set is not closed under matrix [ multiplication, ] and does not form a group.

Size: px
Start display at page:

Download "set is not closed under matrix [ multiplication, ] and does not form a group."

Transcription

1 Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed under mtrix multipliction, so it does not form group. To see tht it is not closed under mtrix multipliction, it is enough to consider the following exmple: [ ][ ] [ ] = [ ] [ ] 2 5 where the mtrix is not of the form. 3 7 d [ ] ii) Those of the form such tht c 2 c [ ] [ ] Answer: Agin, consider the two mtrices nd which re [ ] 7 6 of this form. Their product is, which is not in the correct form. So this 2 3 set is not closed under mtrix [ multipliction, ] nd does not form group. iii) Those of the form where c is not zero. 0 c Answer: These do form group. To show this, we need to check the following things. [ ] [ ] (1) The set is closed under multipliction: Suppose nd 0 c 0 c stisfy c, c 0. Then [ ][ ] [ ] 0 c 0 c = + c 0 c c where cc 0 ecuse c, c 0. Thus the product of two mtrices in this set is gin in the set, so it is closed under multipliction. [ ] 1 0 (2) The identity is in this set: This is true ecuse the mtrix is of 0 1 the correct form. [ ] (3) We hve inverses: Suppose the mtrix A = is in our set. Then 0 c consider the mtrix B = [ 1 c 1 0 c ]. Since c 0, the term c mkes sense, so B is well-defined. It is simple to check tht AB = BA = I, where I is the identity mtrix. Thus every mtrix in our set hs n inverse. (4) Associtivity: We hve this ecuse mtrix multipliction is ssocitive in generl. iv) The set of mtrices with non-zero determinnt nd integer entries. Answer: This set does not form [ group ecuse ] inverses my not e in the 2 0 set. For exmple, consider the mtrix. This mtrix is in our set. But its 0 2 inverse is the mtrix [ 1/ /2 ], which is not in our set. 1

2 2 Prolem 2.6 Show tht the collection of ll rottions of the plne out fixed point P forms group under composition of functions. Is the sme true of the set of ll reflections in lines which pss through P? Wht hppens if we tke ll the rottions nd ll the reflections? Answer: Fix point P in the plne. Let G ro e the set of ll rottions out P, let G re e the set of ll reflections out lines through P nd let G e the set of ll rottions nd reflections together. First, note tht ll of these sets stisfy the ssocitivity property. This is ecuse the composition of functions is lwys ssocitive. Suppose we hve three functions f,g nd h. We need to see tht for ech point x in their domin, f (g h)(x) = (f g) h(x). To show this tkes just it of mnipultion. Since (g h)(x) = g(h(x)), we hve f (g h)(x) = f(g(h(x))), nd likewise, (f g) h(x) = (f g)(h(x)), which is gin just f(g(h(x))). Therefore, composition of functions is lwys ssocitive, so composition of rottions nd/ or reflections is lso ssocitive. Now we show tht G ro is group. Let r θ G ro e the clockwise rottion y ngle θ out P. So if θ is negtive, we men counter-clockwise rottion y θ. Then given two ngles θ nd φ, we clerly hve r θ r φ = r θ+φ. Thus the composition of two rottions is gin rottion, so G ro is closed under composition of functions. Now we hve to check the 3 group properties. (1) Associtivity: Composition of functions is ssocitive. (2) Identity: Clerly the identity is r 0, the rottion y ngle 0, since for ny ngle θ, r θ r 0 = r θ = r 0 r θ. (3) Inverses: Fix n ngle θ. Then the inverse of r θ is r θ since r θ r θ = r 0 = r θ r θ. Thus the set of rottions is group under function composition. Forthenextprtsoftheprolem,weusethefollowingfctoutthecomposition of two reflections. Property 1. Let R,R G re e reflections out lines nd through the point P. Suppose the ngle tht line sweeps out s it moves in clockwise direction to line is θ. Then R R = r θ/2, where R R mens we do R first nd then R. Proof. Choose some point Q in the plne, where Q P. Then s in the digrm, mesure the signed cute ngle etween the line segment QP nd line. We sy this ngle is positive if when you use QP to sweep out the ngle you go in clockwise direction. Otherwise, the ngle is negtive. Cll this signed ngle θ 1. In the digrm, the ngle is positive. Then the signed cute ngle etween the line segment R (Q),P nd is lso θ 1. Now let θ 2 e the signed cute ngle etween R (Q),P nd the line. Agin, the signed cute ngle etween R R (Q),P nd the line is lso θ 2. Note tht the distnce etween Q nd P is the sme s the distnce etween R R (Q) nd P. So if you rotte Q y n ngle of 2θ 1 +2θ 2 out P, we get to R R (Q). But θ 1 +θ 2 is just θ in the cse when t lest one of these two ngles is positive, nd θ 1 + θ 2 = θ π when oth of these ngles re negtive. So rottion y 2θ 1 +2θ 2 is either rottion y 2θ or rottion y 2(θ π). But the ltter is, in fct, the sme s rottion y θ since rotting y 2π is the sme s not rotting t ll. So we re done.

