; Sec. 7, #8; Sec. 73, #5, 6. The due dte for this ssignment is 4/06/7. Sec. 65: #6. Wht is the lrgest circle within which the Mclurin
More informationSave from: 1 st. class Mathematics الرياضيات استاذ الماده: م.م. سرى علي مجيد علي
Sve from: www.uotechnology.edu.iq st clss Mthemtics الرياضيات استاذ الماده: م.م. سرى علي مجيد علي Chpter One Consider n rbitrry system of eqution in unknown s: A B.( n mn m m m n n n n B r bm n n m m m
More informationElementary Linear Algebra
Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร
More informationInfinite Geometric Series
Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to
More informationOn the diagram below the displacement is represented by the directed line segment OA.
Vectors Sclrs nd Vectors A vector is quntity tht hs mgnitude nd direction. One exmple of vector is velocity. The velocity of n oject is determined y the mgnitude(speed) nd direction of trvel. Other exmples
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationChapter System of Equations
hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vicevers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationEcuaciones Algebraicas lineales
Ecuciones Algebrics lineles An eqution of the form x+by+c=0 or equivlently x+by=c is clled liner eqution in x nd y vribles. x+by+cz=d is liner eqution in three vribles, x, y, nd z. Thus, liner eqution
More informationChapter 3. Vector Spaces
3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce
More informationSUMMER KNOWHOW STUDY AND LEARNING CENTRE
SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18
More informationCHAPTER 1 PROGRAM OF MATRICES
CHPTER PROGRM OF MTRICES  INTRODUCTION definition of engineering is the science y which the properties of mtter nd sources of energy in nture re mde useful to mn. Thus n engineer will hve to study the
More informationStatistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006
Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to
More informationCSCI 5525 Machine Learning
CSCI 555 Mchine Lerning Some Deini*ons Qudrtic Form : nn squre mtri R n n : n vector R n the qudrtic orm: It is sclr vlue. We oten implicitly ssume tht is symmetric since / / I we write it s the elements
More informationChapter Direct Method of Interpolation More Examples Civil Engineering
Chpter 5. Direct Method of Interpoltion More Exmples Civil Engineering Exmple o mximie ctch of bss in lke, it is suggested to throw the line to the depth of the thermocline. he chrcteristic feture of this
More informationRudimentary Matrix Algebra
Rudimentry Mtrix Alger Mrk Sullivn Decemer 4, 217 i Contents 1 Preliminries 1 1.1 Why does this document exist?.................... 1 1.2 Why does nyone cre out mtrices?................ 1 1.3 Wht is mtrix?...........................
More informationLINEAR ALGEBRA AND MATRICES. n ij. is called the main diagonal or principal diagonal of A. A column vector is a matrix that has only one column.
PART 1 LINEAR ALGEBRA AND MATRICES Generl Nottions Mtri (denoted by cpitl boldfce letter) A is n m n mtri. 11 1... 1 n 1... n A ij...... m1 m... mn ij denotes the component t row i nd column j of A. If
More informationAdvanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
More informationCS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 2
CS434/54: Pttern Recognition Prof. Olg Veksler Lecture Outline Review of Liner Algebr vectors nd mtrices products nd norms vector spces nd liner trnsformtions eigenvlues nd eigenvectors Introduction to
More informationYear 11 Matrices. A row of seats goes across an auditorium So Rows are horizontal. The columns of the Parthenon stand upright and Columns are vertical
Yer 11 Mtrices Terminology: A single MATRIX (singulr) or Mny MATRICES (plurl) Chpter 3A Intro to Mtrices A mtrix is escribe s n orgnise rry of t. We escribe the ORDER of Mtrix (it's size) by noting how
More informationMATH 260 Final Exam April 30, 2013
MATH 60 Finl Exm April 30, 03 Let Mpn,Rq e the spce of nyn mtrices with rel entries () We know tht (with the opertions of mtrix ddition nd sclr multipliction), M pn, Rq is vector spce Wht is the dimension
More informationChapter 1. Basic Concepts
Socrtes Dilecticl Process: The Þrst step is the seprtion of subject into its elements. After this, by deþning nd discovering more bout its prts, one better comprehends the entire subject Socrtes (469399)
More informationThe total number of permutations of S is n!. We denote the set of all permutations of S by
DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote
More informationSTRAND B: NUMBER THEORY
Mthemtics SKE, Strnd B UNIT B Indices nd Fctors: Tet STRAND B: NUMBER THEORY B Indices nd Fctors Tet Contents Section B. Squres, Cubes, Squre Roots nd Cube Roots B. Inde Nottion B. Fctors B. Prime Fctors,
More informationNOTES ON HILBERT SPACE
NOTES ON HILBERT SPACE 1 DEFINITION: by Prof CI Tn Deprtment of Physics Brown University A Hilbert spce is n inner product spce which, s metric spce, is complete We will not present n exhustive mthemticl
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationA matrix is a set of numbers or symbols arranged in a square or rectangular array of m rows and n columns as
RMI University ENDIX MRIX GEBR INRDUCIN Mtrix lgebr is powerful mthemticl tool, which is extremely useful in modern computtionl techniques pplicble to sptil informtion science. It is neither new nor difficult,
More informationHow do you know you have SLE?