3 3 Q R (Q) θ 1 θ 1 P θ θ2θ 2 R (R (Q)) Figure 1. The point Q reflected first through nd then through By the ove property, we see tht the set of reflections is not closed under composition of functions, s two reflections give rottion. So G re is not group. On the other hnd, we clim tht G is group. Clim 1. The set of ll rottions nd reflections forms group. Proof.. It isn t hrd to see y the sme methods s ove tht if r θ is rottion nd R is reflection out line then r θ R = R r12 θ () tht is, reflecting out nd then rottion y ngle θ is the sme s reflecting out the line rotted y ngle 1 2θ. Likewise, R r θ = R r 1 2 θ () So the set G of rottions nd reflections is closed under composition of functions. The identity is in G, ecuse the identity is rottion y ngle 0. Inverses re in G ecuse ech reflection is its own inverse, nd the inverse of rottion y ngle θ is rottion y ngle θ. The set is ssocitive ecuse, gin, composition of functions is ssocitive. Therefore, G is group. Prolem 2.8 If x nd y re elements of group, prove tht (xy) 1 = y 1 x 1. Proof. The element (xy) 1 is the element s.t. (xy) 1 (xy) = 1 = (xy)(xy) 1. We show tht the element y 1 x 1 stisfies this property. (y 1 x 1 )(xy) = y 1 (x 1 (xy)) y ssocitivity = y 1 ((x 1 x)y) y ssocitivity = y 1 y y prop. of inverses = 1 y prop. of inverses so the first prt of tht eqution is stisfied. Now for the second prt. (xy)(y 1 x 1 ) = ((xy)y 1 )x 1 y ssocitivity So we hve shown tht (xy) 1 = y 1 x 1. = (x(yy 1 ))x 1 y ssocitivity = x 1 x y prop. of inverses = 1 y prop. of inverses

4 4 Prolem 3.2 Write Q( 2) for the set descried in Exercise 3.1 (iii). Given non-zero element + 2 express 1/(+ 2) in the form c+d 2 where c,d Q. Prove tht multipliction mkes Q( 2)\{0} into group. Proof. The set Q( 2) consists of ll rel numers of the form + 2 where nd re in Q. The numer 1/(+ 2) is the unique rel numer with the property tht (+ 2) 1/(+ 2) = 1. Let c = 2 2 nd let d = Then we 2 clim tht 1/(+ 2) = c+d 2. To see this, we clculte: Then nd (+ 2) c+d 2 = c+2d+(d+c) 2 2 c+2d = = 1 d+c = = 0. Thus, for the ove choices of c nd d, (+ 2) c+d 2 = 1, s promised. Now we show tht the set G = Q( 2)\{0} is group. The formul (+ 2) c+d 2 = c+2d+(d+c) 2 shows tht this set is closed under multipliction. Since G is suset of rel numers, it is ssocitive. The identity is in G since 1 = Finlly, the ove clcultion mens tht every non-zero element of Q( 2) hs multiplictive inverse lso in Q( 2). Therefore, Q( 2)\{0} is group. Prolem 3.3 Let n e positive integer nd let G consist of ll those complex numers z which stisfy z n = 1. Show tht G forms group under multipliction of complex numers. Proof. First we show tht G is closed under multipliction. Let z,z G. We need to show tht (zz ) n = 1. We hve tht (zz ) n = zz zz }{{} n times But multipliction in C is commuttive, so in fct, (zz ) n = z n z n. Since z,z G, this just mens tht (zz ) = 1. Thus G is closed under multipliction. Since C is group, nd G is suset of C, we know tht G is ssocitive. The identity is in G ecuse 1 n = 1. So the lst thing we need to show is tht G hs inverses. Let z G. Then z 1 is some complex numer (since ll complex numers hve inverses which re complex numers). We need to show tht (z 1 ) n = 1. But we know tht z n = 1. So multiply oth sides of this eqution y (z 1 ) n. This gives us tht (z 1 ) n z n = (z 1 ) n. But (z 1 ) n z n = 1 y the fct tht multipliction in C is commuttive, so this mens tht 1 = (z 1 ) n, s required. Thus G is group under multipliction. Prolem 3.5 Let n e positive integer. Prove tht (x ny) nz = x n(y nz).

5 5 Proof. By definition, (x n y) = xy kn where k Z is the numer s.t. xy kn [0,n 1]. Thus, (x n y) n z = (xy kn) n z = (xy kn)z k n = xyz k n where k is the numer s.t. (xy kn)z k n [0,n 1] nd so k = kz+k is the numer s.t. xyz k n [0,n 1]. With similr steps we get x n (y n z) = x n (yz ln) = x(yz ln) l n = xyz l n where gin l is the numer s.t. xyz l n [0,n 1]. We wnt to show tht xyz k n nd xyz l n re the sme numer. Note tht xyz k n (xyz l n) = (l k )n. So the difference etween these two numers is n integer multiple of n. On the other hnd, oth xyz k n nd xyz l n re etween 0 nd n 1. So (n 1) xyz k n (xyz l n) n 1. The only multiples of n inside these ounds is 0. Thus l k = 0 nd so xyz k n = xyz l n. Therefore, (x n y) n z = x n (y n z). Prolem 3.7 Which of the following sets form group under multipliction modulo 14? Answer: Note tht 5 5 = 11 mod 14. The sets {1,3,5} nd {1,3,5,7} contin 5 nd not 11, so they cnnot form groups. The set {1,7,13} cnnot form group mod 14 since 7 nd 14 shre common fctor, so 7 cnnot hve n inverse mod 14. In fct, suppose 7 14 x = 1. Then n = 2. But = 0, so 0 = 2 mod 14, which is impossile. Finlly, = 5, so the set {1,9,11,13} does not form group. So none of these sets form groups mod 14. Prolem 3.8 Show tht if suset of {1,2,...,21} contins n even numer, or contins the numer 11, then it cnnot form group under multipliction. Proof. Suppose n is n even integer etween 1 nd 21, inclusive. Then we cn write n = 2m for some other integer m. We clim tht n cnnot hve n inverse mod 22. Suppose not. Then n = 2m hs n inverse with the property tht 2m 22 n 1 = 1. Thus, m 22 n 1 = 11. By ssocitivity, I cn multiply 11 nd 2 first. Note tht = 0. Thus I get the sttement tht 0 22 n 1 = 11, i.e. 0 = 11. But this is not true mod 22. Therefore, n hs no inverse. Similrly, suppose n = 11. We clim tht 11 cnnot hve n inverse mod 22. Suppose not. Then n = 11 hs n inverse with the property tht n 1 = 1. Thus, n 1 = 2. By ssocitivity, I cn multiply 11 nd 2 first. Note tht = 0. Thus I get the sttement tht 0 22 n 1 = 2, i.e. 0 = 2. But this is not true mod 22. Therefore, 11 hs no inverse. So if we were given suset of {1,2,...,21} contining the numer 11 or ny even numer, then tht suset couldn t possily hve inverses for ll of its elements. Therefore it would not form group.