Simultneous Liner Equtions Simultneous Liner Equtions nd Liner Algebr Simultneous liner equtions (SLE s) occur frequently in Sttics, Dynmics, Circuits nd other engineering clsses Need to be ble to, nd
More informationCHAPTER 4a. ROOTS OF EQUATIONS
CHAPTER 4. ROOTS OF EQUATIONS A. J. Clrk School o Engineering Deprtment o Civil nd Environmentl Engineering by Dr. Ibrhim A. Asskk Spring 00 ENCE 03  Computtion Methods in Civil Engineering II Deprtment
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties
More informationGeneralized Fano and nonfano networks
Generlized Fno nd nonfno networks Nildri Ds nd Brijesh Kumr Ri Deprtment of Electronics nd Electricl Engineering Indin Institute of Technology Guwhti, Guwhti, Assm, Indi Emil: {d.nildri, bkri}@iitg.ernet.in
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More informationINTRODUCTION TO INTEGRATION
INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide
More informationMathCity.org Merging man and maths
MthCity.org Merging mn nd mths Exercise.8 (s) Pge 46 Textbook of Algebr nd Trigonometry for Clss XI Avilble online @ http://, Version: 3.0 Question # Opertion performed on the twomember set G = {0, is
More informationMath 4310 Solutions to homework 1 Due 9/1/16
Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1
More informationARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac
REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationset is not closed under matrix [ multiplication, ] and does not form a group.
Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed
More informationLinearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
More informationMatrix Solution to Linear Equations and Markov Chains
Trding Systems nd Methods, Fifth Edition By Perry J. Kufmn Copyright 2005, 2013 by Perry J. Kufmn APPENDIX 2 Mtrix Solution to Liner Equtions nd Mrkov Chins DIRECT SOLUTION AND CONVERGENCE METHOD Before
More informationINJNTU.COM LECTURE NOTES
LECTURE NOTES ON LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATIONS I B. Tech I semester UNITI THEORY OF MATRICES Solution for liner systems Mtri : A system of mn numbers rel (or) comple rrnged in the
More informationThe Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11
The Islmic University of Gz Fculty of Engineering Civil Engineering Deprtment Numericl Anlysis ECIV 6 Chpter Specil Mtrices nd GussSiedel Associte Prof Mzen Abultyef Civil Engineering Deprtment, The Islmic
More informationVyacheslav Telnin. Search for New Numbers.
Vycheslv Telnin Serch for New Numbers. 1 CHAPTER I 2 I.1 Introduction. In 1984, in the first issue for tht yer of the Science nd Life mgzine, I red the rticle "NonStndrd Anlysis" by V. Uspensky, in which
More informationChapter 28. Fourier Series An Eigenvalue Problem.
Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why
More informationNatural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring
More generlly, we define ring to be nonempty set R hving two binry opertions (we ll think of these s ddition nd multipliction) which is n Abelin group under + (we ll denote the dditive identity by 0),
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More information