6 6 Prolem 4.7 Let G e the collection of ll rtionl numers x which stisfy 0 x < 1. Show tht the opertion { x+y if 0 x+y < 1 x+ G y = x+y 1 if 1 x+y < 2 mkes G into n infinite elin group ll of whose elements hve finite order. Proof. We will first show tht G is group. Agin, we do this in four steps. (1) G needs to e closed under the group opertion. Let x,y e in G. Then 0 x,y < 1 so 0 x + y < 2. Thus 0 x + G y < 1, so this is ok. Furthermore, oth x+y nd x+y 1 re rtionl numers. So x+ G y is rtionl numer etween 0 nd 1, s required. (2) Identity. The identity is 0, which is in the group. To see tht 0 is the identity, note tht if 0 x < 1, then 0 x+0 < 1, so x+ G 0 = x. (3) Inverses. If 0 x < 1 then 0 1 x < 1. Note tht x+(1 x) = 1, so x+ G (1 x) = 0. So for ny x G, 1 x is the inverse of x. Therefore the inverse of x is in G. (4) Associtivity. Let x,y nd z e in G. Ech time we dd two numers in G we sutrct 1 enough times to mke the result t lest 0, nd strictly less thn 1. Since 0 x+y +z < 3, we see tht { x+(y +G z) if 0 x+(y + x+ G (y + G z) = G z) < 1 x+(y + G z) 1 if 1 x+(y + G z) < 2 x+y + G z if 0 x+y +z < 1 = x+y +z 1 if 1 x+y +z < 2 x+y +z 2 if 2 x+y +z < 3 since y + G z is either y +z or y +z 1. Similrly, we get tht x+y + G z if 0 x+y +z < 1 (x+ G y)+ G z = x+y +z 1 if 1 x+y +z < 2 x+y +z 2 if 2 x+y +z < 3 Thus the group opertion is ssocitive. Therefore, G is group under this group opertion. There re infinitely mny rtionl numers etween 0 nd 1, so G is infinite. G is elin ecuse ddition of rtionl numers is elin. Finlly, we need to show tht elements of G hve finite order. Let e n element of G. Then define n G = + G + G }{{ } n times Since every time we dd on nother we sutrct either 0 or 1, we hve tht n G = n n m where m is n integer s.t. 0 m n nd 0 m < 1. Thus for n =, G = m where m is the integer s.t. 0 m < 1. But is lso n integer. So we must hve = m, nd so G = 0. But tht mens exctly tht hs order t most, since dding to itself times got us ck to the identity. So every element of G hs finite order.

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A.

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A. 378 Reltions 16.7 Solutions for Chpter 16 Section 16.1 Exercises 1. Let A = {0,1,2,3,4,5}. Write out the reltion R tht expresses > on A. Then illustrte it with digrm. 2 1 R = { (5,4),(5,3),(5,2),(5,1),(5,0),(4,3),(4,2),(4,1),

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors: Vectors 1-23-2018 I ll look t vectors from n lgeric point of view nd geometric point of view. Algericlly, vector is n ordered list of (usully) rel numers. Here re some 2-dimensionl vectors: (2, 3), ( )

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Math 4310 Solutions to homework 1 Due 9/1/16

Math 4310 Solutions to homework 1 Due 9/1/16 Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1

More information

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24 Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

HW3, Math 307. CSUF. Spring 2007.

HW3, Math 307. CSUF. Spring 2007. HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Lecture 3: Equivalence Relations

Lecture 3: Equivalence Relations Mthcmp Crsh Course Instructor: Pdric Brtlett Lecture 3: Equivlence Reltions Week 1 Mthcmp 2014 In our lst three tlks of this clss, we shift the focus of our tlks from proof techniques to proof concepts

More information

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS 33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations. Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

More information

September 13 Homework Solutions

September 13 Homework Solutions College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

More information

Linear Inequalities. Work Sheet 1

Linear Inequalities. Work Sheet 1 Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges $ 15 per week plus $ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

More information

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers. 8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the

More information

Lecture 2e Orthogonal Complement (pages )

Lecture 2e Orthogonal Complement (pages ) Lecture 2e Orthogonl Complement (pges -) We hve now seen tht n orthonorml sis is nice wy to descrie suspce, ut knowing tht we wnt n orthonorml sis doesn t mke one fll into our lp. In theory, the process

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

Introduction To Matrices MCV 4UI Assignment #1

Introduction To Matrices MCV 4UI Assignment #1 Introduction To Mtrices MCV UI Assignment # INTRODUCTION: A mtrix plurl: mtrices) is rectngulr rry of numbers rrnged in rows nd columns Exmples: ) b) c) [ ] d) Ech number ppering in the rry is sid to be

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

Geometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio.

Geometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio. Geometric Sequences Geometric Sequence sequence whose consecutive terms hve common rtio. Geometric Sequence A sequence is geometric if the rtios of consecutive terms re the sme. 2 3 4... 2 3 The number

More information

Introduction to Group Theory

Introduction to Group Theory Introduction to Group Theory Let G be n rbitrry set of elements, typiclly denoted s, b, c,, tht is, let G = {, b, c, }. A binry opertion in G is rule tht ssocites with ech ordered pir (,b) of elements

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes The Vector Product 9.4 Introduction In this section we descrie how to find the vector product of two vectors. Like the sclr product its definition my seem strnge when first met ut the definition is chosen

More information

Infinite Geometric Series

Infinite Geometric Series Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to

More information

Lecture 2: Fields, Formally

Lecture 2: Fields, Formally Mth 08 Lecture 2: Fields, Formlly Professor: Pdric Brtlett Week UCSB 203 In our first lecture, we studied R, the rel numbers. In prticulr, we exmined how the rel numbers intercted with the opertions of

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

More information

EECS 141 Due 04/19/02, 5pm, in 558 Cory

EECS 141 Due 04/19/02, 5pm, in 558 Cory UIVERSITY OF CALIFORIA College of Engineering Deprtment of Electricl Engineering nd Computer Sciences Lst modified on April 8, 2002 y Tufn Krlr (tufn@eecs.erkeley.edu) Jn M. Rey, Andrei Vldemirescu Homework

More information

Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring

Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring More generlly, we define ring to be non-empty set R hving two binry opertions (we ll think of these s ddition nd multipliction) which is n Abelin group under + (we ll denote the dditive identity by 0),

More information

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

4 VECTORS. 4.0 Introduction. Objectives. Activity 1 4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

First Midterm Examination

First Midterm Examination 24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

More information

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS 3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

More information

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4)

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4) 10 Most proofs re left s reding exercises. Definition 10.1. Z = Z {0}. Definition 10.2. Let be the binry reltion defined on Z Z by, b c, d iff d = cb. Theorem 10.3. is n equivlence reltion on Z Z. Proof.

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

Numerical Linear Algebra Assignment 008

Numerical Linear Algebra Assignment 008 Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Torsion in Groups of Integral Triangles

Torsion in Groups of Integral Triangles Advnces in Pure Mthemtics, 01,, 116-10 http://dxdoiorg/1046/pm011015 Pulished Online Jnury 01 (http://wwwscirporg/journl/pm) Torsion in Groups of Integrl Tringles Will Murry Deprtment of Mthemtics nd Sttistics,

More information

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9. Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

More information

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

More information

M A T H F A L L CORRECTION. Algebra I 2 1 / 0 9 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 2 1 / 0 9 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #1 CORRECTION Alger I 2 1 / 0 9 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O 1. Suppose nd re nonzero elements of field F. Using only the field xioms,

More information

Chapter 1: Logarithmic functions and indices

Chapter 1: Logarithmic functions and indices Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

More information

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line APPENDIX D Preclculus Review APPENDIX D.1 Rel Numers n the Rel Numer Line Rel Numers n the Rel Numer Line Orer n Inequlities Asolute Vlue n Distnce Rel Numers n the Rel Numer Line Rel numers cn e represente

More information

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year 1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

More information

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer Divisibility In this note we introduce the notion of divisibility for two integers nd b then we discuss the division lgorithm. First we give forml definition nd note some properties of the division opertion.

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

MathCity.org Merging man and maths

MathCity.org Merging man and maths MthCity.org Merging mn nd mths Exercise.8 (s) Pge 46 Textbook of Algebr nd Trigonometry for Clss XI Avilble online @ http://, Version: 3.0 Question # Opertion performed on the two-member set G = {0, is

More information

Rudimentary Matrix Algebra

Rudimentary Matrix Algebra Rudimentry Mtrix Alger Mrk Sullivn Decemer 4, 217 i Contents 1 Preliminries 1 1.1 Why does this document exist?.................... 1 1.2 Why does nyone cre out mtrices?................ 1 1.3 Wht is mtrix?...........................

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

MATRIX DEFINITION A matrix is any doubly subscripted array of elements arranged in rows and columns.

MATRIX DEFINITION A matrix is any doubly subscripted array of elements arranged in rows and columns. 4.5 THEORETICL SOIL MECHNICS Vector nd Mtrix lger Review MTRIX DEFINITION mtrix is ny douly suscripted rry of elements rrnged in rows nd columns. m - Column Revised /0 n -Row m,,,,,, n n mn ij nd Order

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

Review: set theoretic definition of the numbers. Natural numbers:

Review: set theoretic definition of the numbers. Natural numbers: Review: reltions A inry reltion on set A is suset R Ñ A ˆ A, where elements p, q re written s. Exmple: A Z nd R t pmod nqu. A inry reltion on set A is... (R) reflexive if for ll P A; (S) symmetric if implies

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

MATH 573 FINAL EXAM. May 30, 2007

MATH 573 FINAL EXAM. May 30, 2007 MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements: Mtrices Elementry Mtrix Theory It is often desirble to use mtrix nottion to simplify complex mthemticl expressions. The simplifying mtrix nottion usully mkes the equtions much esier to hndle nd mnipulte.

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

Linear Algebra 1A - solutions of ex.4

Linear Algebra 1A - solutions of ex.4 Liner Algebr A - solutions of ex.4 For ech of the following, nd the inverse mtrix (mtritz hofkhit if it exists - ( 6 6 A, B (, C 3, D, 4 4 ( E i, F (inverse over C for F. i Also, pick n invertible mtrix

More information

Multiplying integers EXERCISE 2B INDIVIDUAL PATHWAYS. -6 ì 4 = -6 ì 0 = 4 ì 0 = -6 ì 3 = -5 ì -3 = 4 ì 3 = 4 ì 2 = 4 ì 1 = -5 ì -2 = -6 ì 2 = -6 ì 1 =

Multiplying integers EXERCISE 2B INDIVIDUAL PATHWAYS. -6 ì 4 = -6 ì 0 = 4 ì 0 = -6 ì 3 = -5 ì -3 = 4 ì 3 = 4 ì 2 = 4 ì 1 = -5 ì -2 = -6 ì 2 = -6 ì 1 = EXERCISE B INDIVIDUAL PATHWAYS Activity -B- Integer multipliction doc-69 Activity -B- More integer multipliction doc-698 Activity -B- Advnced integer multipliction doc-699 Multiplying integers FLUENCY

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Date Lesson Text TOPIC Homework. Solving for Obtuse Angles QUIZ ( ) More Trig Word Problems QUIZ ( )

Date Lesson Text TOPIC Homework. Solving for Obtuse Angles QUIZ ( ) More Trig Word Problems QUIZ ( ) UNIT 5 TRIGONOMETRI RTIOS Dte Lesson Text TOPI Homework pr. 4 5.1 (48) Trigonometry Review WS 5.1 # 3 5, 9 11, (1, 13)doso pr. 6 5. (49) Relted ngles omplete lesson shell & WS 5. pr. 30 5.3 (50) 5.3 5.4

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

CM10196 Topic 4: Functions and Relations

CM10196 Topic 4: Functions and Relations CM096 Topic 4: Functions nd Reltions Guy McCusker W. Functions nd reltions Perhps the most widely used notion in ll of mthemtics is tht of function. Informlly, function is n opertion which tkes n input

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

A study of Pythagoras Theorem

A study of Pythagoras Theorem CHAPTER 19 A study of Pythgors Theorem Reson is immortl, ll else mortl. Pythgors, Diogenes Lertius (Lives of Eminent Philosophers) Pythgors Theorem is proly the est-known mthemticl theorem. Even most nonmthemticins

More information

a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.

a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants. Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting

More information

Harvard University Computer Science 121 Midterm October 23, 2012

Harvard University Computer Science 121 Midterm October 23, 2012 Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

Quadratic Residues. Chapter Quadratic residues

Quadratic Residues. Chapter Quadratic residues Chter 8 Qudrtic Residues 8. Qudrtic residues Let n>be given ositive integer, nd gcd, n. We sy tht Z n is qudrtic residue mod n if the congruence x mod n is solvble. Otherwise, is clled qudrtic nonresidue

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

On the diagram below the displacement is represented by the directed line segment OA.

On the diagram below the displacement is represented by the directed line segment OA. Vectors Sclrs nd Vectors A vector is quntity tht hs mgnitude nd direction. One exmple of vector is velocity. The velocity of n oject is determined y the mgnitude(speed) nd direction of trvel. Other exmples

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Lecture Solution of a System of Linear Equation

Lecture Solution of a System of Linear Equation ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 + Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

More information

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15 Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

More information

Lecture Note 9: Orthogonal Reduction

Lecture Note 9: Orthogonal Reduction MATH : Computtionl Methods of Liner Algebr 1 The Row Echelon Form Lecture Note 9: Orthogonl Reduction Our trget is to solve the norml eution: Xinyi Zeng Deprtment of Mthemticl Sciences, UTEP A t Ax = A

More information

Math Solutions to homework 1

Math Solutions to homework 1 Mth 75 - Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht

More information

CIRCULAR COLOURING THE PLANE

CIRCULAR COLOURING THE PLANE CIRCULAR COLOURING THE PLANE MATT DEVOS, JAVAD EBRAHIMI, MOHAMMAD GHEBLEH, LUIS GODDYN, BOJAN MOHAR, AND REZA NASERASR Astrct. The unit distnce grph R is the grph with vertex set R 2 in which two vertices

More information

Section 3.1: Exponent Properties

Section 3.1: Exponent Properties Section.1: Exponent Properties Ojective: Simplify expressions using the properties of exponents. Prolems with exponents cn often e simplied using few sic exponent properties. Exponents represent repeted

More information

MATRICES AND VECTORS SPACE

MATRICES AND VECTORS SPACE MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR

More information

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real Rtionl Numbers vs Rel Numbers 1. Wht is? Answer. is rel number such tht ( ) =. R [ ( ) = ].. Prove tht (i) 1; (ii). Proof. (i) For ny rel numbers x, y, we hve x = y. This is necessry condition, but not

More information

Quadratic reciprocity

Quadratic reciprocity Qudrtic recirocity Frncisc Bozgn Los Angeles Mth Circle Octoer 8, 01 1 Qudrtic Recirocity nd Legendre Symol In the eginning of this lecture, we recll some sic knowledge out modulr rithmetic: Definition

More information

HQPD - ALGEBRA I TEST Record your answers on the answer sheet.

HQPD - ALGEBRA I TEST Record your answers on the answer sheet. HQPD - ALGEBRA I TEST Record your nswers on the nswer sheet. Choose the best nswer for ech. 1. If 7(2d ) = 5, then 14d 21 = 5 is justified by which property? A. ssocitive property B. commuttive property

More information

What else can you do?

What else can you do? Wht else cn you do? ngle sums The size of specil ngle types lernt erlier cn e used to find unknown ngles. tht form stright line dd to 180c. lculte the size of + M, if L is stright line M + L = 180c( stright

More information

Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.

Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system. Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous

More information

Math 33A Discussion Example Austin Christian October 23, Example 1. Consider tiling the plane by equilateral triangles, as below.

Math 33A Discussion Example Austin Christian October 23, Example 1. Consider tiling the plane by equilateral triangles, as below. Mth 33A Discussion Exmple Austin Christin October 3 6 Exmple Consider tiling the plne by equilterl tringles s below Let v nd w be the ornge nd green vectors in this figure respectively nd let {v w} be

More information